Possible Sub-Glacial Eruptions in the Galaxias Quadrangle, Mars ⇑ Peter J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Volcanism on Mars
Author's personal copy Chapter 41 Volcanism on Mars James R. Zimbelman Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA William Brent Garry and Jacob Elvin Bleacher Sciences and Exploration Directorate, Code 600, NASA Goddard Space Flight Center, Greenbelt, MD, USA David A. Crown Planetary Science Institute, Tucson, AZ, USA Chapter Outline 1. Introduction 717 7. Volcanic Plains 724 2. Background 718 8. Medusae Fossae Formation 725 3. Large Central Volcanoes 720 9. Compositional Constraints 726 4. Paterae and Tholi 721 10. Volcanic History of Mars 727 5. Hellas Highland Volcanoes 722 11. Future Studies 728 6. Small Constructs 723 Further Reading 728 GLOSSARY shield volcano A broad volcanic construct consisting of a multitude of individual lava flows. Flank slopes are typically w5, or less AMAZONIAN The youngest geologic time period on Mars identi- than half as steep as the flanks on a typical composite volcano. fied through geologic mapping of superposition relations and the SNC meteorites A group of igneous meteorites that originated on areal density of impact craters. Mars, as indicated by a relatively young age for most of these caldera An irregular collapse feature formed over the evacuated meteorites, but most importantly because gases trapped within magma chamber within a volcano, which includes the potential glassy parts of the meteorite are identical to the atmosphere of for a significant role for explosive volcanism. Mars. The abbreviation is derived from the names of the three central volcano Edifice created by the emplacement of volcanic meteorites that define major subdivisions identified within the materials from a centralized source vent rather than from along a group: S, Shergotty; N, Nakhla; C, Chassigny. -
Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ 2014
Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ 2014 Edited by: James A. Skinner, Jr. U. S. Geological Survey, Flagstaff, AZ David Williams Arizona State University, Tempe, AZ NOTE: Abstracts in this volume can be cited using the following format: Graupner, M. and Hansen, V.L., 2014, Structural and Geologic Mapping of Tellus Region, Venus, in Skinner, J. A., Jr. and Williams, D. A., eds., Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, June 23-25, 2014. SCHEDULE OF EVENTS Monday, June 23– Planetary Geologic Mappers Meeting Time Planet/Body Topic 8:30 am Arrive/Set-up – 2255 N. Gemini Drive (USGS) 9:00 Welcome/Logistics 9:10 NASA HQ and Program Remarks (M. Kelley) 9:30 USGS Map Coordinator Remarks (J. Skinner) 9:45 GIS and Web Updates (C. Fortezzo) 10:00 RPIF Updates (J. Hagerty) 10:15 BREAK / POSTERS 10:40 Venus Irnini Mons (D. Buczkowski) 11:00 Moon Lunar South Pole (S. Mest) 11:20 Moon Copernicus Quad (J. Hagerty) 11:40 Vesta Iterative Geologic Mapping (A. Yingst) 12:00 pm LUNCH / POSTERS 1:30 Vesta Proposed Time-Stratigraphy (D. Williams) 1:50 Mars Global Geology (J. Skinner) 2:10 Mars Terra Sirenum (R. Anderson) 2:30 Mars Arsia/Pavonis Montes (B. Garry) 2:50 Mars Valles Marineris (C. Fortezzo) 3:10 BREAK / POSTERS 3:30 Mars Candor Chasma (C. Okubo) 3:50 Mars Hrad Vallis (P. Mouginis-Mark) 4:10 Mars S. Margaritifer Terra (J. Grant) 4:30 Mars Ladon basin (C. Weitz) 4:50 DISCUSSION / POSTERS ~5:15 ADJOURN Tuesday, June 24 - Planetary Geologic Mappers Meeting Time Planet/Body Topic 8:30 am Arrive/Set-up/Logistics 9:00 Mars Upper Dao and Niger Valles (S. -
A Swarm of Small Shield Volcanoes on Syria Planum, Mars Ana Rita Baptista, Nicolas Mangold, Véronique Ansan, David Baratoux, Philippe Lognonné, Eduardo I
