2 Nucleation

Total Page:16

File Type:pdf, Size:1020Kb

2 Nucleation 2 Nucleation Marco Mazzotti,1 Thomas Vetter,2 David R. Ochsenbein,1 Giovanni M. Maggioni,1 Christian Lindenberg3 2.1 Introduction The term “nucleation” is used to describe the onset of the formation of a new phase from a parent phase [1, 2]. Examples of nucleation processes include the formation of vapor bubbles in a liquid phase, the formation of droplets from a vapor phase or from another liquid, as well as the formation of crystalline particles from vapor, liquid or even another solid. In the following, we will focus on the formation of new crystalline particles from solution exclusively. Apart from the breakage of an already existing particle into two or more pieces, nucleation is the only mechanism generating new crystals and is therefore of fundamental interest. From a processing perspective it is notoriously a phenomenon hard to control in batch crystallizers, a fact that increases the importance of process design strategies that avoid or minimize nucleation through the addition of previously prepared seed crystals. It is useful to classify the events leading to the formation of nuclei highly anisotropic into different types [3, 4]: primary homogeneous nucleation refers to the formation of nuclei from clear liquids; primary heterogeneous nucleation occurs when nuclei are formed with the participation of foreign surfaces (such as stirrers, crystallizer walls, or crystals of another form); secondary nucleation describes the formation of nuclei of one crystal form with the participation of already-present crystals of the same crystal form. While much of what is 1Institute of Process Engineering, ETH Zürich, Switzerland 2School of Chemical Engineering and Analytical Science, University of Manchester, United Kingdom 3Novartis Pharma AG, Switzerland 1 CHAPTER 2. NUCLEATION described in the following sections applies to all three types of nucleation, there are slight differences that need to be accounted for. It is noteworthy that these different nucleation mechanisms can occur simulta- neously and to varying degrees throughout a crystallization process; moreover, the nucleation rates of different solids, e.g., polymorphs, may compete with each other. For instance, starting from a clear solution containing a solute, it is possible that mixtures of different polymorphs are obtained during the crystallization process when the nucleation kinetics of the different crystal forms are comparable. However, since different crystal forms exhibit different stability, all forms but the most stable one, will ultimately convert into the stable form upon reaching thermodynamic equilibrium. Nevertheless, all pathways for nucleation share the fact that the formation of nuclei involves the concomitant creation of a new bulk phase and of an interface. When there is a driving force for crystallization, the former leads to a decrease in free energy of the system, while the latter increases it. This interplay of contributions often leads to the presence of a substantial energy barrier for the creation of a nucleus. In such cases, the original state of the parent phase is not thermodynamically unstable, but rather metastable and the rate of formation of nuclei, i.e., the nucleation rate, is finite. This implies that a purely thermodynamic understanding of the system, albeit essential, is insufficient to describe nucleation; a kinetic understanding of the system is additionally required in order to answer questions pertaining to the dynamics of the system. Furthermore, the effect of the operating conditions on both aspects needs to be understood. Theories of nucleation aim at achieving this goal and a brief overview of the most important theoretical frameworks, experimental characterization tools, and applications shall be given in the following. Finally, this chapter will also highlight how the use of seed crystals in a crystallization process allows obtaining a desired crystal form, which is of importance when the performance of a product strongly depends on the manufactured crystal form. 2.2 Homogeneous Nucleation In order to describe the formation of nuclei, we must first define the driving force for crystallization. We can express it as the difference in chemical potential between a solute molecule in the solution at its current state, µ`, and in the ∗ solution’s equilibrium state, µ` . In practical applications, it is more convenient 2 2.2. Homogeneous Nucleation to express this driving force in terms of the supersaturation S. These quantities can be related by: ∗ a` c ∆µ = µ` − µ` = kT ln S = kT ln ∗ ≈ kT ln ∗ (2.1) a` c where k is the Boltzmann constant, T is the temperature, a` represents the ∗ activity of the solute in the supersaturated solution and a` is the activity of the solute in the solution’s equilibrium state (note that al = cγ, where c is the concentration and γ its activity coefficient). While the last step introduced in Eq. (2.1) using concentrations instead of activities is only accurate for ideal solutions, where γ ≈ γ∗ ≈ 1, or when γ/γ∗ ≈ 1 (which is a much less stringent requirement), it