Microbiome Dynamics of COVID-19 Adults
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Robust Taxonomic Classification of Uncharted Microbial Sequences and Bins with CAT and BAT
bioRxiv preprint doi: https://doi.org/10.1101/530188; this version posted January 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT F.A. Bastiaan von Meijenfeldt1,†, Ksenia Arkhipova1,†, Diego D. Cambuy1, Felipe H. Coutinho2,3, Bas E. Dutilh1,2,* 1 Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, The Netherlands. 2 Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands. 3 Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. * To whom correspondence should be addressed. Tel: +31 30 253 4212; Email: [email protected]. † These authors contributed equally to this work. Present Address: [Felipe H. Couthinho], Evolutionary Genomics Group, Departamento de Produccíon y Microbiología, Universidad Miguel Hernández, Campus San Juan, San Juan, Alicante 03550, Spain. ABSTRACT Current-day metagenomics increasingly requires taxonomic classification of long DNA sequences and metagenome-assembled genomes (MAGs) of unknown microorganisms. We show that the standard best-hit approach often leads to classifications that are too specific. We present tools to classify high- quality metagenomic contigs (Contig Annotation Tool, CAT) and MAGs (Bin Annotation Tool, BAT) and thoroughly benchmark them with simulated metagenomic sequences that are classified against a reference database where related sequences are increasingly removed, thereby simulating increasingly unknown queries. We find that the query sequences are correctly classified at low taxonomic ranks if closely related organisms are present in the reference database, while classifications are made higher in the taxonomy when closely related organisms are absent, thus avoiding spurious classification specificity. -
Bacteroidota and Lachnospiraceae Integration Into the Gut Microbiome at Key Time Points in Early Life Are Critical for Neurodevelopment
Bacteroidota and Lachnospiraceae Integration Into the Gut Microbiome at Key Time Points in Early Life are Critical for Neurodevelopment Kaitlyn Oliphant University of Chicago Division of the Biological Sciences https://orcid.org/0000-0002-6921-7094 Mehneez Ali University of Chicago Division of the Biological Sciences Mark D'Souza University of Chicago Division of the Biological Sciences Patrick D. Hughes University of Chicago Comer Children's Hospital Dinanath Sulakhe University of Chicago Division of the Biological Sciences Annie Z. Wang University of Chicago Comer Children's Hospital Bingqing Xie University of Chicago Division of the Biological Sciences Rummanu Yeasin University of Chicago Division of the Biological Sciences Michael M. Msall University of Chicago Division of the Biological Sciences Bree Andrews University of Chicago Division of the Biological Sciences Erika C. Claud ( [email protected] ) Department of Pediatrics, Biological Sciences Division, University of Chicago, Chicago, IL, USA https://orcid.org/0000-0002-2408-2114 Research Keywords: Human gut microbiome, Infant microbiome succession, Infant neurodevelopment Posted Date: July 14th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-668952/v1 Page 1/40 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/40 Abstract Background: The early life microbiome plays critical roles in host development, shaping long-term outcomes including brain functioning. It is not known which initial infant colonizers elicit optimal neurodevelopment; thus, this study investigated the association between gut microbiome succession from the rst week of life and head circumference growth (HCG), the earliest validated marker for neurodevelopment. -
WO 2018/064165 A2 (.Pdf)
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. -
Microbiome of Odontogenic Abscesses
microorganisms Article Microbiome of Odontogenic Abscesses Sebastian Böttger 1,* , Silke Zechel-Gran 2, Daniel Schmermund 1, Philipp Streckbein 1 , Jan-Falco Wilbrand 1 , Michael Knitschke 1 , Jörn Pons-Kühnemann 3, Torsten Hain 2,4, Markus Weigel 2 , Hans-Peter Howaldt 1, Eugen Domann 4,5 and Sameh Attia 1 1 Department of Oral and Maxillofacial Surgery, Justus-Liebig-University Giessen, University Hospital Giessen and Marburg, Giessen, D-35392 Giessen, Germany; [email protected] (D.S.); [email protected] (P.S.); [email protected] (J.-F.W.); [email protected] (M.K.); [email protected] (H.-P.H.); [email protected] (S.A.) 2 Institute of Medical Microbiology, Justus-Liebig-University Giessen, D-35392 Giessen, Germany; [email protected] (S.Z.-G.); [email protected] (T.H.); [email protected] (M.W.) 3 Institute of Medical Informatics, Justus-Liebig-University Giessen, D-35392 Giessen, Germany; [email protected] 4 German Center for Infection Research (DZIF), Justus-Liebig-University Giessen, Partner Site Giessen-Marburg-Langen, D-35392 Giessen, Germany; [email protected] 5 Institute of Hygiene and Environmental Medicine, Justus-Liebig-University Giessen, D-35392 Giessen, Germany * Correspondence: [email protected]; Tel.: +49-641-98546271 Abstract: Severe odontogenic abscesses are regularly caused by bacteria of the physiological oral Citation: Böttger, S.; Zechel-Gran, S.; microbiome. However, the culture of these bacteria is often prone to errors and sometimes does not Schmermund, D.; Streckbein, P.; result in any bacterial growth. -