A swarm of small shield volcanoes on Syria Planum, Mars Ana Rita Baptista, Nicolas Mangold, Véronique Ansan, David Baratoux, Philippe Lognonné, Eduardo I. Alves, David A. Williams, Jacob E. Bleacher, Philippe Masson, Gerhard Neukum To cite this version: Ana Rita Baptista, Nicolas Mangold, Véronique Ansan, David Baratoux, Philippe Lognonné, et al.. A swarm of small shield volcanoes on Syria Planum, Mars. Journal of Geophysical Research. Planets, Wiley-Blackwell, 2008, 113 (E9), pp.E09010. 10.1029/2007JE002945. hal-00365570 HAL Id: hal-00365570 https://hal.archives-ouvertes.fr/hal-00365570 Submitted on 23 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, E09010, doi:10.1029/2007JE002945, 2008 A swarm of small shield volcanoes on Syria Planum, Mars Ana Rita Baptista,1,2 Nicolas Mangold,2 Ve´ronique Ansan,2 David Baratoux,3 Philippe Lognonne´,1 Eduardo I. Alves,4 David A. Williams,5 Jacob E. Bleacher,6 Philippe Masson,2 and Gerhard Neukum7 Received 25 May 2007; revised 6 May 2008; accepted 21 July 2008; published 26 September 2008. [1] This study focuses on the volcanism in Syria Planum, located at the center of the Tharsis bulge at an altitude of 6 to 8 km above Mars datum. -
The Mars Global Surveyor Mars Orbiter Camera: Interplanetary Cruise Through Primary Mission
p. 1 The Mars Global Surveyor Mars Orbiter Camera: Interplanetary Cruise through Primary Mission Michael C. Malin and Kenneth S. Edgett Malin Space Science Systems P.O. Box 910148 San Diego CA 92130-0148 (note to JGR: please do not publish e-mail addresses) ABSTRACT More than three years of high resolution (1.5 to 20 m/pixel) photographic observations of the surface of Mars have dramatically changed our view of that planet. Among the most important observations and interpretations derived therefrom are that much of Mars, at least to depths of several kilometers, is layered; that substantial portions of the planet have experienced burial and subsequent exhumation; that layered and massive units, many kilometers thick, appear to reflect an ancient period of large- scale erosion and deposition within what are now the ancient heavily cratered regions of Mars; and that processes previously unsuspected, including gully-forming fluid action and burial and exhumation of large tracts of land, have operated within near- contemporary times. These and many other attributes of the planet argue for a complex geology and complicated history. INTRODUCTION Successive improvements in image quality or resolution are often accompanied by new and important insights into planetary geology that would not otherwise be attained. From the variety of landforms and processes observed from previous missions to the planet Mars, it has long been anticipated that understanding of Mars would greatly benefit from increases in image spatial resolution. p. 2 The Mars Observer Camera (MOC) was initially selected for flight aboard the Mars Observer (MO) spacecraft [Malin et al., 1991, 1992]. -
Terrestrial Analogs to the Calderas of the Tharsis Volcanoes on Mars
File: {CUP_REV}Chapman-0521832926/Revises/0521832926c03.3d Creator: / Date/Time: 17.10.2006/5:48pm Page: 71/94 3 Terrestrial analogs to the calderas of the Tharsis volcanoes on Mars Peter J. Mouginis-Mark, Andrew J. L. Harris and Scott K. Rowland Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa. 3.1 Introduction The structure and morphology of Martian calderas have been well studied through analysis of the Viking Orbiter images (e.g., Mouginis-Mark, 1981; Wood, 1984; Mouginis-Mark and Robinson, 1992; Crumpler et al., 1996), and provide important information on the evolution and eruptive styles of the parent volcanoes. Using Viking data it has been possible, for numerous calderas, to define the sequence of collapse events, identify locations of intra-caldera activity, and recognize post-eruption deformation for several calderas. Inferences about the geometry and depth of the magma chamber and intrusions beneath the summit of the volcano can also be made from image data (Zuber and Mouginis-Mark, 1992; Scott and Wilson, 1999). In at least one case, Olympus Mons, analysis of compressional and extensional features indicates that, when active, the magma chamber was located within the edifice (i.e., at an elevation above the surrounding terrain). The summit areas of Olympus and Ascraeus Montes provide evidence of a dynamic history, with deep calderas showing signs of having been full at one time to the point that lava flows spilled over the caldera rim (Mouginis-Mark, 1981). Similarly, shallow calderas contain evidence that they were once deeper (e.g., the western caldera of Alba Patera; Crumpler et al., 1996). -
