Antihydrogen on Tap

Total Page:16

File Type:pdf, Size:1020Kb

Antihydrogen on Tap S PECIAL F EATURE: E INSTEIN AND THE L AST O NE H UNDRED Y EARS www.iop.org/journals/physed Antihydrogen on tap Michael Charlton Department of Physics, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, UK E-mail: [email protected] Abstract Plentiful quantities of antihydrogen, the bound state system of the antiparticles the positron and the antiproton, have recently been made under very controlled conditions in experiments at the European Laboratory of Particle Physics (CERN) near Geneva. In this article I describe how that was done, and why. Preamble For a few decades now it has become apparent Positrons and antiprotons are now to physicists that fundamental asymmetries are routinely made and stored for use in hidden deep within nature. For example, in the collider experiments. 1950s it was discovered that the weak nuclear interaction (which is responsible for β-decay) The above is quoted from the Advancing Physics violates parity conservation. (Parity conservation A2 textbook [1]1. We hope that this article will means that left and right and up and down are convince you that the next few sentences in a future indistinguishable in the sense that an atomic edition should describe how they are also routinely nucleus throws off decay products up as often as manipulated and used to create atomic antimatter. down, and left as often as right [2].) Specifically, β−-decay involves the emission of an antineutrino that always spins in a left-handed corkscrew It’s a challenging experiment—so why + bother? fashion. Conversely, β -decay only produces neutrinos that are right-handed. However, the Bringing together the two antiparticles, the defective parity ‘mirror’ can be mostly repaired positron and the antiproton, to form antihydrogen by adding so-called charge conjugation, which, is a formidable experimental challenge and one loosely speaking, means that interactions are that was not undertaken lightly. For a start, the unaffected when every particle is substituted by antiparticles annihilate readily on contact with its antiparticle. For a while it was believed that matter, so they must be stored for use in high the laws of nature would obey the combination vacuum conditions. Moreover, both species are + of parity reversal and charge conjugation. But produced (from β -decay for positrons and as a by the mid-1960s this was found to be untrue result of high energy proton–proton collisions for for a small class of reactions involving unusual, antiprotons) with kinetic energies much too high to fleeting particles called K-mesons. Since then it allow them to become bound. Thus, sophisticated has been assumed, and there is some experimental techniques and apparatus to cool and handle them evidence to support this, that the small blemish in must be developed. So, we must provide an answer the combined charge conjugation/parity reversal to the question: “why is it so important to pursue ‘mirror’ can be corrected by the application of this difficult goal”. time-reversal. 1 This is from a UK course with this book aimed at 17–18 However, this sort of three-way switch year-olds. involving charge, parity and time differs from 0031-9120/05/030229+09$30.00 © 2005 IOP Publishing Ltd P HYSICS E DUCATION 40 (3) 229 M Charlton the three discrete symmetries, or any two-way was not. Indeed it has turned out that gravity combination of them. The charge/parity/time still eludes a satisfactory unified description (with combination exists as a theorem that can be proved electromagnetism and the weak and strong nuclear using the basic postulates of quantum field theory. forces). Any new test of gravity (usually referred Such theories are the cornerstone of our current to as tests of the Weak Equivalence Principle) understanding of the universe, but are widely can offer new information and potential pointers recognized as being incomplete. So testing this towards a consistent theory of quantum gravity. unique three-way switch is going to the heart of Currently we do not have a theory that unites our understanding of nature. quantum mechanics with gravitation. Like an Just why this is so pertinent is as follows. Our unfinished story, at the moment we have a quantum current picture of the beginning of the universe theory that works on a microscopic level (e.g. involves the so-called Big Bang, which is thought particles, atoms and molecules) and a classical to have been an energetic event that created theory that works on the macroscopic scale of the equal amounts of matter and antimatter. Why universe. then did they not all annihilate one another and So where does antihydrogen fit in? Well, leave a universe devoid of matter—a universe to date, we have absolutely no information on with no stars