The Niels Bohr Library & Archives and The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dayton C. Miller by Peter Hoekje
The newsletter of The Acoustical Society of America Volume 13, Number 1 Winter 2003 Dayton C. Miller by Peter Hoekje ayton Clarence Miller (1866–1941), a founding member a full body composite of himself, and an injured railroad brake- and second president of the Acoustical Society of man. This latter is claimed to be the first use of x-rays for sur- DAmerica, is remembered for his distinctive gical purposes. Tragically, his laboratory assistant died contributions in the early 20th century in several in 1905, apparently from radiation-related illness. fields. Acousticians appreciate his pioneering With the encouragement of Edward Morley, analysis of sound waveforms and spectra, his Miller revisited the 1887 Michelson-Morley accurate measurements of the speed of sound aether drift experiment with a new interfer- in air, and his study of flutes and their ometer in 1902, and continued working on acoustics. But, he is also known for metic- this problem for nearly 30 years. In making ulous measurementsThe newsletterof aether drift, for of the measurements, the interferometer would first surgical x-ray, and for the huge flute be set in motion once and would rotate collection he donated to the Library of freely for an hour while the experimenter Congress. He balanced an outstanding made observations of the fractional scientific research career with a devotion fringe displacement, several times to the arts and education. throughout each rotation. Miller claimed As a small boy, Dayton started his to have walked 160 miles and made musical and acoustic explorations on his 200,000 observations of fringes in the father’s fife.1 His father bought him his course of his experiments! He consistent- first full-size flute on his thirteenth birth- ly arrived at an observed aether drift speed day, but it was too big for his small fingers. -
The Invention of the Transistor
The invention of the transistor Michael Riordan Department of Physics, University of California, Santa Cruz, California 95064 Lillian Hoddeson Department of History, University of Illinois, Urbana, Illinois 61801 Conyers Herring Department of Applied Physics, Stanford University, Stanford, California 94305 [S0034-6861(99)00302-5] Arguably the most important invention of the past standing of solid-state physics. We conclude with an century, the transistor is often cited as the exemplar of analysis of the impact of this breakthrough upon the how scientific research can lead to useful commercial discipline itself. products. Emerging in 1947 from a Bell Telephone Laboratories program of basic research on the physics I. PRELIMINARY INVESTIGATIONS of solids, it began to replace vacuum tubes in the 1950s and eventually spawned the integrated circuit and The quantum theory of solids was fairly well estab- microprocessor—the heart of a semiconductor industry lished by the mid-1930s, when semiconductors began to now generating annual sales of more than $150 billion. be of interest to industrial scientists seeking solid-state These solid-state electronic devices are what have put alternatives to vacuum-tube amplifiers and electrome- computers in our laps and on desktops and permitted chanical relays. Based on the work of Felix Bloch, Ru- them to communicate with each other over telephone dolf Peierls, and Alan Wilson, there was an established networks around the globe. The transistor has aptly understanding of the band structure of electron energies been called the ‘‘nerve cell’’ of the Information Age. in ideal crystals (Hoddeson, Baym, and Eckert, 1987; Actually the history of this invention is far more in- Hoddeson et al., 1992). -
Business History Publication Details, Including Instructions for Authors and Subscription Information
This article was downloaded by: [Boersma, Kees] On: 25 August 2008 Access details: Access Details: [subscription number 901861184] Publisher Routledge Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Business History Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713634500 Transitions in industrial research: the case of the Philips Natuurkundig Laboratorium (1914-1994) F. Kees Boersma a; Marc J. de Vries b a Faculty of Social Sciences, Vrije Universiteit Amsterdam, Amsterdam b Faculty of Technology Management, Eindhoven University of Technology, the Netherlands Online Publication Date: 01 July 2008 To cite this Article Boersma, F. Kees and de Vries, Marc J.(2008)'Transitions in industrial research: the case of the Philips Natuurkundig Laboratorium (1914-1994)',Business History,50:4,509 — 529 To link to this Article: DOI: 10.1080/00076790802106786 URL: http://dx.doi.org/10.1080/00076790802106786 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. -
A Plausible Resolution to Hilbert's Failed Attempt to Unify Gravitation & Electromagnetism
