A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing

Total Page:16

File Type:pdf, Size:1020Kb

A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing polymers Review A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing Marek Pagac * , Jiri Hajnys , Quoc-Phu Ma , Lukas Jancar, Jan Jansa , Petr Stefek and Jakub Mesicek Center of 3D Printing Protolab, Department of Machining, Assembly and Engineering Technology, Faculty of Mechanical Engineering, VSB-TU Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic; [email protected] (J.H.); [email protected] (Q.-P.M.); [email protected] (L.J.); [email protected] (J.J.); [email protected] (P.S.); [email protected] (J.M.) * Correspondence: [email protected] Abstract: Additive manufacturing (3D printing) has significantly changed the prototyping process in terms of technology, construction, materials, and their multiphysical properties. Among the most popular 3D printing techniques is vat photopolymerization, in which ultraviolet (UV) light is deployed to form chains between molecules of liquid light-curable resin, crosslink them, and as a result, solidify the resin. In this manuscript, three photopolymerization technologies, namely, stereolithography (SLA), digital light processing (DLP), and continuous digital light processing (CDLP), are reviewed. Additionally, the after-cured mechanical properties of light-curable resin materials are listed, along with a number of case studies showing their applications in practice. The manuscript aims at providing an overview and future trend of the photopolymerization technology to inspire the readers to engage in further research in this field, especially regarding developing new materials and mathematical models for microrods and bionic structures. Citation: Pagac, M.; Hajnys, J.; Ma, Keywords: vat photopolymerization; SLA; DLP; CDLP; CLIP Q.-P.; Jancar, L.; Jansa, J.; Stefek, P.; Mesicek, J. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, 1. Introduction and Future Trends of 3D Printing. Additive manufacturing (AM) technology was first introduced in the 1980s with the Polymers 2021, 13, 598. https://doi. aim of producing rapid and functional prototypes from various materials. Particularly, in org/10.3390/polym13040598 May 1980, Dr. Hideo Kodama from the Nagoya Municipal Industrial Research Institute (NMIRI) applied for a patent that describes a method of curing a spatial model of pho- Academic Editor: Paul F. Egan topolymer material by exposing it to ultraviolet (UV) light. Nevertheless, Kodama’s efforts Received: 30 January 2021 toward finding funding for further research and development on the issued patent bore no Accepted: 13 February 2021 Published: 17 February 2021 fruit, even with support from the government. The patent was consequently abandoned and never commercialized [1–4]. Kodama is, however, credited as the first inventor of this technology. Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in The origin of 3D printing with commercial potential can be traced back to 1986 when published maps and institutional affil- Charles W. Hull filed a patent for a photopolymerization technology called stereolithogra- iations. phy (SLA). The very first printed model was an eye-wash cup. Henceforth, SLA has been developed by 3D Systems Corporation [1–3]. New developments are also closely related to the development of 3D printing in med- ical and regenerative medicine. Dating back to 2004 in [5], a novel technique for printing 3D cell patterns was introduced. Later on, in [6], the author describes the process of manu- Copyright: © 2021 by the authors. facturing structures, namely, scaffolds, on which, cells can grow after being implemented Licensee MDPI, Basel, Switzerland. This article is an open access article into the body. A typical example of 3D bioprinting is artificial vessels, for which, dog bone distributed under the terms and marrow samples were used [7,8]. conditions of the Creative Commons 2. Vat Photopolymerization Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ AM technologies are classified as shown below in Figure1. Each technology differs 4.0/). from another in the manner of the application process, curing principle, and the initial state Polymers 2021, 13, 598. https://doi.org/10.3390/polym13040598 https://www.mdpi.com/journal/polymers Polymers 2021, 13, x FOR PEER REVIEW 2 of 18 2. Vat Photopolymerization Polymers 2021, 13, 598 2 of 20 AM technologies are classified as shown below in Figure 1. Each technology differs from another in the manner of the application process, curing principle, and the initial state of the material. Herein, attention is paid to the historically oldest AM technology, of the material. Herein, attention is paid to the historically oldest AM technology, namely, namely, vat photopolymerization. vat photopolymerization. Figure 1. Division of the additive manufacturing (AM) technologies according to ISO/ASTM 52900: Figure2015 Additive 1. Division Manufacturing—General of the additive manufacturing Principles—Terminology. (AM) technologies according to ISO/ASTM 52900: 2015 Additive Manufacturing—General Principles—Terminology. 