or planets, and no prospects for the gravitational interaction of antimatter. If we life? Searches for large amounts of remnant invoke our earlier three-way switch of charge, antimatter (e.g. via signatures of galaxy–anti- parity and time reversal, all we can say is that an galaxy annihilation) in the universe, have failed antiatom will fall to an anti-Earth with the same to find any trace. Though investigations continue, acceleration as an atom falls to Earth! A moment’s with ever increasing sensitivity, we can currently thought will show the logic of this: our three-way say that our universe seems to be matter dominant, switch not only throws the falling particle, but also in other words asymmetric. The other fact to add the object it is falling towards. (It becomes an to this potent brew is that the amount of asymmetry anti-Earth!) Thus, our notions of symmetry can we can currently identify via numerous studies of say nothing about the antiparticle falling towards fleeting and rare particles isn’t enough to explain Earth. Gravitational experiments on individual (or the existence of the material universe. even small collections of) antihydrogen atoms will So the bottom line is this: we don’t really not be easy, but the potential pay-off is high. It is understand the evolution of the universe and why an experimental area crying out for investigation. there is anything much out there, or down here, at We will return to this in our concluding section all. This makes testing the symmetries of nature too. of paramount importance. We don’t have anything much to go on from theory (thought there is a The experiment resurgent interest in this area), so, experimentally, In 2002, two groups working at CERN, which we have to look where and when we can. The has unique facilities for producing low energy creation of cold antihydrogen in amounts suitable antiprotons, announced that they succeeded in for study has opened a new door on symmetry, producing cold antihydrogen [3,4]. The author is hopefully one that will be amenable to precision a member of one of these groups, the ATHENA laser spectroscopic comparisons with the spectral collaboration, and as such the remainder of this lines of hydrogen. We will discuss this further in article will be mainly based upon the methodology the final section of the article. and findings of that team. A detailed review of the The other major area where modern physics achievements of the ATRAP collaboration can be needs input from experiment is gravity. In 2005, found elsewhere [5]. the International Year of Physics, or Einstein Year as it is known in the UK, it is appropriate to recall that Einstein spent many of the latter years of his Antiprotons life searching for a unified theory of the forces of What does CERN have to offer that can’t be found nature based upon his own success in describing elsewhere? Accelerator physicists at CERN have gravitation. We now know that, although the always been proud of the diverse capabilities of the unification ambition was sound, the methodology machines they have built and the techniques they 230 P HYSICS E DUCATION May 2005 Antihydrogen on tap have pioneered in order to run these instruments kinetic energy below 5 keV) are maximized. The up to and beyond design specifications. One ATHENA trap is a so-called Penning trap and important difference between CERN and all other utilizes a strong magnetic field (3 T) along the particle physics laboratories is that, early on, they axis of the instrument to radially confine the realized the physics benefits that would accrue antiprotons, and an electric field formed by the from decelerating antiprotons so that experiments voltages applied to a set of cylindrical metal could be performed at low energies, with the electrodes to provide axial confinement. A antiprotons stopped in a small volume. schematic illustration is given in figure 1(a). Why is deceleration necessary? In order to The antiprotons in the burst with kinetic form antiprotons in the first place one must supply energies less than 5 keV (by now we have energy in the form of energetic bursts of protons unfortunately lost most of them, with just 104 (about 1013 per burst at kinetic energies over remaining) are reflected by the end electrode of 20 GeV), and collide these with a fixed target— the trap (figure 1(b)), and before they can return also a source of protons, but now stationary. It is to the foil the latter is rapidly raised to 5 kV and another application of the famous equation E the antiprotons are captured (figure 1(−c)). If this mc2; the more ‘E’ you put in the more ‘m’ you can= were all that was going on then the antiprotons create. The antiproton production reaction goes would pass back and forth along the length of the something like: catching trap for long periods.