EXPERIMENTAL STUDIES on FERMENTATIVE FIRMICUTES from ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, and THEIR GEOCHEMICAL IMPACTS By
EXPERIMENTAL STUDIES ON FERMENTATIVE FIRMICUTES FROM ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, AND THEIR GEOCHEMICAL IMPACTS By JESSICA KEE EUN CHOI A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Microbial Biology Written under the direction of Nathan Yee And approved by _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ New Brunswick, New Jersey October 2017 ABSTRACT OF THE DISSERTATION Experimental studies on fermentative Firmicutes from anoxic environments: isolation, evolution and their geochemical impacts by JESSICA KEE EUN CHOI Dissertation director: Nathan Yee Fermentative microorganisms from the bacterial phylum Firmicutes are quite ubiquitous in subsurface environments and play an important biogeochemical role. For instance, fermenters have the ability to take complex molecules and break them into simpler compounds that serve as growth substrates for other organisms. The research presented here focuses on two groups of fermentative Firmicutes, one from the genus Clostridium and the other from the class Negativicutes. Clostridium species are well-known fermenters. Laboratory studies done so far have also displayed the capability to reduce Fe(III), yet the mechanism of this activity has not been investigated -
Supplementary Figure Legends for Rands Et Al. 2019
Supplementary Figure legends for Rands et al. 2019 Figure S1: Display of all 485 prophage genome maps predicted from Gram-Negative Firmicutes. Each horizontal line corresponds to an individual prophage shown to scale and color-coded for annotated phage genes according to the key displayed in the right- side Box. The left vertical Bar indicates the Bacterial host in a colour code. Figure S2: Projection of virome sequences from 183 human stool samples on A. Acidaminococcus intestini RYC-MR95, and B. Veillonella parvula UTDB1-3. The first panel shows the read coverage (Y-axis) across the complete Bacterial genome sequence (X-axis; with bp coordinates). Predicted prophage regions are marked with red triangles and magnified in the suBsequent panels. Virome reads projected outside of prophage prediction are listed in Table S4. Figure S3: The same display of virome sequences projected onto Bacterial genomes as in Figure S2, But for two different Negativicute species: A. Dialister Marseille, and B. Negativicoccus massiliensis. For non-phage peak annotations, see Table S4. Figure S4: Gene flanking analysis for the lysis module from all prophages predicted in all the different Bacterial clades (Table S2), a total of 3,462 prophages. The lysis module is generally located next to the tail module in Firmicute prophages, But adjacent to the packaging (terminase) module in Escherichia phages. 1 Figure S5: Candidate Mu-like prophage in the Negativicute Propionispora vibrioides. Phage-related genes (arrows indicate transcription direction) are coloured and show characteristics of Mu-like genome organization. Figure S6: The genome maps of Negativicute prophages harbouring candidate antiBiotic resistance genes MBL (top three Veillonella prophages) and tet(32) (bottom Selenomonas prophage remnant); excludes the ACI-1 prophage harbouring example characterised previously (Rands et al., 2018). -
Phylogenomic Analysis Supports the Ancestral Presence of LPS-Outer Membranes in the Firmicutes
Phylogenomic analysis supports the ancestral presence of LPS-outer membranes in the Firmicutes. Luisa Cs Antunes, Daniel Poppleton, Andreas Klingl, Alexis Criscuolo, Bruno Dupuy, Céline Brochier-Armanet, Christophe Beloin, Simonetta Gribaldo To cite this version: Luisa Cs Antunes, Daniel Poppleton, Andreas Klingl, Alexis Criscuolo, Bruno Dupuy, et al.. Phy- logenomic analysis supports the ancestral presence of LPS-outer membranes in the Firmicutes.. eLife, eLife Sciences Publication, 2016, 5, pp.e14589. 10.7554/eLife.14589.020. pasteur-01362343 HAL Id: pasteur-01362343 https://hal-pasteur.archives-ouvertes.fr/pasteur-01362343 Submitted on 8 Sep 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License RESEARCH ARTICLE Phylogenomic analysis supports the ancestral presence of LPS-outer membranes in the Firmicutes Luisa CS Antunes1†, Daniel Poppleton1†, Andreas Klingl2, Alexis Criscuolo3, Bruno Dupuy4, Ce´ line Brochier-Armanet5, Christophe Beloin6, Simonetta Gribaldo1* 1Unite´ de -