2.1. 3D Printing Process 2.1. 3DThe Printing 3D printing Process production process begins with a 3D model that is designed with computer-aidedThe 3D printing design production (CAD) software process or begins 3D scanned with froma 3D amodel physical that object. is designed The 3D with model is subsequently converted to the standard triangulation language (STL) format. It computer-aided design (CAD) software or 3D scanned from a physical object. The 3D should be noted that since 1987, STL has been the standard and most frequently used modelformat is for subsequently preparing data conver for AMted production. to the standard Specifically, triangulation the STL formatlanguage solely (STL describes) format. It shouldthe surface be noted of the that 3D modelsince with1987, a STL network has ofbeen triangles the standard of different and sizes, most depending frequently on used formatthe required for prepar resolution.ing data Thefor AM smaller production. the size ofSpecifically, the triangles, the theSTL more format accurately solely describes the thetriangular surface meshof the represents 3D model the with desired a network surface, of yielding triangles a smootherof different surface sizes of, depending the to-be- on theprinted required object. resolution. The stage T inhe which smaller preparing the size the of desired the triangles mesh model, the more takes accurately place is called the tri- angularpreprocessing mesh [represent9]. s the desired surface, yielding a smoother surface of the to-be- printedThe object second. The production stage in stagewhich is preparing called processing. the desi Asred a mesh 3D printed model object takes is place fabricated is called preprocessinglayer by layer, [9] each. consecutive layer has to be supported by either the platform, the pre- cedingThe layer, second or extra production support stage elements. is called After processing. designing the As correct a 3D printed and optimal object orientation is fabricated layerof the by model layer, and each the consecutive supports, the layer STL model,has to be including supported the supports,by eitheris the sliced platform into layers, the pre- with a plane parallel to the platform surface, namely, the xOy plane. Each layer is then ceding layer, or extra support elements. After designing the correct and optimal orienta- built consecutively in the Oz direction. The layer thickness depends on the printer, AM tion of the model and the supports, the STL model, including the supports, is sliced into technology, and quality requirements. The sliced model is subsequently sent to the printer. layersDiffering with from a plane the traditional parallel to subtractive the platform manufacturing surface, namely, process the (machining), xOy plane. where Each thelayer is thenmaterial built is consecutively taken out of a in workpiece, the Oz direction. AM offers The more layer efficient thickness material depends usage. on the printer, AM technologyAfter the printing, and quality is finished, requirements. the model The is removedsliced model from is the subsequently platform and sent other to the printer.technical Differing processing from procedures the traditional are used subtractive to refine the manufacturing printed object process in a stage (machining called ), wherepostprocessing. the material In is the taken case ofout photopolymerization, of a workpiece, AM theoffers as-built more models efficient are material rinsed inusage. a washAfter solution, the printing most commonly, is finished isopropyl, the model alcohol is removed (IPA), to get from rid ofthe the platform liquid layer and of other resin. tech- nicalTo enhance processing the mechanicalprocedures properties, are used to these refine models the printed are subsequently object in a stage artificially called cured postpro- cessing.with UV In light the orcase naturally of photopolymerization, exposed to sunlight. the Other as-built processes models include are supportrinsed in removal, a wash so- lution,grinding, most sealing, commonly, gluing, isoprop polishing,yl painting,alcohol (IPA), varnishing, to get coating,rid of the sterilization, liquid layer inspection, of resin. To enhanceand measurement. the mechanical There properties, are specific these post-processing models are treatments subsequently for photopolymer artificially cured parts. with It is noteworthy that the rinsing time, temperature, and duration of the curing process
Recommended publications
  • Ink Jet Barrier Film for Resolving Narrow Ink Channels