Recommended publications
  • Confinement of Antihydrogen for 1000 Seconds
    Confinement of antihydrogen for 1000 seconds G.B. Andresen1, M.D. Ashkezari2, M. Baquero-Ruiz3, W. Bertsche4, E. Butler5, C.L. Cesar6, A. Deller4, S. Eriksson4, J. Fajans3#, T. Friesen7, M.C. Fujiwara8,7, D.R. Gill8, A. Gutierrez9, J.S. Hangst1, W.N. Hardy9, R.S. Hayano10, M.E. Hayden2, A.J. Humphries4, R. Hydomako7, S. Jonsell11, S. Kemp5§, L. Kurchaninov8, N. Madsen4, S. Menary12, P. Nolan13, K. Olchanski8, A. Olin8&, P. Pusa13, C.Ø. Rasmussen1, F. Robicheaux14, E. Sarid15, D.M. Silveira16, C. So3, J.W. Storey8$, R.I. Thompson7, D.P. van der Werf4, J.S. Wurtele3#, Y. Yamazaki16¶. 1Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark. 2Department of Physics, Simon Fraser University, Burnaby BC, V5A 1S6, Canada 3Department of Physics, University of California, Berkeley, CA 94720-7300, USA 4Department of Physics, Swansea University, Swansea SA2 8PP, United Kingdom 5Physics Department, CERN, CH-1211, Geneva 23, Switzerland 6Instituto de Fısica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972, Brazil 7Department of Physics and Astronomy, University of Calgary, Calgary AB, T2N 1N4, Canada 8TRIUMF, 4004 Wesbrook Mall, Vancouver BC, V6T 2A3, Canada 9Department of Physics and Astronomy, University of British Columbia, Vancouver BC, V6T 1Z1, Canada 10Department of Physics, University of Tokyo, Tokyo 113-0033, Japan 11 Department of Physics, Stockholm University, SE-10691, Stockholm, Sweden 12Department of Physics and Astronomy, York University, Toronto, ON, M3J 1P3, Canada 13Department of Physics,
    [Show full text]
  • Antimatter Weapons (1946-1986): from Fermi and Teller's
    Antimatter weapons (1946-1986): From Fermi and Teller’s speculations to the first open scientific publications ∗ Andre Gsponer and Jean-Pierre Hurni Independent Scientific Research Institute Box 30, CH-1211 Geneva-12, Switzerland e-mail: [email protected] Version ISRI-86-10.3 June 4, 2018 Abstract We recall the early theoretical speculations on the possible explosive uses of antimatter, from 1946 to the first production of antiprotons, at Berkeley in 1955, and until the first capture of cold antiprotons, at CERN on July 17–18, 1986, as well as the circumstances of the first presentation at a scientific conference of the correct physical processes leading to the ignition of a large scale thermonuclear explosion using less than a few micrograms of antimatter as trigger, at Madrid on June 30th – July 4th, 1986. Preliminary remark This paper will be followed by by Antimatter weapons (1986-2006): From the capture of the first antiprotons to the production of cold antimatter, to appear in 2006. 1 Introduction At CERN (the European Laboratory for Particle Physics), on the evening of the 17 to the 18 of July 1986, antimatter was captured in an electromagnetic trap for arXiv:physics/0507132v2 [physics.hist-ph] 28 Oct 2005 the first time in history. Due to the relatively precarious conditions of this first ∗Expanded version of a paper published in French in La Recherche 17 (Paris, 1986) 1440– 1443; in English in The World Scientist (New Delhi, India, 1987) 74–77, and in Bulletin of Peace Proposals 19 (Oslo,1988) 444–450; and in Finnish in Antimateria-aseet (Kanssainvalinen¨ rauhantutkimuslaitos, Helsinki, 1990, ISBN 951-9193-22-7) 7–18.