Distinct and Complex Bacterial Profiles in Human Periodontitis and Health Revealed by 16S Pyrosequencing
The ISME Journal (2012) 6, 1176–1185 & 2012 International Society for Microbial Ecology All rights reserved 1751-7362/12 www.nature.com/ismej ORIGINAL ARTICLE Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing Ann L Griffen1,6, Clifford J Beall2,6, James H Campbell3,6, Noah D Firestone2, Purnima S Kumar4, Zamin K Yang3, Mircea Podar3,5 and Eugene J Leys2 1Division of Pediatric Dentistry and Community Oral Health, The Ohio State University College of Dentistry, Columbus, OH, USA; 2Division of Oral Biology, The Ohio State University College of Dentistry, Columbus, OH, USA; 3Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; 4Division of Periodontology, The Ohio State University College of Dentistry, Columbus, OH, USA and 5Genome Science and Technology Program, University of Tennessee, Knoxville, TN, USA Periodontitis has a polymicrobial etiology within the framework of a complex microbial ecosystem. With advances in sequencing technologies, comprehensive studies to elucidate bacterial commu- nity differences have recently become possible. We used 454 sequencing of 16S rRNA genes to compare subgingival bacterial communities from 29 periodontally healthy controls and 29 subjects with chronic periodontitis. Amplicons from both the V1-2 and V4 regions of the 16S gene were sequenced, yielding 1 393 579 sequences. They were identified by BLAST against a curated oral 16S database, and mapped to 16 phyla, 106 genera, and 596 species. 81% of sequences could be mapped to cultivated species. Differences between health- and periodontitis-associated bacterial commu- nities were observed at all phylogenetic levels, and UniFrac and principal coordinates analysis showed distinct community profiles in health and disease. -
Periodontal Disease and the Oral Microbiota in New-Onset Rheumatoid Arthritis
Full Length Arthritis & Rheumatism DOI 10.1002/art.34539 Periodontal Disease and the Oral Microbiota in New-Onset Rheumatoid Arthritis Jose U. Scher,1* Carles Ubeda,2,5* Michele Equinda,2 Raya Khanin,2 Yvonne Buischi,3 Agnes Viale,2 Lauren Lipuma,2 Mukundan Attur,1 Michael H. Pillinger,1 Gerald Weissmann,4 Dan R. Littman,4 Eric G. Pamer,2 Walter A. Bretz,3 and Steven B. Abramson1 1Jose U. Scher, MD, Mukundan Attur, PhD, Michael H. Pillinger, MD, Steven B. Abramson, MD: New York University School of Medicine and NYU Hospital for Joint Diseases, New York, New York; 2Carles Ubeda, PhD, Michele Equinda, BS, Raya Khanin, PhD, MSc, Agnes Viale, PhD, Lauren Lipuma, MS, Eric G. Pamer, MD: Memorial Sloan-Kettering Cancer Center, The Lucille Castori Center for Microbes, Inflammation and Cancer, New York, New York; 3Yvonne Buischi, DDS, PhD, Walter A. Bretz, DDS, DrPH: NYU College of Dentistry, New York, New York; 4Gerald Weissmann, MD, Dan R. Littman, MD, PhD: New York University School of Medicine, New York, New York; 5Carles Ubeda, PhD, current address: Department of Genomics and Health, Center for Advanced Research in Public Health, Valencia, Spain. * Drs. Scher and Ubeda contributed equally to this work. ClinicalTrials.gov identifier: NCT01198509 Supported by Grant No. RC2 AR058986 to Drs. Abramson and Littman from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) through the American Recovery and Reinvestment Act (ARRA) of 2009. and by a KL2 Program in Translational Research to Dr. Scher, Grant No. 1 UL1 RR029893 from the National Center for Research Resources, NIH. -
Clinical and Genomic Characterization of Two Vaginal Megasphaera Species
Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2015 Clinical and Genomic Characterization of Two Vaginal Megasphaera Species Abigail L. Glascock Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Bioinformatics Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/4033 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. i CLINICAL AND GENOMIC CHARACTERIZATION OF VAGINAL MEGASPHAERA SPECIES A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University. by ABIGAIL LEIGH GLASCOCK Bachelor of Science, James Madison University, 2010 Director: JENNIFER M. FETTWEIS, PH.D. ASSISTANT PROFESSOR, CENTER FOR THE STUDY OF BIOLOGICAL COMPLEXITY, DEPARTMENT OF OBSTETRICS AND GYNECOLOGY, SCHOOL OF MEDICINE Virginia Commonwealth University Richmond, Virginia December 2015 ii © Abigail Leigh Glascock, 2015 All Rights Reserved iii Acknowledgment First and foremost, I would like to extend my sincerest gratitude to my advisor, Dr. Jennifer M. Fettweis. Dr. Fettweis has served as a dedicated and caring mentor to me since I first arrived at VCU in 2010 as a laboratory technician. She has sacrificed countless hours of her time and spent many late nights in the lab discussing my research, reviewing my writing, scientific posters and presentations, and guiding me towards a successful and fulfilling science career. She has been supportive and proactive every step of the way in helping me to become a better scientist. -