    Ink Jet Barrier Film For Resolving Narrow Ink Channels Karuppiah Chandrasekaran Dupont Ink Jet Enterprise, Towanda, Pennsylvania Abstract Non-Aqueous Development Ink Jet Barrier Film is a photoresist sandwiched between One of the stringent properties the Ink Jet Barrier film a polyester and a polyolefin. The unexposed photopoly- has to satisfy is ink resistance. Inks are aqueous solu- mer film instantly adheres to different types of substrates. tions containing colorant(s), biocide(s), organic solvents The film can be exposed with a photographic artwork, and optionally dispersion agents. Alcohols and Pyrro- and the unexposed area can be developed in lidones are the commonly used co-solvents2-4. pH of the non-halogenated solvents. The cured film on a substrate ink ranges from 5 to 9. Aqueous developable photopoly- can be laminated on to a top plate at elevated tempera- mer films contain acidic or basic functional groups. Dur- tures. The film is highly flexible and resists partially ing aqueous development, unexposed photopolymer non-aqueous high pH inks. Several factors affect the swells in the developer solvent and the swollen film is resolution of the Ink Jet Barrier Film. Chemical compo- dispersed using mechanical force. Developed film is ther- sition and process conditions that affect resolution have mally and/or photochemically cured to increase cross link been identified. It was possible to resolve 10 micron density. Even the cured photopolymer film contains a channels with 30 micron thick films. A modern high tech- significant number of acidic (basic) functional groups. nology clean room coater is used to manufacture the Ink The acidic (basic) functional groups tend to hydrate in Jet Barrier Films.
    [Show full text]
  • Novacryl 10440 Interior Sign Specification Nova Polymers
    Nova Polymers Novacryl 10440 Interior Sign Specification Nova Polymers Thank you for your interest in Nova Polymers. At Nova Polymers, we are committed to customer service, product development/ support and the continual development of progressive product solutions. Our goal is to provide the most creative and diverse range of photopolymer materials to the architectural design and sign fabrication industries. It is through these commitments, as well as our relationship with the architectural sign community that ensures we are fully capable of exceeding all of your design expectations. Nova continues to be at the forefront of ADA legislation by representing the ISA and SEGD on the International Code Council and is proud to be the industry leader as the focus continues to increase on green building initiatives and sustainable design materials in environmental graphic design. Whether it is innovative materials and equipment, workflow management software or consulting services that can make your process more efficient and profitable; we are there to help. Thank you for your time. If there are any questions, please feel free to contact us directly. Novacryl® Series Photopolymer 10440 Novacryl® Series Photopolymer Section 10440 Interior Signage Novacryl Series Photopolymer Display hidden notes to specifier. (Don't know how? Click Here) NOTE TO SPECIFIER ** This section is based on the products manufactured Nova Polymers, Inc., which is located at: 8 Evans St. Suite 201 Fairfield, NJ 07004 USA Tel: (888) 484-6682 Tel: (973) 882-7890 Fax: (973) 882-5614 Email: [email protected] Website: www.NovaPolymers.com Nova Polymers, Inc. (NPI) is the manufacturer and distributor of all Novacryl Series Photopolymer substrates.
    [Show full text]
  • Operators Manual LASER PRINTER 8
    L A S E R PRINTER 8 Operators Manual Safety Notices This printer is certified as a Class 1laser product under the U.S.Department of Health and Human Services (DHHS) Radiation Performance Standard according to the Radiation Control for Health and Safety Act of 1968. This means that the printer does not produce hazardous laser radiation. Since radiation emitted inside the printer is completely confined within protective housings and external covers, the laser beam cannot escapefrom the machine during anyphase of user operation. The Center for Devices and Radiological Health (CDRH) of the U.S. Food and Drug Administra- tionimplemented regulations forlaserproducts on August 2, 1976.These regulations apply to laser products manufactured from August 1, 1976.Compliance is mandatory for products marketed in the United States. The label on the bottom of the printer indicates currrpliancewith the CDRII regulations and must be attached to laser products marketcxlin the United States. Federal Communications Commission Radio Frequency Interference Statement This equipment generates”anduses radio frequency energy and if not installed and used properly, that is, in strict accordance with the manufacturer’s instructions, may cause interference to radio and television reception. It has been type tested and found to ccnrrly with the limits for a Class B computing devicein accordance withthe specificationsin SubpartYof Part 15of FCC Rules, which are designedto provide reasonableprotectmrtagainst suchirrterferenceirra residential installation. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: ● Reorient the receiving antenna ● Relucate the computer with respect to the receiver .