represents a useful approximation as concentrations are experimentally accessible quantities. Concerning the thermodynamics and kinetics of homogeneous nucleation, two theories are of particular importance. The first one is the oldest and probably best known theory of nucleation: classical nucleation theory (CNT). Originally developed for the nucleation of droplets and bubbles, the CNT is also extensively applied to crystals, which, in stark contrast to droplets/bubbles, exhibit a strong supramolecular structure. The second theory we will discuss in this chapter represents a refinement of the CNT which recognizes this difference. It is often referred to in literature as two-step nucleation theory (2-SNT)[5–7]; its development took place mainly during the last three decades and was fueled by considerable progress in measurement devices allowing for the observation of ever smaller entities in solution[8–10]. We will first introduce the two theories on a conceptual level before putting them on a more rigorous theoretical footing. A schematic illustration of the two theories is shown in Figure 2.1 where different key states of the solution and of the newly forming phase are depicted. We depict these states in relation to the number of molecules that are contained in the new phase and the number of molecules with crystalline order in this phase. In both theories the initial state for primary homogeneous nucleation is a clear, supersaturated solution (S > 1) containing a number of solute molecules that exhibit no crystalline order (top left corner in Figure 2.1) and a final state consisting of one or more macroscopic crystals (bottom right corner). However, the pathways connecting the two states are rationalized in different ways in the CNT (blue arrows) and 3 CHAPTER 2. NUCLEATION the 2-SNT (orange arrows); key states along the two pathways are discussed in the following. Classical nucleation theory states that crystalline clusters are forming from the supersaturated solution through simultaneous fluctuations in density and order. Building blocks of crystals (assumed here to be solute molecules) can attach to or detach from a cluster in a step-by-step fashion. When molecules are attaching/detaching, the blue pathway laid out in Figure 2.1 is traveled reversibly depending on the rates of molecule attachment and detachment. We will show in Section 2.2.1 that the attachment of molecules to a cluster is energetically unfavorable until a critical number of molecules is reached while it is favored beyond this number. Two-step nucleation theory, on the other hand, treats the evolution of density and structure of the newly formed phase independently from each other. Namely, the 2-SNT postulates that density fluctuations first lead to the formation of disordered, liquid-like clusters (or droplets), which exhibit a higher density than the original clear liquid. Only after this step, crystalline order is achieved through rearrangement of the molecules within that cluster. 4 2.2. Homogeneous Nucleation number of molecules in new phase(s) molecules in solution free molecules and disordered, liquid‐like cluster order free molecules and free molecules and crystalline crystalline cluster cluster in liquid‐like cluster crystalline ... with molecules of free molecules and free molecules and crystalline nucleus crystalline nucleus inside disordered cluster number macroscopic crystal Figure 2.1: Conceptual picture of the mechanisms of nucleation according to classical nucleation theory (CNT; blue arrows) and to two step nucle- ation theory (2-SNT; orange arrows). Both theories consider a supersaturated solution as their starting point. According to both theories, clusters are form- ing/disintegrating through the attachment/detachment of building units. In the CNT, clusters are assumed to exhibit the final crystal structure immediately when building units attach. In contrast, the 2-SNT assumes that nucleation proceeds through the formation of disordered, liquid-like clusters in a first step, while the formation of structured clusters occurs from these droplets in a second step. Upon reaching a critical cluster size – the so-called nucleus size – the attachment of further building units is energetically favored; ultimately leading to the formation of a macroscopic crystal. 5 CHAPTER 2. NUCLEATION 2.2.1 Classical Nucleation Theory Classical nucleation theory dates back to the work of Gibbs, Becker and Döring, Volmer and many others [11, 12]. The interested reader can find the full derivation, historical details, and various technical aspects of CNT in the classical works of Kashchiev and deBenedetti [1, 13]. In order to describe the thermodynamic aspects of CNT, we derive the energy difference between a solution and a solution containing a cluster of n molecules. As hinted at in the introduction, the total change in the system free energy, ∆Gn, that is, the work of cluster formation, is given by the sum of two terms: an energy gain due to formation of a crystalline bulk phase and an energy loss caused by the formation of an interface between the new and the parent phase.