Prespacetime Journal| December 2018 | Volume 9 | Issue 10 | pp. xxx-xxx 1000 Christianto, V., Smarandache, F., & Boyd, R. N., A Plausible Resolution to Hilbert’s Failed Attempt to Unify Gravitation & Electromagnetism Exploration A Plausible Resolution to Hilbert’s Failed Attempt to Unify Gravitation & Electromagnetism Victor Christianto1*, Florentin Smarandache2 & Robert N. Boyd3 1Malang Institute of Agriculture (IPM), Malang, Indonesia 2Dept. of Math. Sci., Univ. of New Mexico, Gallup, USA 3Independent Researcher, USA Abstract In this paper, we explore the reasons why Hilbert’s axiomatic program to unify gravitation theory and electromagnetism failed and outline a plausible resolution of this problem. The latter is based on Gödel’s incompleteness theorem and Newton’s aether stream model. Keywords: Unification, gravitation, electromagnetism, Hilbert, resolution. Introduction Hilbert and Einstein were in race at 1915 to develop a new gravitation theory based on covariance principle [1]. While Einstein seemed to win the race at the time, Hilbert produced two communications which show that he was ahead of Einstein in term of unification of gravitation theory and electromagnetic theory. Hilbert started with Mie’s electromagnetic theory. However, as Mie theory became completely failed, so was the Hilbert’s axiomatic program to unify those two theories [1]. Einstein might be learning from such an early failure of Hilbert to unify those theories, and years later returned to Mie theory [1]. What we would say here is that Hilbert’s axiomatic failure can be explained by virtue of Gödel’s incompleteness theorem: which says essentially that any attempt to build a consistent theory based on axiomatic foundations can be shown to be inconsistent. -
Revisiting One World Or None
Revisiting One World or None. Sixty years ago, atomic energy was new and the world was still reverberating from the shocks of the atomic bombings of Hiroshima and Nagasaki. Immediately after the end of the Second World War, the first instinct of the administration and Congress was to protect the “secret” of the atomic bomb. The atomic scientists—what today would be called nuclear physicists— who had worked on the Manhattan project to develop atomic bombs recognized that there was no secret, that any technically advanced nation could, with adequate resources, reproduce what they had done. They further believed that when a single aircraft, eventually a single missile, armed with a single bomb could destroy an entire city, no defense system would ever be adequate. Given this combination, the world seemed headed for a period of unprecedented danger. Many of the scientists who had worked on the Manhattan Project felt a special responsibility to encourage a public debate about these new and terrifying products of modern science. They formed an organization, the Federation of Atomic Scientists, dedicated to avoiding the threat of nuclear weapons and nuclear proliferation. Convinced that neither guarding the nuclear “secret” nor any defense could keep the world safe, they encouraged international openness in nuclear physics research and in the expected nuclear power industry as the only way to avoid a disastrous arms race in nuclear weapons. William Higinbotham, the first Chairman of the Association of Los Alamos Scientists and the first Chairman of the Federation of Atomic Scientists, wanted to expand the organization beyond those who had worked on the Manhattan Project, for two reasons. -
2015 Annual Report
2015 AMERICAN PHYSICAL SOCIETY ANNUAL TM ADVANCING PHYSICS REPORT TM THE AMERICAN PHYSICAL SOCIETY STRIVES TO Be the leading voice for physics and an authoritative source of physics information for the advancement of physics and the benefit of humanity Collaborate with national scientific societies for the advancement of science, science education, and the science community Cooperate with international physics societies to promote physics, to support physicists worldwide, and to foster international collaboration Have an active, engaged, and diverse membership, and support the activities of its units and members © 2016 American Physical Society During 2015, APS worked to institute the governance objective: “the advancement and diffusion of the knowledge changes approved by the membership in late 2014. In of physics.” APS is fully committed to the principles of OA accordance with the new Constitution & Bylaws, in to the extent that we can continue to support the production February the Board appointed our first Chief Executive of high-quality peer-reviewed journals. For many years APS Officer—Kate Kirby, the former Executive Officer—to has supported “green” OA and we have been fully compliant head the APS. Kate’s major task has been to transition with the 2013 directive from the Office of Science and the management of APS to a CEO model with a Senior Technology Policy that the publications resulting from Management Team. She appointed Mark Doyle as Chief U.S. federally funded research be accessible to the public 12 Information Officer, James Taylor as Chief Operating months after publication. Since APS is a major international Officer, and Matthew Salter as the new Publisher. -
Samuel Goudsmit
