Optical Coherence Tomography for Characterization of Nanocomposite Materials Karlsruhe Series in Photonics & Communications, Vol
Total Page:16
File Type:pdf, Size:1020Kb
Karlsruhe Series in Photonics & Communications, Vol. 25 Simon Schneider Optical coherence tomography for characterization of nanocomposite materials Optical coherence tomography for nanocomposite characterization nanocomposite for tomography coherence Optical Simon Schneider Simon 25 Simon Schneider Optical coherence tomography for characterization of nanocomposite materials Karlsruhe Series in Photonics & Communications, Vol. 25 Edited by Profs. C. Koos, W. Freude and S. Randel Karlsruhe Institute of Technology (KIT) Institute of Photonics and Quantum Electronics (IPQ) Germany Optical coherence tomography for characterization of nanocomposite materials by Simon Schneider Karlsruher Institut für Technologie Institut für Photonik und Quantenelektronik Optical coherence tomography for characterization of nanocomposite materials Zur Erlangung des akademischen Grades eines Doktor-Ingenieurs von der KIT-Fakultät für Elektrotechnik und Informationstechnik des Karlsruher Instituts für Technologie (KIT) genehmigte Dissertation von Dipl.-Ing. Simon Schneider Tag der mündlichen Prüfung: 29. November 2019 Hauptreferent: Prof. Dr.-Ing. Christian Koos Korreferenten: Prof. Dr.-Ing. Dr. h.c. Wolfgang Freude Prof. Dr. rer. nat. Wilhelm Stork Impressum Karlsruher Institut für Technologie (KIT) KIT Scientific Publishing Straße am Forum 2 D-76131 Karlsruhe KIT Scientific Publishing is a registered trademark of Karlsruhe Institute of Technology. Reprint using the book cover is not allowed. www.ksp.kit.edu This document – excluding the cover, pictures and graphs – is licensed under a Creative Commons Attribution-Share Alike 4.0 International License (CC BY-SA 4.0): https://creativecommons.org/licenses/by-sa/4.0/deed.en The cover page is licensed under a Creative Commons Attribution-No Derivatives 4.0 International License (CC BY-ND 4.0): https://creativecommons.org/licenses/by-nd/4.0/deed.en Print on Demand 2020 – Gedruckt auf FSC-zertifiziertem Papier ISSN 1865-1100 ISBN 978-3-7315-1027-7 DOI 10.5445/KSP/1000117929 Table of Contents Kurzfassung ....................................................................................................... v Preface ..............................................................................................................ix Achievements of the present work .............................................................. xiii 1 Introduction ................................................................................................. 1 1.1 Nanomaterials ..................................................................................... 2 1.2 Measurement principle of OCT .......................................................... 5 1.3 Silicon photonics ................................................................................ 8 2 Fundamentals ............................................................................................ 11 2.1 Optical coherence tomography ......................................................... 11 2.1.1 OCT signal calculation ......................................................... 12 2.1.2 Lateral resolution and focal measurement range ................. 28 2.1.3 Sampling and DFT for acquisition of FD-OCT signals ....... 31 2.1.4 Sensitivity considerations and noise analysis ...................... 33 2.2 Polarization-sensitive optical coherence tomography ...................... 49 2.2.1 Polarization of light .............................................................. 49 2.2.2 PS-OCT concepts ................................................................. 53 2.2.3 Applications of PS-OCT ...................................................... 53 2.2.4 Measurement principle ......................................................... 54 3 Multi-scale dispersion-state characterization of nanocomposites using OCT .................................................................................................. 63 3.1 Introduction ...................................................................................... 64 3.2 Materials and Methods ..................................................................... 68 3.2.1 Swept-source optical coherence tomography system .......... 68 3.2.2 Model-based dispersion-state analysis and sizing of nanoparticles .................................................................... 69 3.2.3 Image-based dispersion-state analysis ................................. 74 3.3 Results and discussion ...................................................................... 76 3.3.1 Model-based sizing of nanoscale particles .......................... 77 i Table of Contents 3.3.2 Model-based nanoscale dispersion-state analysis ............... 79 3.3.3 Image-based dispersion-state analysis for microscale agglomerates ..................................................... 83 3.3.4 Demonstration of in-line dispersion-state analysis ............. 85 3.4 Conclusions ..................................................................................... 87 4 Nanoparticle size and shape characterization using PS-OCT ............. 89 4.1 Introduction ..................................................................................... 89 4.2 Measurement principle: Size- and shape- dependent backscattering ................................................................. 92 4.3 Measurement results ........................................................................ 96 4.4 Shape determination by comparison of simulation and measurements ........................................................................... 99 4.5 Discussion ...................................................................................... 105 4.6 Methods ......................................................................................... 106 5 Optical coherence tomography system on a silicon photonic chip .... 111 5.1 Introduction ................................................................................... 112 5.2 Silicon photonic OCT systems and experimental setup ................ 114 5.2.1 OCT chip with internal integrated reference path (OCTint system) ................................................................ 115 5.2.2 OCT chip with external reference path (OCText system) ............................................................... 117 5.3 Sensitivity and dynamic range ...................................................... 119 5.4 Performance evaluation and application demonstration ............... 125 5.4.1 OCT chip with internal integrated reference path (OCTint system) ................................................................ 125 5.4.2 OCT chip with external reference path (OCText system) ............................................................... 128 5.5 Summary and outlook .................................................................... 130 6 Summary and Outlook .......................................................................... 133 Appendix ....................................................................................................... 137 A. Mathematical and physical definitions ................................................ 139 A.1 Fourier transform ........................................................................... 139 ii Table of Contents A.2 Discrete Fourier transform ............................................................. 141 A.3 Convolution and correlation ........................................................... 142 A.4 Delta distribution ............................................................................ 142 A.5 Gaussian beams .............................................................................. 143 A.6 Coherence of optical fields ............................................................. 144 B. Bibliography ............................................................................................ 147 C. Glossary .................................................................................................... 161 C.1 List of acronyms ............................................................................. 161 C.2 List of symbols ............................................................................... 164 Danksagung ................................................................................................... 179 List of Publications ....................................................................................... 183 Journal publications .................................................................................. 183 Conference publications ............................................................................ 183 Patents ....................................................................................................... 184 iii Kurzfassung Nanoverbundmaterialien bestehen aus einem Träger-Material, auch als Mat- rix-Material bezeichnet, und einem nanoskaligen Füllstoff und spielen eine zunehmend wichtige Rolle in vielen Bereichen des industriellen, medizini- schen oder des alltäglichen Umfelds. Die Attraktivität von Nanomaterialien beruht auf deren einzigartigen physikalischen Eigenschaften, die über jene von klassischen Materialien hinausgehen. So ergeben sich, beispielsweise durch Oberflächeneffekte dieser Stoffe, Materialeigenschaften, die im Wesentlichen von deren Oberflächenbeschaffenheit sowie von Form und Größe der Nano- strukturen abhängen. Eine wesentliche Herausforderung in der Entwicklung von Nanopartikeln und Nanoverbundmaterialien, als Nanokomposit-Materialien bezeichnet, stellt die Sicherstellung von Partikelgrößen