Recommended publications
  • Colloidal Crystallization: Nucleation and Growth
    Colloidal Crystallization: Nucleation and Growth Dave Weitz Harvard Urs Gasser Konstanz Andy Schofield Edinburgh Rebecca Christianson Harvard Peter Pusey Edinburgh Peter Schall Harvard Frans Spaepen Harvard Eric Weeks Emory John Crocker UPenn •Colloids as model systems – soft materials •Nucleation and growth of colloidal crystals •Defect growth in crystals •Binary Alloy Colloidal Crystals NSF, NASA http://www.deas.harvard.edu/projects/weitzlab EMU 6/7//04 Colloidal Crystals Colloids 1 nm - 10 µm solid particles in a solvent Ubiquitous ink, paint, milk, butter, mayonnaise, toothpaste, blood Suspensions can act like both liquid and solid Modify flow properties Control: Size, uniformity, interactions Colloidal Particles •Solid particles in fluid •Hard Spheres •Volume exclusion •Stability: •Short range repulsion •Sometimes a slight charge Colloid Particles are: •Big Slow •~ a ~ 1 micron • τ ~ a2/D ~ ms to sec •Can “see” them •Follow individual particle dynamics Model: Colloid Æ Atom Phase Behavior Colloids Atomic Liquids U U s s Hard Spheres Leonard-Jones Osmotic Pressure Attraction Centro-symmetric Centro-symmetric Thermalized: kBT Thermalized: kBT Gas Gas Liquid Density Liquid Solid Solid Phase behavior is similar Hard Sphere Phase Diagram Volume Fraction Controls Phase Behavior liquid - crystal liquid coexistence crystal 49% 54% 63% 74% φ maximum packing maximum packing φRCP≈0.63 φHCP=0.74 0 Increase φ => Decrease Temperature F = U - TS Entropy Drives Crystallization 0 Entropy => Free Volume F = U - TS Disordered: Ordered: •Higher configurational
    [Show full text]
  • Entropy and the Tolman Parameter in Nucleation Theory
    entropy Article Entropy and the Tolman Parameter in Nucleation Theory Jürn W. P. Schmelzer 1 , Alexander S. Abyzov 2 and Vladimir G. Baidakov 3,* 1 Institute of Physics, University of Rostock, Albert-Einstein-Strasse 23-25, 18059 Rostock, Germany 2 National Science Center Kharkov Institute of Physics and Technology, 61108 Kharkov, Ukraine 3 Institute of Thermal Physics, Ural Branch of the Russian Academy of Sciences, Amundsen Street 107a, 620016 Yekaterinburg, Russia * Correspondence: [email protected]; Tel.: +49-381-498-6889; Fax: +49-381-498-6882 Received: 23 May 2019; Accepted: 5 July 2019; Published: 9 July 2019 Abstract: Thermodynamic aspects of the theory of nucleation are commonly considered employing Gibbs’ theory of interfacial phenomena and its generalizations. Utilizing Gibbs’ theory, the bulk parameters of the critical clusters governing nucleation can be uniquely determined for any metastable state of the ambient phase. As a rule, they turn out in such treatment to be widely similar to the properties of the newly-evolving macroscopic phases. Consequently, the major tool to resolve problems concerning the accuracy of theoretical predictions of nucleation rates and related characteristics of the nucleation process consists of an approach with the introduction of the size or curvature dependence of the surface tension. In the description of crystallization, this quantity has been expressed frequently via changes of entropy (or enthalpy) in crystallization, i.e., via the latent heat of melting or crystallization. Such a correlation between the capillarity phenomena and entropy changes was originally advanced by Stefan considering condensation and evaporation. It is known in the application to crystal nucleation as the Skapski–Turnbull relation.