    [Show full text]
  • ANTIMATTER a Review of Its Role in the Universe and Its Applications
    A review of its role in the ANTIMATTER universe and its applications THE DISCOVERY OF NATURE’S SYMMETRIES ntimatter plays an intrinsic role in our Aunderstanding of the subatomic world THE UNIVERSE THROUGH THE LOOKING-GLASS C.D. Anderson, Anderson, Emilio VisualSegrè Archives C.D. The beginning of the 20th century or vice versa, it absorbed or emitted saw a cascade of brilliant insights into quanta of electromagnetic radiation the nature of matter and energy. The of definite energy, giving rise to a first was Max Planck’s realisation that characteristic spectrum of bright or energy (in the form of electromagnetic dark lines at specific wavelengths. radiation i.e. light) had discrete values The Austrian physicist, Erwin – it was quantised. The second was Schrödinger laid down a more precise that energy and mass were equivalent, mathematical formulation of this as described by Einstein’s special behaviour based on wave theory and theory of relativity and his iconic probability – quantum mechanics. The first image of a positron track found in cosmic rays equation, E = mc2, where c is the The Schrödinger wave equation could speed of light in a vacuum; the theory predict the spectrum of the simplest or positron; when an electron also predicted that objects behave atom, hydrogen, which consists of met a positron, they would annihilate somewhat differently when moving a single electron orbiting a positive according to Einstein’s equation, proton. However, the spectrum generating two gamma rays in the featured additional lines that were not process. The concept of antimatter explained. In 1928, the British physicist was born.
    [Show full text]
  • Antihydrogen and the Antiproton Magnetic Moment
    Gabrielse ATRAP: Context and Status Antihydrogen and the Antiproton Magnetic Moment Gerald Gabrielse Spokesperson for TRAP and ATRAP at CERN Levere tt Pro fesso r o f Phys ics, Har var d Uni ver sit y Gabrielse Context CERN Pursues Fundamental Particle Physics at WWeveegySceseesghatever Energy Scale is Interesting A Long and Noble CERN Tradition 1981 – traveled to Fermilab “TEV or bust” 1985 – different response at CERN wh en I went th ere to try to get access to LEAR antiprotons for qqyg/m measurements and cold antihydrogen It is exciting that there is now • a dedicated storaggge ring for antih ygpydrogen experiments • four international collaborations • too few antiprotons for the demand Gabrielse Pursuing Fundamental Particle Physics atWhtt Whatever Energy Sca le is In teres ting A Long and Noble CERN Tradition 1986 – First trapped antiprotons (TRAP) 1989 – First electron-cooling of trapped antiprotons (TRAP) 1 cm magnetic field 21 MeV antiprotons slow in matter degrader _ + _ CERN’s AD, plus these cold methods make antihydrogen possible Gabrielse Pursuing Fundamental Particle Physics atWhtt Whatever Energy Sca le is In teres ting A Long and Noble CERN Tradition 1981 – traveled to Fermilab “TEV or bust” 1985 – different response at CERN when I went there to try to get access to LEAR antiprotons for q/m measurements and cold antihydrogen LHC: 7 TeV + 7 TeV AD: 5 MeV 100 times 5 x 1016 More trapped ELENA upgrade: 0.1 MeV antiprotons ATRAP: 0.3 milli-eV Gabrielse Physics With Low Energy Antiprotons First Physics: Compare q/m for antiproton
    [Show full text]
  • Patentable Subject [Anti]Matter
    PATENTABLE SUBJECT [ANTI]MATTER Whether antihydrogen qualifies as patentable subject matter for the purposes of the United States patent law is not an easy question. In general, man-made inventions and new compositions of matter are proper subjects of patent protection, while products of nature are not. Antihydrogen, a newly created element made entirely of antimatter, has qualities of both a newly created composition of matter and a product of nature. As a result, antihydrogen approaches the theoretical boundaries of the product of nature doctrine because mankind finally has the opportunity to create for the very first time an element that has probably never existed before in the entire universe. This iBrief will begin by briefly explaining antimatter and antihydrogen. Then, a distinction will be drawn between a man-made invention and a product of nature by analyzing relevant case law. Finally, antihydrogen will be analyzed as hypothetical subject matter under the United States patent laws without considering the further requirements of novelty and non-obviousness. An Overview of Antimatter and Antihydrogen Antimatter In 1930, the theoretical physicist Paul Dirac predicted that for every particle of matter, there exists an equivalent particle of antimatter.1 The existence of antimatter was confirmed in 1933 with the discovery of the positron, the antimatter pair of the electron.2 The theory does not mean to say that every proton in the universe must have a ghostly antiproton pair; rather it simply means that matter in the universe can be made of “real” matter, like protons and electrons, or it can be made of antimatter, like antiprotons and positrons.