    [Show full text]
  • MEMS Mirror Based Dynamic Solid State Lighting Module
    Society for Information Display 2016 International Symposium, May 24th, 2016, San Francisco, CA MEMS Mirror Based Dynamic Solid State Lighting Module Abhishek Kasturi, Veljko Milanovic, James Yang Mirrorcle Technologies, Inc., Richmond CA Abstract Figure 1a,b images show a comparison of some sample content A novel dynamic solid state lighting (SSL) module is projected to the transparent film and a phosphor plate, demonstrated, allowing users to program the direction, brightness, respectively. Content is projected with a 40Hz refresh rate and divergence and shape of a projected white light in a variety of emission is mostly white. Significant brightness increase was lighting applications. The module is enabled by a fast beam- achieved by aluminum-mirror backing of the thin films. steering MEMS mirror with high optical power handling. In order a) b) to produce and project bright white light, the module illuminates a phosphor target with a high power laser of several Watts. A projection lens projects the phosphor target into a cone of light of up to 60°. This light projection is arbitrarily shaped and dynamically programmable by controlling a MEMS mirror scan head to address specific portions of the phosphor target. An adjustable focus lens in the scan head further allows control of Transparent emissive film Phosphor sample projected beam divergence. Successful prototypes were demonstrated with both a single 445nm laser diode source (2.5W Figure 1. Examples of monochrome vector content laser power) and with a dual (combined) laser diode sources displayed on emissive films, excited by a 405nm laser. (5.5W laser power). While the prototypes have to date been limited a) b) by available power of the laser sources, it is estimated that the novel MEMS mirror scan head design allows >10W (CW) operation on a 2mm mirror without multilayer dielectric coatings.
    [Show full text]
  • Standard Documents : Laser Printing Wide Format : L.E.D
    STANDARD DOCUMENTS : LASER PRINTING for standard sheet sizes up to 12 x 18 inches PRINTER COLOR MODE PAPER 8.5 x 11 11 x 17 12 x 18 printLab-Color-Laser Color 24/60#T Cougar Digital .50 1.00 1.00 printLab-B&W-Laser B&W 20/50#T copy paper free free n/a SPECIALTY MEDIA SPECS 8.5 x 11 11 x 17 12 x 18 HAMMERMILL COLOR COPY 60#C, Extra-Heavy .25 .50 .50 DOMTAR COUGAR DIGITAL 80#C, Cardstock .25 .50 n/a Also: 70#T, laser gloss, transparency, and vellum / strathmore drawing / colored copy papers — sizes & prices vary WIDE FORMAT : L.E.D. PRINTING toner-based printing on roll media up to 36 inches wide PRINTER OUTPUT PAPER sq.ft. Arch-C Arch-D Arch-E printLab_Color-LED 4-Color Bond 1.33 4.00 8.00 16.00 Gloss 2.00 6.00 12.00 24.00 Presentation 2.00 6.00 12.00 24.00 Vellum 2.00 6.00 12.00 24.00 Banner 2.50 7.50 15.00 30.00 printLab_B&W-LED B&W Bond .50 1.50 3.00 6.00 WIDE FORMAT : INKJET PRINTING aqueous pigment printing on rolls & sheets up to 60 inches wide PRINTER OUTPUT PAPER sq.ft. C/18x24 D/24x36 E/36x48 printLab_Color-Inkjet 8-Color Coated 3.33 10.00 20.00 40.00 Photo Satin 4.00 12.00 24.00 48.00 Photo Gloss 4.00 12.00 24.00 48.00 printLab-E9800* 8-Color for high-resolution photos and sheet media up to 44” wide ADDITIONAL SERVICES finishing options & other stuff we offer 3D PRINTING: Prusa i3 MK3s—save as .STL, fully-enclosed; min.