    [Show full text]
  • Heterogeneous Nucleation of Water Vapor on Different Types of Black Carbon Particles
    https://doi.org/10.5194/acp-2020-202 Preprint. Discussion started: 21 April 2020 c Author(s) 2020. CC BY 4.0 License. Heterogeneous nucleation of water vapor on different types of black carbon particles Ari Laaksonen1,2, Jussi Malila3, Athanasios Nenes4,5 5 1Finnish Meteorological Institute, 00101 Helsinki, Finland. 2Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland. 3Nano and Molecular Systems Research Unit, 90014 University of Oulu, Finland. 4Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, École 10 Polytechnique Federale de Lausanne, 1015, Lausanne, Switzerland 5 Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504, Patras, Greece Correspondence to: Ari Laaksonen ([email protected]) 15 Abstract: Heterogeneous nucleation of water vapor on insoluble particles affects cloud formation, precipitation, the hydrological cycle and climate. Despite its importance, heterogeneous nucleation remains a poorly understood phenomenon that relies heavily on empirical information for its quantitative description. Here, we examine heterogeneous nucleation of water vapor on and cloud drop activation of different types of soots, both pure black carbon particles, and black carbon particles mixed with secondary organic matter. We show that the recently developed adsorption nucleation theory 20 quantitatively predicts the nucleation of water and droplet formation upon particles of the various soot types. A surprising consequence of this new understanding is that, with sufficient adsorption site density, soot particles can activate into cloud droplets – even when completely lacking any soluble material. 1 https://doi.org/10.5194/acp-2020-202 Preprint. Discussion started: 21 April 2020 c Author(s) 2020.
    [Show full text]
  • The Role of Latent Heat in Heterogeneous Ice Nucleation
    EGU21-16164, updated on 02 Oct 2021 https://doi.org/10.5194/egusphere-egu21-16164 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. The role of latent heat in heterogeneous ice nucleation Olli Pakarinen, Cintia Pulido Lamas, Golnaz Roudsari, Bernhard Reischl, and Hanna Vehkamäki University of Helsinki, INAR/Physics, University of Helsinki, Finland ([email protected]) Understanding the way in which ice forms is of great importance to many fields of science. Pure water droplets in the atmosphere can remain in the liquid phase to nearly -40º C. Crystallization of ice in the atmosphere therefore typically occurs in the presence of ice nucleating particles (INPs), such as mineral dust or organic particles, which trigger heterogeneous ice nucleation at clearly higher temperatures. The growth of ice is accompanied by a significant release of latent heat of fusion, which causes supercooled liquid droplets to freeze in two stages [Pruppacher and Klett, 1997]. We are studying these topics by utilizing the monatomic water model [Molinero and Moore, 2009] for unbiased molecular dynamics (MD) simulations, where different surfaces immersed in water are cooled below the melting point over tens of nanoseconds of simulation time and crystallization is followed. With a combination of finite difference calculations and novel moving-thermostat molecular dynamics simulations we show that the release of latent heat from ice growth has a noticeable effect on both the ice growth rate and the initial structure of the forming ice. However, latent heat is found not to be as critically important in controlling immersion nucleation as it is in vapor-to- liquid nucleation [Tanaka et al.2017].
