From Hamiltonian Systems to Poisson Geometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geometric Quantization of Poisson Manifolds Via Symplectic Groupoids
Geometric Quantization of Poisson Manifolds via Symplectic Groupoids Daniel Felipe Bermudez´ Montana~ Advisor: Prof. Alexander Cardona Gu´ıo, PhD. A Dissertation Presented in Candidacy for the Degree of Bachelor of Science in Mathematics Universidad de los Andes Department of Mathematics Bogota,´ Colombia 2019 Abstract The theory of Lie algebroids and Lie groupoids is a convenient framework for study- ing properties of Poisson Manifolds. In this work we approach the problem of geometric quantization of Poisson Manifolds using the theory of symplectic groupoids. We work the obstructions of geometric prequantization and show how they can be understood as Lie algebroid's integrability obstructions. Furthermore, by examples, we explore the complete quantization scheme using polarisations and convolution algebras of Fell line bundles. ii Acknowledgements Words fall short for the the graditute I have for people I will mention. First of all I want to thank my advisors Alexander Cardona Guio and Andres Reyes Lega. Alexander Cardona, his advice and insighfull comments guided through this research. I am extremely thankfull and indebted to him for sharing his expertise and knowledge with me. Andres Reyes, as my advisor has tough me more than I could ever ever give him credit for here. By example he has shown me what a good scientist, educator and mentor should be. To my parents, my fist advisors: Your love, support and caring have provided me with the moral and emotional support to confront every aspect of my life; I owe it all to you. To my brothers: the not that productive time I spent with you have always brought me a lot joy - thank you for allowing me the time to research and write during this work. -
Coisotropic Embeddings in Poisson Manifolds 1
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 361, Number 7, July 2009, Pages 3721–3746 S 0002-9947(09)04667-4 Article electronically published on February 10, 2009 COISOTROPIC EMBEDDINGS IN POISSON MANIFOLDS A. S. CATTANEO AND M. ZAMBON Abstract. We consider existence and uniqueness of two kinds of coisotropic embeddings and deduce the existence of deformation quantizations of certain Poisson algebras of basic functions. First we show that any submanifold of a Poisson manifold satisfying a certain constant rank condition, already con- sidered by Calvo and Falceto (2004), sits coisotropically inside some larger cosymplectic submanifold, which is naturally endowed with a Poisson struc- ture. Then we give conditions under which a Dirac manifold can be embedded coisotropically in a Poisson manifold, extending a classical theorem of Gotay. 1. Introduction The following two results in symplectic geometry are well known. First: a sub- manifold C of a symplectic manifold (M,Ω) is contained coisotropically in some symplectic submanifold of M iff the pullback of Ω to C has constant rank; see Marle’s work [17]. Second: a manifold endowed with a closed 2-form ω can be em- bedded coisotropically into a symplectic manifold (M,Ω) so that i∗Ω=ω (where i is the embedding) iff ω has constant rank; see Gotay’s work [15]. In this paper we extend these results to the setting of Poisson geometry. Recall that P is a Poisson manifold if it is endowed with a bivector field Π ∈ Γ(∧2TP) satisfying the Schouten-bracket condition [Π, Π] = 0. A submanifold C of (P, Π) is coisotropic if N ∗C ⊂ TC, where the conormal bundle N ∗C is defined as the anni- ∗ hilator of TC in TP|C and : T P → TP is the contraction with the bivector Π. -
Lectures on the Geometry of Poisson Manifolds, by Izu Vaisman, Progress in Math- Ematics, Vol