Abstract Title
15th Swiss Geoscience Meeting, Davos 2017 Saharan networks and the Martian networks: a key analogue to extract response of surface to past, present and future climatic changes Abdallah S. Zaki*, Sébastien Castelltort* * Earth Surface Dynamics, Department of Earth Sciences, University of Geneva ([email protected]). The discovery of seemingly water-worn valleys on Mars remains one of the most transforming events in the history of our exploration of the solar system. Images from the Mariner 6 and 7 revealed small valley networks on the Martian surface in 1969. However, these landforms were not recognized as fluvial until Mariner 9 images were obtained in 1970 (McCauley et al., 1972). Most valley networks developed during earlier warmer and wetter climatic environments, this interpretation based on data collected from Mariner 9 (1971) and the Viking orbiters (1976-1980) (e.g., Mars Channel Working Group, 1983). New details of the valley networks were obtained by High-resolution images from the Mars Orbiter Camera (MOC) abroad the Mars Global Surveyor (1997-2006), the Thermal Emission Imaging System (THEMIS) abroad the Mars Odyssey (2002- present), and finally, Curiosity Rover which landed on the floor of the 150-km- diameter Gale Crater by Mars Science Laboratory on 6 August 2012. Fluvial-like landforms such as river channels, alluvial fans and deltas, and sedimentary rocks testifying sediment transport under the influence of water have been observed in numerous regions on Mars (Fig. 1). Fluvial activity on Mars has been assigned to ages as old as Noachian and as young as Amazonian (<3.0 Ga) (Howard et al., 2005). -
A Large Vent Structure Within Argyre Basin, Mars J.-P
45th Lunar and Planetary Science Conference (2014) 2807.pdf A Large Vent Structure within Argyre Basin, Mars J.-P. Williams1, J. M. Dohm2, R. M. Lopes3, and D. L. Buczkowski4, 1Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA, 90095, USA ([email protected]), 2Earth-Life Science Inst., Tokyo Institute of Technology, Tokyo, Japan, 3Jet Propulsion Laboratory, Caltech., Pasadena, CA 91109, USA, 4Johns Hopkins University, Applied Physics Lab, Laurel MD 20723, USA. Introduction: The Argyre Basin, an impact basin Given the geologic history of the Argyre basin in the southern highlands southeast of Tharsis at involving an aqueous and ice rich environment, −51◦ S and 317◦ E, is one of the largest impact phreatic and phreatomagmatic eruptions may have basins on Mars with a diameter > 1200 km. The played a role in forming the feature. Tuff cones, basin formed in the Early Noachian and has expe- tuff rings, and maars result from the explosive in- rienced a complex geologic history. The basin has teraction of magma with standing water or ground been a sink for volatiles and other materials expe- water. These features however tend to be much riencing a significant influx of sediments and par- smaller in scale. The largest known maars on Earth, tial infilling with water. Eolian activity has played the Espenberg Maars on the Seward Peninsula in a substantial role in contributing to the present day northwest Alaska, are 4 − 8 km in diameter and re- morphology of the basin floor. Detailed descrip- sulted from a series of basaltic eruptions through tions of the basin and its geologic history can be thick permafrost [4]. -
N91-22989 Free Convection in the Martian Atmosphere; G.D.Clow (USGS, MS946, Menlo Park, CA 94025) and R.M.Habefle (NASA/Ames, Moffett Field, CA 94035)
N91-22989 Free Convection in the Martian Atmosphere; G.D.Clow (USGS, MS946, Menlo Park, CA 94025) and R.M.Habefle (NASA/Ames, Moffett Field, CA 94035) We investigate the "free convective" regime for the martian atmospheric boundary layer (ABL). This state occurs when the mean windspeed at the top of the ABL drops below some critical value Uc and positive buoyant forces are present. Such forces can arise either from vertical temperature or water vapor gradients across the atmospheric surface layer. During free convection, buoyant forces drive narrow plumes that ascend to the inversion height with a return circulation consisting of broad slower-moving