    [Show full text]
  • Using Supercritical Fluid Technology As a Green Alternative During the Preparation of Drug Delivery Systems
    pharmaceutics Review Using Supercritical Fluid Technology as a Green Alternative During the Preparation of Drug Delivery Systems Paroma Chakravarty 1, Amin Famili 2, Karthik Nagapudi 1 and Mohammad A. Al-Sayah 2,* 1 Small Molecule Pharmaceutics, Genentech, Inc. So. San Francisco, CA 94080, USA; [email protected] (P.C.); [email protected] (K.N.) 2 Small Molecule Analytical Chemistry, Genentech, Inc. So. San Francisco, CA 94080, USA; [email protected] * Correspondence: [email protected]; Tel.: +650-467-3810 Received: 3 October 2019; Accepted: 18 November 2019; Published: 25 November 2019 Abstract: Micro- and nano-carrier formulations have been developed as drug delivery systems for active pharmaceutical ingredients (APIs) that suffer from poor physico-chemical, pharmacokinetic, and pharmacodynamic properties. Encapsulating the APIs in such systems can help improve their stability by protecting them from harsh conditions such as light, oxygen, temperature, pH, enzymes, and others. Consequently, the API’s dissolution rate and bioavailability are tremendously improved. Conventional techniques used in the production of these drug carrier formulations have several drawbacks, including thermal and chemical stability of the APIs, excessive use of organic solvents, high residual solvent levels, difficult particle size control and distributions, drug loading-related challenges, and time and energy consumption. This review illustrates how supercritical fluid (SCF) technologies can be superior in controlling the morphology of API particles and in the production of drug carriers due to SCF’s non-toxic, inert, economical, and environmentally friendly properties. The SCF’s advantages, benefits, and various preparation methods are discussed. Drug carrier formulations discussed in this review include microparticles, nanoparticles, polymeric membranes, aerogels, microporous foams, solid lipid nanoparticles, and liposomes.
    [Show full text]
  • Thermodynamics and Kinetics of Binary Nucleation in Ideal-Gas Mixtures
    1 Thermodynamics and kinetics of binary nucleation in ideal-gas mixtures Nikolay V. Alekseechkin Akhiezer Institute for Theoretical Physics, National Science Centre “Kharkov Institute of Physics and Technology”, Akademicheskaya Street 1, Kharkov 61108, Ukraine Email: [email protected] Abstract . The nonisothermal single-component theory of droplet nucleation (Alekseechkin, 2014) is extended to binary case; the droplet volume V , composition x , and temperature T are the variables of the theory. An approach based on macroscopic kinetics (in contrast to the standard microscopic model of nucleation operating with the probabilities of monomer attachment and detachment) is developed for the droplet evolution and results in the derived droplet motion equations in the space (V , x,T) - equations for V& ≡ dV / dt , x& , and T& . The work W (V , x,T) of the droplet formation is calculated; it is obtained in the vicinity of the saddle point as a quadratic form with diagonal matrix. Also the problem of generalizing the single-component Kelvin equation for the equilibrium vapor pressure to binary case is solved; it is presented here as a problem of integrability of a Pfaffian equation. The equation for T& is shown to be the first law of thermodynamics for the droplet, which is a consequence of Onsager’s reciprocal relations and the linked-fluxes concept. As an example of ideal solution for demonstrative numerical calculations, the o-xylene-m-xylene system is employed. Both nonisothermal and enrichment effects are shown to exist; the mean steady-state overheat of droplets and their mean steady-state enrichment are calculated with the help of the 3D distribution function.
    [Show full text]
  • Spinodal Lines and Equations of State: a Review
    10 l Nuclear Engineering and Design 95 (1986) 297-314 297 North-Holland, Amsterdam SPINODAL LINES AND EQUATIONS OF STATE: A REVIEW John H. LIENHARD, N, SHAMSUNDAR and PaulO, BINEY * Heat Transfer/ Phase-Change Laboratory, Mechanical Engineering Department, University of Houston, Houston, TX 77004, USA The importance of knowing superheated liquid properties, and of locating the liquid spinodal line, is discussed, The measurement and prediction of the spinodal line, and the limits of isentropic pressure undershoot, are reviewed, Means are presented for formulating equations of state and fundamental equations to predict superheated liquid properties and spinodal limits, It is shown how the temperature dependence of surface tension can be used to verify p - v - T equations of state, or how this dependence can be predicted if the equation of state is known. 1. Scope methods for making simplified predictions of property information, which can be applied to the full range of Today's technology, with its emphasis on miniaturiz­ fluids - water, mercury, nitrogen, etc. [3-5]; and predic­ ing and intensifying thennal processes, steadily de­ tions of the depressurizations that might occur in ther­ mands higher heat fluxes and poses greater dangers of mohydraulic accidents. (See e.g. refs. [6,7].) sending liquids beyond their boiling points into the metastable, or superheated, state. This state poses the threat of serious thermohydraulic explosions. Yet we 2. The spinodal limit of liquid superheat know little about its thermal properties, and cannot predict process behavior after a liquid becomes super­ heated. Some of the practical situations that require a 2.1. The role of the equation of state in defining the spinodal line knowledge the limits of liquid superheat, and the physi­ cal properties of superheated liquids, include: - Thennohydraulic explosions as might occur in nuclear Fig.