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 33, Number 2, April 1996 Lectures on the geometry of Poisson manifolds, by Izu Vaisman, Progress in Math- ematics, vol. 118, Birkh¨auser, Basel and Boston, 1994, vi + 205 pp., $59.00, ISBN 3-7643-5016-4 For a symplectic manifold M, an important construct is the Poisson bracket, which is defined on the space of all smooth functions and satisfies the following properties: 1. f,g is bilinear with respect to f and g, 2. {f,g} = g,f (skew-symmetry), 3. {h, fg} =−{h, f }g + f h, g (the Leibniz rule of derivation), 4. {f, g,h} {+ g,} h, f { + }h, f,g = 0 (the Jacobi identity). { { }} { { }} { { }} The best-known Poisson bracket is perhaps the one defined on the function space of R2n by: n ∂f ∂g ∂f ∂g (1) f,g = . { } ∂q ∂p − ∂p ∂q i=1 i i i i X Poisson manifolds appear as a natural generalization of symplectic manifolds: a Poisson manifold isasmoothmanifoldwithaPoissonbracketdefinedonits function space. The first three properties of a Poisson bracket imply that in local coordinates a Poisson bracket is of the form given by n ∂f ∂g f,g = πij , { } ∂x ∂x i,j=1 i j X where πij may be seen as the components of a globally defined antisymmetric contravariant 2-tensor π on the manifold, called a Poisson tensor or a Poisson bivector field. The Jacobi identity can then be interpreted as a nonlinear first-order differential equation for π with a natural geometric meaning. The Poisson tensor # π of a Poisson manifold P induces a bundle map π : T ∗P TP in an obvious way. -
Hamiltonian Systems on Symplectic Manifolds
This is page 147 Printer: Opaque this 5 Hamiltonian Systems on Symplectic Manifolds Now we are ready to geometrize Hamiltonian mechanics to the context of manifolds. First we make phase spaces nonlinear, and then we study Hamiltonian systems in this context. 5.1 Symplectic Manifolds Definition 5.1.1. A symplectic manifold is a pair (P, Ω) where P is a manifold and Ω is a closed (weakly) nondegenerate two-form on P .IfΩ is strongly nondegenerate, we speak of a strong symplectic manifold. As in the linear case, strong nondegeneracy of the two-form Ω means that at each z ∈ P, the bilinear form Ωz : TzP × TzP → R is nondegenerate, that is, Ωz defines an isomorphism → ∗ Ωz : TzP Tz P. Fora(weak) symplectic form, the induced map Ω : X(P ) → X∗(P )be- tween vector fields and one-forms is one-to-one, but in general is not sur- jective. We will see later that Ω is required to be closed, that is, dΩ=0, where d is the exterior derivative, so that the induced Poisson bracket sat- isfies the Jacobi identity and so that the flows of Hamiltonian vector fields will consist of canonical transformations. In coordinates zI on P in the I J finite-dimensional case, if Ω = ΩIJ dz ∧ dz (sum over all I<J), then 148 5. Hamiltonian Systems on Symplectic Manifolds dΩ=0becomes the condition ∂Ω ∂Ω ∂Ω IJ + KI + JK =0. (5.1.1) ∂zK ∂zJ ∂zI Examples (a) Symplectic Vector Spaces. If (Z, Ω) is a symplectic vector space, then it is also a symplectic manifold. -
1 the Basic Set-Up 2 Poisson Brackets
MATHEMATICS 7302 (Analytical Dynamics) YEAR 2016–2017, TERM 2 HANDOUT #12: THE HAMILTONIAN APPROACH TO MECHANICS These notes are intended to be read as a supplement to the handout from Gregory, Classical Mechanics, Chapter 14. 1 The basic set-up I assume that you have already studied Gregory, Sections 14.1–14.4. The following is intended only as a succinct summary. We are considering a system whose equations of motion are written in Hamiltonian form. This means that: 1. The phase space of the system is parametrized by canonical coordinates q =(q1,...,qn) and p =(p1,...,pn). 2. We are given a Hamiltonian function H(q, p, t). 3. The dynamics of the system is given by Hamilton’s equations of motion ∂H q˙i = (1a) ∂pi ∂H p˙i = − (1b) ∂qi for i =1,...,n. In these notes we will consider some deeper aspects of Hamiltonian dynamics. 2 Poisson brackets Let us start by considering an arbitrary function f(q, p, t). Then its time evolution is given by n df ∂f ∂f ∂f = q˙ + p˙ + (2a) dt ∂q i ∂p i ∂t i=1 i i X n ∂f ∂H ∂f ∂H ∂f = − + (2b) ∂q ∂p ∂p ∂q ∂t i=1 i i i i X 1 where the first equality used the definition of total time derivative together with the chain rule, and the second equality used Hamilton’s equations of motion. The formula (2b) suggests that we make a more general definition. Let f(q, p, t) and g(q, p, t) be any two functions; we then define their Poisson bracket {f,g} to be n def ∂f ∂g ∂f ∂g {f,g} = − . -
Hamilton's Equations. Conservation Laws. Reduction. Poisson Brackets