downdraughts. Horizontal pressure, temperature, windspeed, and water vapor fluctuations resulting from this circulation pattern can be quite large adjacent to the ground (within the surface layer). These local turbulent fluctuations cause non-zero mean surface stresses, sensible heat fluxes, and latent heat fluxes, even when the mean regional windspeed is zero. Although motions above the surface layer are insensitive to the nature of the surface, the sensible and latent heat fluxes are primarily controlled by processes within the interfacial sublayer immediately adjacent to the ground during free convection. Thus the distinction between aerodynamically smooth and rough airflow within the interfacial sublayer is more important than for the more typical situation where the mean regional windspeed is greater than Uc. Buoyant forces associated with water vapor gradients are particularly large on Mars at low pressures (P < 30 rob) and high temperatures (T >250 K) when the surface's relative humidity is 100%, enhancing the likelihood of free convection under these conditions. -
Mouginis-Mark, PJ, Zimbelman, JR, Crown, DA, Wi
PUBLICATIONS LIST – PETER J. MOUGINIS-MARK July 2021 Submitted/In Press: Mouginis-Mark, P.J., Zimbelman, J.R., Crown, D.A., Wilson, L., Gregg, T.K.P. Paradigms in Martian volcanism. Invited review article submitted to Chemie der Erde – Geochemistry, April 2021. Mouginis-Mark, P.J., Rowland, S., Wilson, L. Planetary Volcanism: Craters, Lava Flows, Fissures, and Insights into their Formation from Observations of the April - August 2018 Eruption of Kīlauea Volcano, Hawai‘i. In press in: Planetary Volcanism, ed. R. Lopes, T. Gregg, S. Fagents, May 2019. Biass, S., Houghton, B.F., Curran, K.C., Thordarson, T., Orr, T.R., Parcheta, C.E., Llewellin, E.W., Mouginis-Mark, P.J. Using 4-D reconstruction of a basaltic lava flow to reveal a complex, staged emplacement. Submitted J. Geophys. Res., February 2021. 2021 Mouginis-Mark, P.J. Geologic Map of Olympus Mons caldera, Mars. U. S. Geological Survey Scientific Investigations Map 3470, 1:200,000-scale. Boyce, J.M., Mouginis-Mark, P.J. Morphologic differences in radial grooves on Martian layered (fluidized) ejecta: Implications for emplacement processes and conditions. Icarus 366, 114513, 2021. Gregg, T.K.P., Garry, W.B., Zimbelman, J.R., Crown, D.A., Mouginis-Mark. Syrtis Major and small highland volcanoes. In: Volcanoes on Mars, ed. J.R. Zimbelman, D.A. Crown, P.J. Mouginis-Mark, T.K.P. Gregg, Elsevier Press, pp. 122 - 136. Mouginis-Mark, P.J., Crown, D.A., Zimbelman, J.R., Williams, D.A. The Tharsis Province. In: Volcanoes on Mars, ed. J.R. Zimbelman, D.A. Crown, P.J. Mouginis-Mark, T.K.P. -
Volcanism on Mars
Papers Presented to the NASA MEVI'V Program Working Group Meeting: Volcanism on Mars Oahu, Hawaii June 27-30, 1988 Sponsored by Lunar and Planetary Institute Hosted by University of Hawaii at Manoa LPI Contrihutinn No. 660 Material in this volume may be copied without restraint for library, abstract service, educational, or research purposes; however, republication of any paper or portion thereof requires written permission from the author as well as appropriate acknowledgment of this publication. Preface Welcome to Hawaii! Contained within are the abstracts that were received in response to our announcement of the working group meeting. As you know, the purpose of the MEVTV program is to further the understanding of volcanism, tectonism, and volatiles on Mars, and to explore the interactions among these processes. The purpose of this working group meeting is to focus predominantly on volcanism on Mars, prior to considering the more complex Issues of interactions between volcanism and tectonism or between volcanism and global or regional volatile evolution. We also hope to identify the topical areas of research that will aid the planetary geology community in understanding volcanism on Mars and its relationship to other physical processes. We wish you a stimulating and enjoyable stay in Hawaii! The Working Group Committee TABLE OF CONTENTS Eruptive Viscosity and Volcano Morphology S. B. Posin and R. Greeley ............................................................................. 1 Faulting and its Relation to Volcanism: Mars' Western Equatorial Region D. H. Scott and J. Dohm ................................................................................. 5 Lava Thicknesses: Implications for Rheological and Crustal Development C. R. J. Kilburn and R. M. C. Lopes ............................................................. 9 Mars: Volcanism in the Valles Marineris Overlooked? B. -