    [Show full text]
  • BE06LU11 • USB Interface • Lightscribe Disc Labeling
    6X EXTERNAL BLU-RAY DISC REWRITER • 6x External Blu-ray Disc Rewriter • Compatible with all current disc formats • 6x BD-R Read/Write speed BE06LU11 • USB Interface • LightScribe Disc Labeling SUPER MULTI BLUE Blu-ray Disc™ is the next generation in optical storage, offering 25GB and 50GB of storage capacity on a disc. SERIAL ata TECHNOLOGY Serial ATA is a 1.5Gbps evolutionary replacement for the Parallel ATA physical storage interface used to connect storage devices, such as hard disks, DVD and CD rewriters to the PC motherboard. Serial ATA is scalable, enables design of smaller PCs, and will allow future enhancements to the computing platform. LIGHTSCRIBE Create silkscreen-quality disc labels direct from your PC with LightScribe. LightScribe is a laser printing technology on the exclusive LightScribe disc. It provides a complete, convenient, cost-effective system for labeling discs. Simply “burn” the data to a LightScribe disc, flip the disc over, place it back in the drive, and “burn” the label. BE06LU11 6X EXTERNAL BLU-RAY DISC REWRITER TECHNICAL SPECIFICATIONS General data transfer rate Interface USB BD-ROM 215.79 MB/s (6x) Max. supp O rted discs DVD-ROM 22.16 MB/s (16x) Max. DVD-ROM (Single/Dual) • CD-ROM 6,000 kB/s (40x) Max. DVD-RW • AVeraGE access TIME DVD-R • BD-ROM 180 msec (Typical) DVD+RW • DVD-ROM 160 msec (Typical) DVD+R • CD-ROM 150 msec (Typical) DVD+R Double Layer • PERFORMANCE DVD-R Dual Layer • Buffer Capacity 4 MB DVD-RAM • WRITING METHODS CD-Digital Audio & CD-Extra • CD Disc-at-once, Track-at-once, CD-Plus • Session-at-once,
    [Show full text]
  • Conduction Laser Welding
    JOSEFINE SVENUNGSSON Licentiate Thesis Production Technology 2019 No. 27 Conduction laser welding modelling of melt pool with free surface deformation Conduction laser welding Laser welding is commonly used in the automotive-, steel- and aerospace industry. However, deeper knowledge is still needed to better control this process, improve prod- DEFORMATION POOL WITH FREE SURFACE WELDING - MODELLING OF MELT LASER CONDUCTION modelling of melt pool with free surface deformation uct quality, produce components with less material, reduce production errors and thus contribute to sustainable manufacturing production. Process knowledge can be gained through modelling and experimental observation. The present study therefore aimed at developing and testing a simulation model dedicated to the thermal flow and free surface deformation of the melt pool formed during laser welding. The physics implemented in the model includes the thermocapillary force that accounts Josefine Svenungsson for the effect of temperature gradients on surface tension, the solid-liquid phase change, and the convection of fusion enthalpy. From the computed test cases, it was found that the convection of fusion enthalpy should not be neglected. It was also found that the numerical implementation of the thermocapillary force can lead to unphysical solutions. Therefore, it is recommended to select an approach consistent for all the surface forces of the problem. Finally, free surface oscillations known from experiments to occur are also computed outputs of the model. However, it remains to investigate whether these oscil- lations are, or not, disturbed by numerical noise. 2019 NO.27 ISBN 978-91-88847-35-5 (Printed version) ISBN 978-91-88847-34-8 (Electronic version) 118526_HV_Josefine_Svenungsson_omslag_190516_v2.indd 1 2019-05-16 09:32:15 Tryck: BrandFactory, maj 2019.