    [Show full text]
  • Trapped Antihydrogen in Its Ground State
    Trapped Antihydrogen in Its Ground State The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Richerme, Philip. 2012. Trapped Antihydrogen in Its Ground State. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:10058466 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ©2012 - Philip John Richerme All rights reserved. Thesis advisor Author Gerald Gabrielse Philip John Richerme Trapped Antihydrogen in Its Ground State Abstract Antihydrogen atoms (H) are confined in a magnetic quadrupole trap for 15 to 1000 s - long enough to ensure that they reach their ground state. This milestone brings us closer to the long-term goal of precise spectroscopic comparisons of H and H for tests of CPT and Lorentz invariance. Realizing trapped H requires charac- terization and control of the number, geometry, and temperature of the antiproton (p) and positron (e+) plasmas from which H is formed. An improved apparatus and implementation of plasma measurement and control techniques make available 107 p and 4 × 109 e+ for H experiments - an increase of over an order of magnitude. For the first time, p are observed to be centrifugally separated from the electrons that cool them, indicating a low-temperature, high-density p plasma. Determination of the p temperature is achieved through measurement of the p evaporation rate as their con- fining well is reduced, with corrections given by a particle-in-cell plasma simulation.
    [Show full text]
  • Antihydrogen Synthesis Via Magnetobound States of Protonium Within Proton-Positron-Antiproton Plasmas
    43rd EPS Conference on Plasma Physics P4.112 Antihydrogen Synthesis Via Magnetobound States of Protonium Within Proton-Positron-Antiproton Plasmas M. Hermosillo, C. A. Ordonez University of North Texas, Denton, Texas, USA Through classical trajectory simulation, the possibility that antihydrogen can be synthesized via three body recombination involving magnetobound protonium is studied. It has been previ- ously reported that proton-antiproton collisions can result in a correlated drift of the particles perpendicular to a magnetic field. While the two particles are in their correlated drift, they are referred to as a magnetobound protonium system. Possible three body recombination resulting in bound state antihydrogen is studied when a magnetobound protonium system encounters a positron. The simulation incorporates a uniform magnetic field. A visual search and an energy analysis was done in an attempt to find parameters for which the positron is captured into a bound state with an antiproton, resulting in the formation of antihydrogen. Recently, simulations have shown that within a low temperature plasma containing protons and antiprotons, binary collisons invloving proton-antiproton pairs can cause them to become bound temporarily and experience giant cross-magnetic field drifts [1, 2]. These particle pairs have been referred to as being in a magnetobound state, which could serve as a useful intermedi- ate step in the production of neutral antimatter. Magnetobound states occur in low temperatures and strong magnetic fields such as those found inside Penning traps that produce antihydrogen. The possibility of three body recombination resulting in bound state antihydrogen is studied when a magnetobound protonium system encounters a positron. The interactions between particles throughout the simulation are treated classically.
    [Show full text]
  • Antihydrogen Physicsweb.Org Probing the Antiworld
    Feature: Antihydrogen physicsweb.org Probing the antiworld One of the most staggering achievements in quantum physics was Paul Dirac’s prediction of the anti-electron in 1930. By tirelessly modifying Schrödinger’s descrip- tion of the electron until it was consistent with special relativity, Dirac derived a beautiful equation that had additional “negative energy” solutions. He proposed that these solutions corresponded to a particle that has the same mass as the electron but the opposite electri- cal charge. Three years later the world’s first antipar- ticle – called the positron – was discovered by Carl Anderson at the California Institute of Technology. But Dirac’s vision for antimatter did not stop there. By 1931 he had realized that the only other elementary particle known at that time – the proton – should also have a corresponding antiparticle: the antiproton. This particle was discovered at Berkeley in October 1955 (see box on page 32), setting the stage for the creation of atoms made entirely from antimatter. A positron and an antiproton form the simplest type of anti-atom – antihydrogen. However, getting these two antiparticles to come together and form a single atomic system is no mean feat, not least because anti- matter immediately annihilates when it comes into con- tact with ordinary matter. So why have physicists even bothered trying for the past 50 years? Asymmetric world When we look out at the universe from our vantage point here on Earth, one thing is clear: it is dominated by matter. Irrespective of how or where we look, anti- matter simply does not exist in the quantities we would of the properties of anti-atoms provide a unique way expect if matter and antimatter had been created in to test this once and for all.
