1 The chemical behavior of fluids released during deep subduction 2 based on fluid inclusions 3 1 2 4 MARIA LUCE FREZZOTTI AND SIMONA FERRANDO 5 1 Department of Earth and Environmental Sciences, University of Milano Bicocca, Piazza della 6 Scienza 4, 20126 Milano, Italy. e-mail:
[email protected] 7 2 Department of Earth Sciences, University of Torino, Via Valperga Caluso 35, Torino 10125, 8 Italy. email:
[email protected] 9 10 Revision 2 11 12 ABSTRACT 13 This review combines fluid inclusion data from (HP-)UHP rocks with experimental 14 research and thermodynamic models to investigate the chemical and physical properties of fluids 15 released during deep subduction, their solvent and element transport capacity, and the 16 subsequent implications for the element recycling in the mantle wedge. An impressive number of 17 fluid inclusion studies indicate three main populations of fluid inclusions in HP and UHP 18 metamorphic rocks: i) aqueous and/or non-polar gaseous fluid inclusions (FI), ii) multiphase 19 solid inclusions (MSI), and iii) melt inclusions (MI). Chemical data from preserved fluid 20 inclusions in rocks match with and implement “model” fluids by experiments and 21 thermodynamics, revealing a continuity behind the extreme variations of physico-chemical 22 properties of subduction-zone fluids. From fore-arc to sub-arc depths, fluids released by 23 progressive devolatilization reactions from slab lithologies change from relatively diluted 24 chloride-bearing aqueous solutions (± N2), mainly influenced by halide ligands, to (alkali) 25 aluminosilicate-rich aqueous fluids, in which polymerization probably governs the solubility and 26 transport of major (e.g.