NATIONAL ACADEMY OF SCIENCES SAMUEL ABRAHAM GOUDSMIT 1 9 0 2 — 1 9 7 8 A Biographical Memoir by BENJAMIN BEDERSON Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2008 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. Photograph courtesy Brookhaven National Laboratory. SAMUEL ABRAHAM GOUDSMIT July 11, 1902–December 4, 1978 BY BENJAMIN BEDERSON AM GOUDSMIT LED A CAREER that touched many aspects of S20th-century physics and its impact on society. He started his professional life in Holland during the earliest days of quantum mechanics as a student of Paul Ehrenfest. In 1925 together with his fellow graduate student George Uhlenbeck he postulated that in addition to mass and charge the electron possessed a further intrinsic property, internal angular mo- mentum, that is, spin. This inspiration furnished the missing link that explained the existence of multiple spectroscopic lines in atomic spectra, resulting in the final triumph of the then struggling birth of quantum mechanics. In 1927 he and Uhlenbeck together moved to the United States where they continued their physics careers until death. In a rough way Goudsmit’s career can be divided into several separate parts: first in Holland, strictly as a theorist, where he achieved very early success, and then at the University of Michigan, where he worked in the thriving field of preci- sion spectroscopy, concerning himself with the influence of nuclear magnetism on atomic spectra. In 1944 he became the scientific leader of the Alsos Mission, whose aim was to determine the progress Germans had made in the development of nuclear weapons during World War II. -
Title: the Distribution of an Illustrated Timeline Wall Chart and Teacher's Guide of 20Fh Century Physics
REPORT NSF GRANT #PHY-98143318 Title: The Distribution of an Illustrated Timeline Wall Chart and Teacher’s Guide of 20fhCentury Physics DOE Patent Clearance Granted December 26,2000 Principal Investigator, Brian Schwartz, The American Physical Society 1 Physics Ellipse College Park, MD 20740 301-209-3223 [email protected] BACKGROUND The American Physi a1 Society s part of its centennial celebration in March of 1999 decided to develop a timeline wall chart on the history of 20thcentury physics. This resulted in eleven consecutive posters, which when mounted side by side, create a %foot mural. The timeline exhibits and describes the millstones of physics in images and words. The timeline functions as a chronology, a work of art, a permanent open textbook, and a gigantic photo album covering a hundred years in the life of the community of physicists and the existence of the American Physical Society . Each of the eleven posters begins with a brief essay that places a major scientific achievement of the decade in its historical context. Large portraits of the essays’ subjects include youthful photographs of Marie Curie, Albert Einstein, and Richard Feynman among others, to help put a face on science. Below the essays, a total of over 130 individual discoveries and inventions, explained in dated text boxes with accompanying images, form the backbone of the timeline. For ease of comprehension, this wealth of material is organized into five color- coded story lines the stretch horizontally across the hundred years of the 20th century. The five story lines are: Cosmic Scale, relate the story of astrophysics and cosmology; Human Scale, refers to the physics of the more familiar distances from the global to the microscopic; Atomic Scale, focuses on the submicroscopic This report was prepared as an account of work sponsored by an agency of the United States Government. -
2018 March Meeting Program Guide
MARCHMEETING2018 LOS ANGELES MARCH 5-9 PROGRAM GUIDE #apsmarch aps.org/meetingapp aps.org/meetings/march Senior Editor: Arup Chakraborty Robert T. Haslam Professor of Chemical Engineering; Professor of Chemistry, Physics, and Institute for Medical Engineering and Science, MIT Now welcoming submissions in the Physics of Living Systems Submit your best work at elifesci.org/physics-living-systems Image: D. Bonazzi (CC BY 2.0) Led by Senior Editor Arup Chakraborty, this dedicated new section of the open-access journal eLife welcomes studies in which experimental, theoretical, and computational approaches rooted in the physical sciences are developed and/or applied to provide deep insights into the collective properties and function of multicomponent biological systems and processes. eLife publishes groundbreaking research in the life and biomedical sciences. All decisions are made by working scientists. WELCOME t is a pleasure to welcome you to Los Angeles and to the APS March I Meeting 2018. As has become a tradition, the March Meeting is a spectacular gathering of an enthusiastic group of scientists from diverse organizations and backgrounds who have broad interests in physics. This meeting provides us an opportunity to present exciting new work as well as to learn from others, and to meet up with colleagues and make new friends. While you are here, I encourage you to take every opportunity to experience the amazing science that envelops us at the meeting, and to enjoy the many additional professional and social gatherings offered. Additionally, this is a year for Strategic Planning for APS, when the membership will consider the evolving mission of APS and where we want to go as a society. -