    [Show full text]
  • Services & Capabilities
    Services & Capabilities V1.0 Design & Production Support or supplement in/outside creative staff Grand Format Printing Create & maintain brand integrity across multiple media 7 color UV printer with separate channel for white ink Adhere to graphic standards or develop original concepts 540 dpi production mode/1080 dpi available (6-8pt type) Cross-media marketing services: more touch-points to Prints on rigid and flexible substrates up to 2” thick and increase response (email, SMS & PURLs) 126.5” wide True hybrid machine: prints flat boards and rolls Digital Imaging Speed: up to 900 square feet per hour and (22) 4’ x 8’ Complete file preparation services on Mac and PC platforms boards per hour Trapping and imposition using Kodak Prinergy Connect Banners, window clings, self-adhesive vinyl, paper, fabric, Online file submission via secure FTP or mesh, rigid POP, metal, glass and indoor/outdoor graphics PrismaExchange.com Specialized router for a-standard shapes Soft proofing via PrismaExchange.com Press match proofs using Kodak Matchprint proofing Bindery & Finishing system Embossing Digital low resolution proofs using automated 2-sided Die-cutting proofer Drilling Automated computer-to-plate process Foil stamping Kodak Maxtone (AM) and Staccato (FM) Screening options Folding Reflective and transparency scanning Gluing Quality control using spectrophotometers for proofing, Laminating plating and press Mounting Data archiving with off-site storage CIP3 servers to generate ink key settings for press Perfect
    [Show full text]
  • Oki C3400 Driver Download DRIVER OKI C3450 PRINTER for WINDOWS XP
    oki c3400 driver download DRIVER OKI C3450 PRINTER FOR WINDOWS XP. If I use it includes print directly to the internet. Easy-PhotoPrint has a nice intuitive easy to use interface so that everybody, novice or not, can use it. This driver works with OKI color and mono printers/MFPs. The automatic settind will be appropriate in most cases. See more ideas about Printer ink cartridges, Laser toner and Printer. Main computer original equipment manufacturers OEMs may vary slightly. I am happy with the c5500. And gather information from your OKI? About the initial setup with it. STAMPANTI E MFP problems OKI C3300 I am trting I have installed the most recent driver. If I will however depend on 32-bit versions and the device. From basic office supplies, such as printer paper and labels, to office equipment, like file cabinets and stylish office furniture, Office Depot and OfficeMax have the office products you need to get the job done. Driver Mi Redmi 6 Usb For Windows 8. Easy-PhotoPrint 3 Preface This means that support web-browsing. 80873. After going into the OKIUSER then into the toner sensor menu, changing from enable to disable, I have tried pressing the online, Cancel & - at the same time as suggested earlier in this thread for the 5400 , starting with online, and it will not accept the command and continues to default to enable. OKI C3450 - driver software manual installation guide zip OKI C3450 - driver software driver-category list Periodic pc failures may also be the result of a bad or out-of-date OKI C3450, since it influences other programs that could trigger such a clash, that only a shut down or a enforced reactivation may solve.