    [Show full text]
  • Trapped Antihydrogen : Nature : Nature Publishing Group Page 1 of 8
    Trapped antihydrogen : Nature : Nature Publishing Group Page 1 of 8 nature.com Sitemap Log In Register Archive Volume 468 Issue 7324 Letters Article NATURE | LETTER Trapped antihydrogen G. B. Andresen, M. D. Ashkezari, M. Baquero-Ruiz, W. Bertsche, P. D. Bowe, E. Butler, C. L. Cesar, S. Chapman, M. Charlton, A. Deller, S. Eriksson, J. Fajans, T. Friesen, M. C. Fujiwara, D. R. Gill, A. Gutierrez, J. S. Hangst, W. N. Hardy, M. E. Hayden, A. J. Humphries, R. Hydomako, M. J. Jenkins, S. Jonsell, L. V. Jørgensen, L. Kurchaninov et al. Nature 468, 673–676 (02 December 2010) doi:10.1038/nature09610 Received 08 October 2010 Accepted 27 October 2010 Published online 17 November 2010 Antimatter was first predicted1 in 1931, by Dirac. Work with high-energy antiparticles is now commonplace, and anti-electrons are used regularly in the medical technique of positron emission tomography scanning. Antihydrogen, the bound state of an antiproton and a positron, has been produced2, 3 at low energies at CERN (the European Organization for Nuclear Research) since 2002. Antihydrogen is of interest for use in a precision test of nature’s fundamental symmetries. The charge conjugation/parity/time reversal (CPT) theorem, a crucial part of the foundation of the standard model of elementary particles and interactions, demands that hydrogen and antihydrogen have the same spectrum. Given the current experimental precision of measurements on the hydrogen atom (about two parts in 1014 for the frequency of the 1s-to-2s transition 4), subjecting antihydrogen to rigorous spectroscopic examination would constitute a compelling, model-independent test of CPT.
    [Show full text]
  • The Antiproton Decelerator (AD) & ELENA
    The CERN Antiproton Physics Programme - The Antiproton Decelerator (AD) & ELENA Dániel Barna Wigner Research Centre for Physics, Budapest, Hungary ● The CERN antiproton facilities ● Experiments, their programmes and results The CERN Antiproton Decelerator ● Deceleration: 3.57 GeV/c → 100 MeV/c (Ekin=5.3 MeV) ● Stochastic and electron cooling ● 1 bunch (~107 P) / 100 s (beam steering is painfully slow...) ELENA – The future of antiprotons @ CERN ● ELENA = Extra Low ENergy Antiproton ring – under construction! ● Extension to the Antiproton Decelerator, 30.4 m circumference ● Further decelerate antiprotons to 100 keV to improve efficiency of experiments ● Allow simultaneous running of multiple experiments The ELENA Ring electron cooler ELENA: electrostatic beamlines p/H- source for commissioning and quick beamline setup ELENA: electrostatic beamlines p/H- source for commissioning and quick beamline setup pin pout The ELENA Ion Switch Installed and commissioned with 100 keV H- beam ELENA: electrostatic beamlines 4 bunches (1 μs) per shot: 4 experiments can run in parallel Quick electrostatic switches distribute beam to 4 experiments running parallel ELENA: electrostatic beamlines Static spherical deflectors where no quick switching is needed Quick switches and deflectors FastFast deflector deflector (<1 (<1 μs) μ givings) giving 220220 mrad mrad kick kick (J. (J.Borburgh Borburgh et.al.) et.al.) Spherical electrostatic deflector giving 33o deflection ELENA: electrostatic beamlines Straight sections: electrostatic quadrupoles - FODO transport
    [Show full text]
  • The First Cold Antihydrogen*