I. I. Rabi Papers [Finding Aid]. Library of Congress. [PDF Rendered Tue Apr
I. I. Rabi Papers A Finding Aid to the Collection in the Library of Congress Manuscript Division, Library of Congress Washington, D.C. 1992 Revised 2010 March Contact information: http://hdl.loc.gov/loc.mss/mss.contact Additional search options available at: http://hdl.loc.gov/loc.mss/eadmss.ms998009 LC Online Catalog record: http://lccn.loc.gov/mm89076467 Prepared by Joseph Sullivan with the assistance of Kathleen A. Kelly and John R. Monagle Collection Summary Title: I. I. Rabi Papers Span Dates: 1899-1989 Bulk Dates: (bulk 1945-1968) ID No.: MSS76467 Creator: Rabi, I. I. (Isador Isaac), 1898- Extent: 41,500 items ; 105 cartons plus 1 oversize plus 4 classified ; 42 linear feet Language: Collection material in English Location: Manuscript Division, Library of Congress, Washington, D.C. Summary: Physicist and educator. The collection documents Rabi's research in physics, particularly in the fields of radar and nuclear energy, leading to the development of lasers, atomic clocks, and magnetic resonance imaging (MRI) and to his 1944 Nobel Prize in physics; his work as a consultant to the atomic bomb project at Los Alamos Scientific Laboratory and as an advisor on science policy to the United States government, the United Nations, and the North Atlantic Treaty Organization during and after World War II; and his studies, research, and professorships in physics chiefly at Columbia University and also at Massachusetts Institute of Technology. Selected Search Terms The following terms have been used to index the description of this collection in the Library's online catalog. They are grouped by name of person or organization, by subject or location, and by occupation and listed alphabetically therein. -
Former Fellows Biographical Index Part
Former Fellows of The Royal Society of Edinburgh 1783 – 2002 Biographical Index Part Two ISBN 0 902198 84 X Published July 2006 © The Royal Society of Edinburgh 22-26 George Street, Edinburgh, EH2 2PQ BIOGRAPHICAL INDEX OF FORMER FELLOWS OF THE ROYAL SOCIETY OF EDINBURGH 1783 – 2002 PART II K-Z C D Waterston and A Macmillan Shearer This is a print-out of the biographical index of over 4000 former Fellows of the Royal Society of Edinburgh as held on the Society’s computer system in October 2005. It lists former Fellows from the foundation of the Society in 1783 to October 2002. Most are deceased Fellows up to and including the list given in the RSE Directory 2003 (Session 2002-3) but some former Fellows who left the Society by resignation or were removed from the roll are still living. HISTORY OF THE PROJECT Information on the Fellowship has been kept by the Society in many ways – unpublished sources include Council and Committee Minutes, Card Indices, and correspondence; published sources such as Transactions, Proceedings, Year Books, Billets, Candidates Lists, etc. All have been examined by the compilers, who have found the Minutes, particularly Committee Minutes, to be of variable quality, and it is to be regretted that the Society’s holdings of published billets and candidates lists are incomplete. The late Professor Neil Campbell prepared from these sources a loose-leaf list of some 1500 Ordinary Fellows elected during the Society’s first hundred years. He listed name and forenames, title where applicable and national honours, profession or discipline, position held, some information on membership of the other societies, dates of birth, election to the Society and death or resignation from the Society and reference to a printed biography. -
Anne Kox JAPES 1..216
Physics as a Calling, Science for Society Studies in Honour of A.J. Kox Edited by Ad Maas and Henriëtte Schatz LEIDEN Publications The publication of this book has been made possible by grants from the Institute for Theoretical Physics of the University of Amsterdam, Stichting Pieter Zeeman- fonds, Stichting Physica and the Einstein Papers Project at the California Institute of Technology. Leiden University Press English-language titles are distributed in the US and Canada by the University of Chicago Press. Cover illustration: Albert Einstein and Hendrik Antoon Lorentz, photographed by Paul Ehrenfest in front of his home in Leiden in 1921. Source: Museum Boerhaave, Leiden. Cover design: Sander Pinkse Boekproducties Layout: JAPES, Amsterdam ISBN 978 90 8728 198 4 e-ISBN 978 94 0060 156 7 (pdf) e-ISBN 978 94 0060 157 4 (e-pub) NUR 680 © A. Maas, H. Schatz / Leiden University Press, 2013 All rights reserved. Without limiting the rights under copyright reserved above, no part of this book may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the written permission of both the copyright owner and the author of the book. Contents Preface 7 Kareljan Schoutens Introduction 9 1 Astronomers and the making of modern physics 15 Frans van Lunteren 2 The drag coefficient from Fresnel to Laue 47 Michel Janssen 3 The origins of the Korteweg-De Vries equation: Collaboration between Korteweg and De Vries 61 Bastiaan Willink 4 A note on Einstein’s Scratch Notebook of 1910-1913 81 Diana K.