Feature Article Towards categorical behaviour of groups Maria Manuel Clementino CMUC/Departamento de Matem´atica, Universidade de Coimbra 3001-454 Coimbra, PORTUGAL
[email protected] Abstract We present a brief introduction to the study of homological categories, which en- compass many algebraically-like categories, namely the category of groups, and also categories of topological algebras. 1. Introduction of the homology and cohomology of a topological space. This, in turn, suggested the problem of describing those categories in which the values of such a homology the- Category Theory started more than 60 years ago, when ory could lie. After discussions with Eilenberg, this was Eilenberg and Mac Lane wrote a paper on natural done by Mac Lane [18, 19]. His notion of an \abelian transformations [11], having as role model a well-known bicategory" was clumsy, and the subject languished until example of natural equivalence: Buchsbaum's axiomatic study [10] and the discovery by For any vector space V over a field K, consider its dual Grothendieck [15] that categories of sheaves (of abelian V ∗ (i.e. the vector space of linear functionals from V groups) over a topological space were abelian categories to K). If V is finite-dimensional, then V ∗ has the same but not categories of modules, and that homological alge- dimension as V , and so we can conclude that they are bra in these categories was needed for a complete treat- isomorphic, although there is no natural way of defining ment of sheaf cohomology (Godement [14]). With this such isomorphism. This contrasts with the case of V ∗∗, impetus, abelian categories joined the establishment." ∗ the dual of V .