Hamiltonian Formalism: Hamilton's equations. Conservation laws. Reduction. Poisson Brackets. Physics 6010, Fall 2016 Hamiltonian Formalism: Hamilton's equations. Conservation laws. Reduction. Poisson Brackets. Relevant Sections in Text: 8.1 { 8.3, 9.5 The Hamiltonian Formalism We now return to formal developments: a study of the Hamiltonian formulation of mechanics. This formulation of mechanics is in many ways more powerful than the La- grangian formulation. Among the advantages of Hamiltonian mechanics we note that: it leads to powerful geometric techniques for studying the properties of dynamical systems, it allows for a beautiful expression of the relation between symmetries and conservation laws, and it leads to many structures that can be viewed as the macroscopic (\classical") imprint of quantum mechanics. Although the Hamiltonian form of mechanics is logically independent of the Lagrangian formulation, it is convenient and instructive to introduce the Hamiltonian formalism via transition from the Lagrangian formalism, since we have already developed the latter. (Later I will indicate how to give an ab initio development of the Hamiltonian formal- ism.) The most basic change we encounter when passing from Lagrangian to Hamiltonian methods is that the \arena" we use to describe the equations of motion is no longer the configuration space, or even the velocity phase space, but rather the momentum phase space. Recall that the Lagrangian formalism is defined once one specifies a configuration space Q (coordinates qi) and then the velocity phase space Ω (coordinates (qi; q_i)). The mechanical system is defined by a choice of Lagrangian, L, which is a function on Ω (and possible the time): L = L(qi; q_i; t): Curves in the configuration space Q { or in the velocity phase space Ω { satisfying the Euler-Lagrange (EL) equations, @L d @L − = 0; @qi dt @q_i define the dynamical behavior of the system. -
Poisson Structures and Integrability
Poisson Structures and Integrability Peter J. Olver University of Minnesota http://www.math.umn.edu/ olver ∼ Hamiltonian Systems M — phase space; dim M = 2n Local coordinates: z = (p, q) = (p1, . , pn, q1, . , qn) Canonical Hamiltonian system: dz O I = J H J = − dt ∇ ! I O " Equivalently: dpi ∂H dqi ∂H = = dt − ∂qi dt ∂pi Lagrange Bracket (1808): n ∂pi ∂qi ∂qi ∂pi [ u , v ] = ∂u ∂v − ∂u ∂v i#= 1 (Canonical) Poisson Bracket (1809): n ∂u ∂v ∂u ∂v u , v = { } ∂pi ∂qi − ∂qi ∂pi i#= 1 Given functions u , . , u , the (2n) (2n) matrices with 1 2n × respective entries [ u , u ] u , u i, j = 1, . , 2n i j { i j } are mutually inverse. Canonical Poisson Bracket n ∂F ∂H ∂F ∂H F, H = F T J H = { } ∇ ∇ ∂pi ∂qi − ∂qi ∂pi i#= 1 = Poisson (1809) ⇒ Hamiltonian flow: dz = z, H = J H dt { } ∇ = Hamilton (1834) ⇒ First integral: dF F, H = 0 = 0 F (z(t)) = const. { } ⇐⇒ dt ⇐⇒ Poisson Brackets , : C∞(M, R) C∞(M, R) C∞(M, R) { · · } × −→ Bilinear: a F + b G, H = a F, H + b G, H { } { } { } F, a G + b H = a F, G + b F, H { } { } { } Skew Symmetric: F, H = H, F { } − { } Jacobi Identity: F, G, H + H, F, G + G, H, F = 0 { { } } { { } } { { } } Derivation: F, G H = F, G H + G F, H { } { } { } F, G, H C∞(M, R), a, b R. ∈ ∈ In coordinates z = (z1, . , zm), F, H = F T J(z) H { } ∇ ∇ where J(z)T = J(z) is a skew symmetric matrix. − The Jacobi identity imposes a system of quadratically nonlinear partial differential equations on its entries: ∂J jk ∂J ki ∂J ij J il + J jl + J kl = 0 ! ∂zl ∂zl ∂zl " #l Given a Poisson structure, the Hamiltonian flow corresponding to H C∞(M, R) is the system of ordinary differential equati∈ons dz = z, H = J(z) H dt { } ∇ Lie’s Theory of Function Groups Used for integration of partial differential equations: F , F = G (F , . -
Time-Dependent Hamiltonian Mechanics on a Locally Conformal