    The First Cold Antihydrogen* M.C. Fujiwaraab†, M. Amorettic, C. Amslerd, G. Bonomie, A.Bouchtae, P.D. Bowef, C. Carrarocg C.L. Cesarh, M. Charltoni, M. Dosere, V. Filippini j, A. Fontana jk, R. Funakoshib, P. Genova j, J.S. Hangstf, R.S. Hayanob, L.V. Jørgenseni, V. Lagomarsinocg, R. Landuae, D. Lindelöf d, E. Lodi Rizzinil, M. Macric, N. Madsenf, M. Marchesotti j, P. Montagna jk, H. Pruysd, C. Regenfusd, P. Rieldere, A. Rotondi jk, G. Testerac, A. Variolac, D.P. van der Werf i (ATHENA Collaboration) a Department of Physics, University of Tokyo, Tokyo 113-0033 Japan b Atomic Physics Laboratory, RIKEN, Saitama, 351-0189 Japan c Istituto Nazionale di Fisica Nucleare, Sezione di Genova, 16146 Genova, Italy d Physik-Institut, Zürich University, CH-8057 Zürich, Switzerland e EP Division, CERN, Geneva 23 Switzerland f Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus, Denmark g Dipartimento di Fisica, Università di Genova, 16146 Genova, Italy h Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21945-970, Brazil i Department of Physics, University of Wales Swansea, Swansea SA2 8PP, UK j Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, 27100 Pavia, Italy k Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, 27100 Pavia, Italy l Dipartimento di Chimica e Fisica per l‘Ingegneria e per i Materiali, Universit`a di Brescia, 25123 Brescia, Italy Abstract Antihydrogen, the atomic bound state of an antiproton and a positron, was produced at low energy for the first time by the ATHENA experiment, marking an important first step for precision studies of atomic antimatter.
    [Show full text]
  • Antihydrogen Formation in Antiproton–Positronium Collisions
    Nuclear Instruments and Methods in Physics Research B 214 (2004) 40–43 www.elsevier.com/locate/nimb Antihydrogen formation in antiproton–positronium collisions Nobuhiro Yamanaka a,*, Yasushi Kino b a RIKEN (Institute of Physical and Chemical Research), Wako, Saitama 351-0198, Japan b Department of Chemistry, Tohoku University, Sendai 980-8578, Japan Abstract Rearrangement in antiproton (pp) and positronium (Ps) collisions, p þ Ps ! H þ eÀ, is a promising process to produce large amount of antihydrogen atom (H). The formation cross section is calculated by using a time-dependent coupled channel (TDCC) method. Numerical accuracy of the TDCC method is demonstrated in a calculation of Ps- formation cross sections in positron and hydrogen collisions. The present result shows a dominant peak of the cross section around a center of mass collision energy of 10 eV. Ó 2003 Elsevier B.V. All rights reserved. PACS: 34.70.+e; 36.10.Dr Keywords: Antihydrogen; Antiproton; Positronium; Time-dependent coupled channel method 1. Introduction p þ Ps ! H þ eÀ [3]. Antihydrogen-formation cross sections were reported in many theoretical Cold antihydrogen production at the CERN works with, e.g., the close-coupling (CC) method antiproton decelerator (AD) has been recently re- [4,5], and the hyperspherical close-coupling ported [1,2]. The production of the atomic anti- (HSCC) method [6], and the classical trajectory matter stimulates spectroscopic studies for the test Monte Carlo (CTMC) simulation [7]. However, of fundamental principles of physics, e.g. the CPT those predictions are inconsistent with each other. invariance and the weak equivalence principle, and In the present work, we calculate antihydrogen- collision studies to reveal interaction between an- formation cross sections using a time-dependent timatter and matter (see, for review, [3]).
    [Show full text]