    [Show full text]
  • About Nucleation
    Nucleation • Nucleation: localized formation of a distinct thermodynamic phase. • Nucleation an occur in a gas, liquid or solid phase. Some examples of phases that may form via nucleation include: 1) in gas: Creation of liquid droplets in saturated vapor; 2) in liquid: formation of gaseous bubbles, crystals (e.g., ice formation from water), or glassy regions; 3) in solid: Nucleation of crystalline, amorphous, and even vacancy clusters in solid materials. Such solid state nucleation is important, for example, to the semiconductor industry. • Most nucleation processes are physical, rather than chemical. • Nucleation normally occurs at nucleation sites on surfaces contacting the liquid or vapor. Suspended particles or minute bubbles also provide nucleation sites. This is called heterogeneous nucleation (Lecture 12). • Nucleation without preferential nucleation sites is homogeneous nucleation (Lecture 10-11). Homogeneous nucleation occurs spontaneously and randomly, but it requires superheating or supercooling of the medium. Ref. wikipedia website Homogeneous Nucleation • Compared to the heterogeneous nucleation (which starts at nucleation sites on surfaces), Homogeneous nucleation occurs with much more difficulty in the interior of a uniform substance. The creation of a nucleus implies the formation of an interface at the boundaries of a new phase. • Liquids cooled below the maximum heterogeneous nucleation temperature (melting temperature), but which are above the homogeneous nucleation temperature (pure substance freezing temperature) are said to be supercooled. This is useful for making amorphous solids and other metastable structures, but can delay the progress of industrial chemical processes or produce undesirable effects in the context of casting. • Supercooling brings about supersaturation, the driving force for nucleation. Supersaturation occurs when the pressure in the newly formed solid is less than the vapor pressure, and brings about a change in free energy per unit volume, Gv, between the liquid and newly created solid phase.
    [Show full text]
  • Nucleation and Condensation in Gas-Vapor Mixtures of Alkanes and Water
    Nucleation and condensation in gas-vapor mixtures of alkanes and water Citation for published version (APA): Peeters, P. (2002). Nucleation and condensation in gas-vapor mixtures of alkanes and water. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR559332 DOI: 10.6100/IR559332 Document status and date: Published: 01/01/2002 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Kinetics of Phase Transformations: Nucleation & Growth
    Northeastern University Kinetics of Phase Transformations: Nucleation & Growth Radhika Barua Department of Chemical Engineering Northeastern University Boston, MA USA Northeastern University Thermodynamics of Phase Transformation For phase transformations (constant T & P) relative stability of the system is defined by its Gibb’s free energy (G). • Gibb’s free energy of a system: G • G=H-TS ΔGa • Criterion for stability: dG=0 dG=0 • dG=0 ΔG • Criterion for phase transformation: • ΔG= GA-GB < 0 B Activated A State But …… How fast does the phase transformation occur ? 