Time-dependent Hamiltonian mechanics on a locally conformal symplectic manifold Orlando Ragnisco†, Cristina Sardón∗, Marcin Zając∗∗ Department of Mathematics and Physics†, Universita degli studi Roma Tre, Largo S. Leonardo Murialdo, 1, 00146 , Rome, Italy. ragnisco@fis.uniroma3.it Department of Applied Mathematics∗, Universidad Polit´ecnica de Madrid. C/ Jos´eGuti´errez Abascal, 2, 28006, Madrid. Spain. [email protected] Department of Mathematical Methods in Physics∗∗, Faculty of Physics. University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland. [email protected] Abstract In this paper we aim at presenting a concise but also comprehensive study of time-dependent (t- dependent) Hamiltonian dynamics on a locally conformal symplectic (lcs) manifold. We present a generalized geometric theory of canonical transformations and formulate a time-dependent geometric Hamilton-Jacobi theory on lcs manifolds. In contrast to previous papers concerning locally conformal symplectic manifolds, here the introduction of the time dependency brings out interesting geometric properties, as it is the introduction of contact geometry in locally symplectic patches. To conclude, we show examples of the applications of our formalism, in particular, we present systems of differential equations with time-dependent parameters, which admit different physical interpretations as we shall point out. arXiv:2104.02636v1 [math-ph] 6 Apr 2021 Contents 1 Introduction 2 2 Fundamentals on time-dependent Hamiltonian systems 5 2.1 Time-dependentsystems. ....... 5 2.2 Canonicaltransformations . ......... 6 2.3 Generating functions of canonical transformations . ................ 8 1 3 Geometry of locally conformal symplectic manifolds 8 3.1 Basics on locally conformal symplectic manifolds . ............... 8 3.2 Locally conformal symplectic structures on cotangent bundles............ -
Advanced Quantum Theory AMATH473/673, PHYS454
Advanced Quantum Theory AMATH473/673, PHYS454 Achim Kempf Department of Applied Mathematics University of Waterloo Canada c Achim Kempf, September 2017 (Please do not copy: textbook in progress) 2 Contents 1 A brief history of quantum theory 7 1.1 The classical period . 7 1.2 Planck and the \Ultraviolet Catastrophe" . 7 1.3 Discovery of h ................................ 8 1.4 Mounting evidence for the fundamental importance of h . 9 1.5 The discovery of quantum theory . 9 1.6 Relativistic quantum mechanics . 11 1.7 Quantum field theory . 12 1.8 Beyond quantum field theory? . 14 1.9 Experiment and theory . 16 2 Classical mechanics in Hamiltonian form 19 2.1 Newton's laws for classical mechanics cannot be upgraded . 19 2.2 Levels of abstraction . 20 2.3 Classical mechanics in Hamiltonian formulation . 21 2.3.1 The energy function H contains all information . 21 2.3.2 The Poisson bracket . 23 2.3.3 The Hamilton equations . 25 2.3.4 Symmetries and Conservation laws . 27 2.3.5 A representation of the Poisson bracket . 29 2.4 Summary: The laws of classical mechanics . 30 2.5 Classical field theory . 31 3 Quantum mechanics in Hamiltonian form 33 3.1 Reconsidering the nature of observables . 34 3.2 The canonical commutation relations . 35 3.3 From the Hamiltonian to the equations of motion . 38 3.4 From the Hamiltonian to predictions of numbers . 42 3.4.1 Linear maps . 42 3.4.2 Choices of representation . 43 3.4.3 A matrix representation . 44 3 4 CONTENTS 3.4.4 Example: Solving the equations of motion for a free particle with matrix-valued functions . -
Symplectic Operad Geometry and Graph Homology
1 SYMPLECTIC OPERAD GEOMETRY AND GRAPH HOMOLOGY SWAPNEEL MAHAJAN Abstract. A theorem of Kontsevich relates the homology of certain infinite dimensional Lie algebras to graph homology. We formulate this theorem using the language of reversible operads and mated species. All ideas are explained using a pictorial calculus of cuttings and matings. The Lie algebras are con- structed as Hamiltonian functions on a symplectic operad manifold. And graph complexes are defined for any mated species. The general formulation gives us many examples including a graph homology for groups. We also speculate on the role of deformation theory for operads in this setting. Contents 1. Introduction 1 2. Species, operads and reversible operads 6 3. The mating functor 10 4. Overview of symplectic operad geometry 13 5. Cuttings and Matings 15 6. Symplectic operad theory 19 7. Examples motivated by PROPS 23 8. Graph homology 26 9. Graph homology for groups 32 10. Graph cohomology 34 11. The main theorem 38 12. Proof of the main theorem-Part I 39 13. Proof of the main theorem-Part II 43 14. Proof of the main theorem-Part III 47 Appendix A. Deformation quantisation 48 Appendix B. The deformation map on graphs 52 References 54 1. Introduction This paper is my humble tribute to the genius of Maxim Kontsevich. Needless to say, the credit for any new ideas that occur here goes to him, and not me. For how I got involved in this wonderful project, see the historical note (1.3). In the papers [22, 23], Kontsevich defined three Lie algebras and related their homology with classical invariants, including the homology of the group of outer 1 2000 Mathematics Subject Classification. -