    [Show full text]
  • Optical Coherence Tomography for Characterization of Nanocomposite Materials Karlsruhe Series in Photonics & Communications, Vol
    Karlsruhe Series in Photonics & Communications, Vol. 25 Simon Schneider Optical coherence tomography for characterization of nanocomposite materials Optical coherence tomography for nanocomposite characterization nanocomposite for tomography coherence Optical Simon Schneider Simon 25 Simon Schneider Optical coherence tomography for characterization of nanocomposite materials Karlsruhe Series in Photonics & Communications, Vol. 25 Edited by Profs. C. Koos, W. Freude and S. Randel Karlsruhe Institute of Technology (KIT) Institute of Photonics and Quantum Electronics (IPQ) Germany Optical coherence tomography for characterization of nanocomposite materials by Simon Schneider Karlsruher Institut für Technologie Institut für Photonik und Quantenelektronik Optical coherence tomography for characterization of nanocomposite materials Zur Erlangung des akademischen Grades eines Doktor-Ingenieurs von der KIT-Fakultät für Elektrotechnik und Informationstechnik des Karlsruher Instituts für Technologie (KIT) genehmigte Dissertation von Dipl.-Ing. Simon Schneider Tag der mündlichen Prüfung: 29. November 2019 Hauptreferent: Prof. Dr.-Ing. Christian Koos Korreferenten: Prof. Dr.-Ing. Dr. h.c. Wolfgang Freude Prof. Dr. rer. nat. Wilhelm Stork Impressum Karlsruher Institut für Technologie (KIT) KIT Scientific Publishing Straße am Forum 2 D-76131 Karlsruhe KIT Scientific Publishing is a registered trademark of Karlsruhe Institute of Technology. Reprint using the book cover is not allowed. www.ksp.kit.edu This document – excluding the cover, pictures and
    [Show full text]
  • Photopolymers in 3D Printing Applications
    Photopolymers in 3D printing applications Ramji Pandey Degree Thesis Plastics Technology 2014 DEGREE THESIS Arcada Degree Programme: Plastics Technology Identification number: 12873 Author: Ramji Pandey Title: Photopolymers in 3D printing applications Supervisor (Arcada): Mirja Andersson Commissioned by: Abstract: 3D printing is an emerging technology with applications in several areas. The flexibility of the 3D printing system to use variety of materials and create any object makes it an attractive technology. Photopolymers are one of the materials used in 3D printing with potential to make products with better properties. Due to numerous applications of photo- polymers and 3D printing technologies, this thesis is written to provide information about the various 3D printing technologies with particular focus on photopolymer based sys- tems. The thesis includes extensive literature research on 3D printing and photopolymer systems, which was supported by visit to technology fair and demo experiments. Further, useful information about recent technological advancements in 3D printing and materials was acquired by discussions with companies’ representatives at the fair. This analysis method was helpful to see the industrial based 3D printers and how companies are creat- ing digital materials on its own. Finally, the demo experiment was carried out with fusion deposition modeling (FDM) 3D printer at the Arcada lab. Few objects were printed out using polylactic acid (PLA) material. Keywords: Photopolymers, 3D printing, Polyjet technology, FDM
    [Show full text]
  • Equipment List
    Equipment List PRINT PRODUCTION Fully integrated EFI Monarch MIS system for estimating, order entry & up to the minute job tracking. Offset Press Department • Two Heidelberg CD-102-6+ LSE 28” x 40” six-color presses with coating towers & CIP data entry/Preset • Heidelberg SM-74-6-P3L 20” x 29” six-color press with coating tower, perfecting capability, autoplate and CIP data entry/Preset • HALM JP-TWOD-P 9” x 12” two-color, two-sided envelope press HALM envelope press prints up to 30,000 envelopes per hour SPECIAL NOTE: All offset inks are mixed and manufactured in house to control color consistency and accommodate special/custom color matches Wide Format Printing & Cutting • Agfa Jeti Tauro wide format printer with white ink capability • Esko iCut flatbed cutting station Agfa Jeti Tauro can print on media sized up to 96” wide and 1.97” thick Media types include paper, plastic, wood and metal All media can be trimmed/cut/shaped on the Esko iCut flatbed cutting station Digital & Laser Printing Department - ON DEMAND PRINTING • Two Kodak NexPress SE3000 high-speed five-color digital presses • Ricoh C-751 high-speed four-color digital imaging system • Two Xante Impressia digital color envelope printers All machines have collating capability Kodak NexPress SE 3000 offers true Adobe PostScript printing and inserting capability at speeds up to 100 pages per minute Ricoh C-751 offers stitching at speeds up to 70 pages per minute Xante Impressia prints four color process directly onto envelopes from sizes A2 to 12” x 17” at speeds up to 4000 per hour and a resolution up to 2400 dpi Letterpress Department An array of equipment for those jobs that require die cutting, scoring, numbering or letterpress printing.
    [Show full text]