North Gale Landform and the Volcanic Sources of Sediment in Gale
North Gale Landform and the Volcanic Sources of Sediment in Gale Crater, Mars By Jeff Churchill, BSc. Brock University Submitted in partial fulfillment of the requirements for the degree of Master of Science in Earth Sciences Faculty of Earth Sciences, Brock University St. Catharines, Ontario ©2018 i Master of Science (2018) Brock University (Earth Sciences) St Catharines, ON, Canada TITLE: Volcanic Sources of Sediment in Gale Crater, Mars AUTHOR: Jeffrey Churchill, Honours BSc. (Brock University, St. Catharines, Ontario, Canada, 2016) SUPERVISOR: Professor, Dr. Mariek E. Schmidt COMMITTEE: Dr. Frank Fueten, Dr. Kevin Turner NUMBER OF PAGES: 138 ii Abstract An investigation into the origins of a previously unidentified landform north of Gale Crater, Mars (North Gale Landform, NGL) using remotely sensed datasets and morphological mapping has determined that it is a volcanic construct that collapsed and produced a hummocky terrain deposit to the south. Volcaniclastic sediments have been detected in the sedimentary rocks of Gale Crater by APXS. They can be grouped into distinct classes: Jake_M and Bathurst_Inlet. Jake_M are float rocks and cobbles made of igneous sediments with evolved, alkaline compositions and pitted, dusty surfaces. Bathurst_Inlet are least altered potassic basaltic sediments in siltstone sandstone to matrix-supported conglomerates. Simple petrologic models demonstrate there is a need for more than one distinct crystalline source. Bathurst_Inlet class targets are not mantle melts and Jake_M class targets are not differentiated from Bathurst_Inlet or Adirondack. NGL may be one source for the volcaniclastic sediments in Gale Crater. Key words: Mars, Gale Crater, volcanology, geochemistry, petrological modelling iii Acknowledgements I’d like to thank my thesis supervisor Mariek Schmidt for all the help and support that she has given me for the past 2+ years. -
15. Volcanic Activity on Mars
15. Volcanic Activity on Mars Martian volcanism, preserved at the surface, composition), (2) domes and composite cones, is extensive but not uniformly distributed (Fig. (3) highland paterae, and related (4) volcano- 15.1). It includes a diversity of volcanic land- tectonic features. Many plains units like Lu- forms such as central volcanoes, tholi, paterae, nae Planum and Hesperia Planum are thought small domes as well as vast volcanic plains. to be of volcanic origin, fed by clearly defined This diversity implies different eruption styles volcanoes or by huge fissure volcanism. Many and possible changes in the style of volcanism small volcanic cone fields in the northern plains with time as well as the interaction with the are interpreted as cinder cones (Wood, 1979), Martian cryosphere and atmosphere during the formed by lava and ice interaction (Allen, evolution of Mars. Many volcanic constructs 1979), or as the product of phreatic eruptions are associated with regional tectonic or local (Frey et al., 1979). deformational features. An overview of the temporal distribution of Two topographically dominating and mor- processes, including the volcanic activity as phologically distinct volcanic provinces on Mars well as the erosional processes manifested by are the Tharsis and Elysium regions. Both are large outflow channels ending in the northern situated close to the equator on the dichotomy lowlands and sculpting large units of the vol- boundary between the cratered (older) high- canic flood plains has been given by Neukum lands and the northern lowlands and are ap- and Hiller (1981). This will be discussed in proximately 120◦ apart. They are characterized this work together with new findings.