Hamilton-Poisson Formulation for the Rotational Motion of a Rigid Body In
Hamilton-Poisson formulation for the rotational motion of a rigid body in the presence of an axisymmetric force field and a gyroscopic torque Petre Birtea,∗ Ioan Ca¸su, Dan Com˘anescu Department of Mathematics, West University of Timi¸soara Bd. V. Pˆarvan, No 4, 300223 Timi¸soara, Romˆania E-mail addresses: [email protected]; [email protected]; [email protected] Keywords: Poisson bracket, Casimir function, rigid body, gyroscopic torque. Abstract We give sufficient conditions for the rigid body in the presence of an axisymmetric force field and a gyroscopic torque to admit a Hamilton-Poisson formulation. Even if by adding a gyroscopic torque we initially lose one of the conserved Casimirs, we recover another conservation law as a Casimir function for a modified Poisson structure. We apply this frame to several well known results in the literature. 1 Introduction The generalized Euler-Poisson system, which is a dynamical system for the rotational motion of a rigid body in the presence of an axisymmetric force field, admits a Hamilton-Poisson formulation, where the bracket is the ”−” Kirillov-Kostant-Souriau bracket on the dual Lie algebra e(3)∗. The Hamiltonian function is of the type kinetic energy plus potential energy. The Hamiltonian function and the two Casimir functions for the K-K-S Poisson structure are conservation laws for the dynamic. Adding a certain type of gyroscopic torque the Hamiltonian and one of the Casimirs remain conserved along the solutions of the new dynamical system. In this paper we give a technique for finding a third conservation law in the presence of gyroscopic torque. -
Conformal Hamiltonian Systems
Journal of Geometry and Physics 39 (2001) 276–300 Conformal Hamiltonian systems Robert McLachlan∗, Matthew Perlmutter IFS, Massey University, Palmerston North, New Zealand 5301 Received 4 August 2000; received in revised form 23 January 2001 Abstract Vector fields whose flow preserves a symplectic form up to a constant, such as simple mechanical systems with friction, are called “conformal”. We develop a reduction theory for symmetric con- formal Hamiltonian systems, analogous to symplectic reduction theory. This entire theory extends naturally to Poisson systems: given a symmetric conformal Poisson vector field, we show that it induces two reduced conformal Poisson vector fields, again analogous to the dual pair construction for symplectic manifolds. Conformal Poisson systems form an interesting infinite-dimensional Lie algebra of foliate vector fields. Manifolds supporting such conformal vector fields include cotan- gent bundles, Lie–Poisson manifolds, and their natural quotients. © 2001 Elsevier Science B.V. All rights reserved. MSC: 53C57; 58705 Sub. Class.: Dynamical systems Keywords: Hamiltonian systems; Conformal Poisson structure 1. Introduction The fields of symplectic geometry and geometric mechanics are closely linked, indeed almost synonymous [10,14]. One of their most important features is that the symplectic diffeomorphisms on a manifold form a group. This property can be taken as the definition of “geometry;” it is natural to try and generalize it. In 1913 Cartan [5,24] found that, subject to certain restrictions, there are just six classes of groups of diffeomorphisms on any manifold, namely (i) Diff itself; (ii) Diffω, the diffeomorphisms preserving a symplectic 2-form ω; (iii) Diffµ, the diffeomorphisms preserving a volume form µ; (iv) Diffα, the diffeomorphisms c preserving a contact form α up to a function; and the conformal groups, (v) Diffω and (vi) c Diffµ, the diffeomorphisms preserving the form ω or µ up to a constant.