Sierra Nevada Sweep: Metagenomic Measurements of Bioaerosols Vertically Distributed Across the Troposphere
www.nature.com/scientificreports OPEN Sierra Nevada sweep: metagenomic measurements of bioaerosols vertically distributed across the troposphere Crystal Jaing1*, James Thissen1, Michael Morrison1, Michael B. Dillon1, Samantha M. Waters2,7, Garrett T. Graham3, Nicholas A. Be1, Patrick Nicoll4, Sonali Verma5, Tristan Caro6 & David J. Smith7 To explore how airborne microbial patterns change with height above the Earth’s surface, we few NASA’s C-20A aircraft on two consecutive days in June 2018 along identical fight paths over the US Sierra Nevada mountain range at four diferent altitudes ranging from 10,000 ft to 40,000 ft. Bioaerosols were analyzed by metagenomic DNA sequencing and traditional culturing methods to characterize the composition and diversity of atmospheric samples compared to experimental controls. The relative abundance of taxa changed signifcantly at each altitude sampled, and the diversity profle shifted across the two sampling days, revealing a regional atmospheric microbiome that is dynamically changing. The most proportionally abundant microbial genera were Mycobacterium and Achromobacter at 10,000 ft; Stenotrophomonas and Achromobacter at 20,000 ft; Delftia and Pseudoperonospora at 30,000 ft; and Alcaligenes and Penicillium at 40,000 ft. Culture- based detections also identifed viable Bacillus zhangzhouensis, Bacillus pumilus, and Bacillus spp. in the upper troposphere. To estimate bioaerosol dispersal, we developed a human exposure likelihood model (7-day forecast) using general aerosol characteristics and measured meteorological conditions. By coupling metagenomics to a predictive atmospheric model, we aim to set the stage for feld campaigns that monitor global bioaerosol emissions and impacts. Aerosols (mostly desert dust, black carbon and ocean spray) regularly disperse across the Pacifc Ocean with springtime atmospheric winds – in fact, models suggest that as much as 64 Teragrams of Asian aerosols can be transported to North America annually 1. -
Exploring the Oral Microbiome in Rheumatic Diseases, State of Art and Future Prospective in Personalized Medicine with an AI Approach
Journal of Personalized Medicine Review Exploring the Oral Microbiome in Rheumatic Diseases, State of Art and Future Prospective in Personalized Medicine with an AI Approach Silvia Bellando-Randone 1,†, Edda Russo 1,† , Vincenzo Venerito 2, Marco Matucci-Cerinic 1,3, Florenzo Iannone 2, Sabina Tangaro 4 and Amedeo Amedei 1,* 1 Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; silvia.bellandorandone@unifi.it (S.B.-R.); edda.russo@unifi.it (E.R.); marco.matuccicerinic@unifi.it (M.M.-C.) 2 Rheumatology Unit, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro”, 70121 Bari, Italy; [email protected] (V.V.); fl[email protected] (F.I.) 3 Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, 20132 Milan, Italy 4 Dipartimento Interateneo di Fisica “M. Merlin”, Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70121 Bari, Italy; [email protected] * Correspondence: amedeo.amedei@unifi.it; Tel.: +39-(0)5-5275-8330 † Equal contribution. Abstract: The oral microbiome is receiving growing interest from the scientific community, as the mouth is the gateway for numerous potential etiopathogenetic factors in different diseases. In Citation: Bellando-Randone, S.; addition, the progression of niches from the mouth to the gut, defined as “oral–gut microbiome Russo, E.; Venerito, V.; axis”, affects several pathologies, as rheumatic diseases. Notably, rheumatic disorders (RDs) are Matucci-Cerinic, M.; Iannone, F.; conditions causing chronic, often intermittent pain affecting the joints or connective tissue. In this Tangaro, S.; Amedei, A. Exploring the review, we examine evidence which supports a role for the oral microbiome in the etiology and Oral Microbiome in Rheumatic progression of various RDs, including rheumatoid arthritis (RA), Sjogren’s syndrome (SS), and Diseases, State of Art and Future systemic lupus erythematosus (SLE).