2 Northeastern University Kinetics of Phase Transformation Phase transformations in metals/alloys occur by nucleation and growth. • Nucleation: New phase (β) appears at certain sites within the metastable parent (α) phase. • Homogeneous Nucleation: Occurs spontaneously & randomly without preferential nucleation site. • Heterogeneous Nucleation: Occurs at preferential sites such as grain boundaries, dislocations or impurities. • Growth: Nuclei grows into the surrounding matrix. SOLID LIQUID Example: Solidification , L S (Transformations between crystallographic & non-crystallographic states) 3 Northeastern University Driving force for solidification Example: Solidification , L S • At a temperature T: L L L S S S Driving Force for • G = H - TS ; G = H - TS solidification • ΔG = GL – GS = ΔH – TΔS ΔG • At the equilibrium melting point (Tm): • ΔG = ΔH – TmΔS = 0 GS • ΔH = L (Latent heat of fusion) Free energy (G) • For small undercoolings (ΔT): ΔT GL • ΔG ≈ L ΔT Tm T TM Temperature
    [Show full text]
  • Introduction to the Physics of Nucleation
    C. R. Physique 7 (2006) 946–958 http://france.elsevier.com/direct/COMREN/ Nucleation/Nucléation Introduction to the physics of nucleation Humphrey J. Maris Department of Physics, Brown University, Providence, RI 02912, USA Available online 28 November 2006 Abstract In this introductory article, I review the theory of nucleation by thermal activation and by quantum tunneling. The effect of heterogeneous nucleation at surfaces is discussed and a brief survey of experimental techniques is given. To cite this article: H.J. Maris, C. R. Physique 7 (2006). © 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. Résumé Introduction à la physique de la nucléation. Dans cet article introductif, je passe en revue la théorie de la nucléation par activation thermique et par effet tunnel quantique. Je discute les effets de la nucléation hétérogène aux surfaces et je propose un bref survol des techniques expérimentales utilisées. Pour citer cet article : H.J. Maris, C. R. Physique 7 (2006). © 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. Keywords: Nucleation; Phase transitions Mots-clés : Nucleation ; Transitions de phase This issue contains a number of reviews all concerning different aspects of nucleation. In this introduction, I briefly summarize the basic theory of nucleation processes and then mention some selected topics of interest. Nucleation means a change in a physical or chemical system that begins within a small region, that is to say, that begins at a nucleus. The very long history of this subject has been reviewed by G.S. Kell [1] who credits Huyghens with having in 1662 performed the first experiments with metastable water under tension.
    [Show full text]
  • Nanoparticle Formation and Coating Using Supercritical Fluids
    Cprht Wrnn & trtn h prht l f th Untd Stt (tl , Untd Stt Cd vrn th n f phtp r thr rprdtn f prhtd trl. Undr rtn ndtn pfd n th l, lbrr nd rhv r thrzd t frnh phtp r thr rprdtn. On f th pfd ndtn tht th phtp r rprdtn nt t b “d fr n prp thr thn prvt td, hlrhp, r rrh. If , r rt fr, r ltr , phtp r rprdtn fr prp n x f “fr tht r b lbl fr prht nfrnnt, h ntttn rrv th rht t rf t pt pn rdr f, n t jdnt, flfllnt f th rdr ld nvlv vltn f prht l. l t: h thr rtn th prht hl th r Inttt f hnl rrv th rht t dtrbt th th r drttn rntn nt: If d nt h t prnt th p, thn lt “ fr: frt p t: lt p n th prnt dl rn h n tn lbrr h rvd f th prnl nfrtn nd ll ntr fr th pprvl p nd brphl th f th nd drttn n rdr t prtt th dntt f I rdt nd flt. ABSTRACT NANOPARTICLE FORMATION AND COATING USING SUPERCRITICAL FLUIDS by Abhijit Aniruddha Gokhale Jet breakup phenomenon and nanoparticle formation The focus of this dissertation is to study the SAS process to manufacture nanoparticles with minimum agglomeration, controlled size and size distribution. Solution jet breakup and solvent evaporation into supercritical fluid (SC CO2) is studied using high speed charged coupled device (CCD) camera facilitated with double shot particle image veloimetry (PIV) laser and a high pressure view cell.
    [Show full text]