The Nitrogen Cycle I

Total Page:16

File Type:pdf, Size:1020Kb

The Nitrogen Cycle I A. Global Pools: Nutrient Cycling 1: The nitrogen cycle I. Intro to the Nitrogen Cycle - most in the atmosphere, but not biologically available I. Introduction - reactive N in atmosphere: trace gases A. Changes to the global N cycle (Ch. 15) Productivity of many ecosystems (managed & unmanaged) is - lots in sediments and rocks, but not available 1. Global pools and fluxes - inorganic N in ocean is next largest 2. Changes limited by nitrogen availability: - organic pools in plants and soils follow that 3. Consequences terrestrial – temperate, boreal, arctic B. Overview of the ecosystem N cycle (Ch. 9) 1. Major pools and fluxes aquatic – open oceans 2. Main points II. Controls on N cycle fluxes in soils (Ch. 9) A. Inputs 1. N fixation 2. N deposition B. Internal cycling 1. Mineralization/immobilization 2. Nitrification C. Outputs 15.4 1. Gaseous losses (esp. denitrification) 2. Leaching 12 III. Plant uptake and loss (Ch. 8) Pools in Tg = 10 g Fluxes in Tg yr-1 Powerpoint modified from Harte & Hungate (http://www2.for.nau.edu/courses/hart/for479/notes.htm) and Chapin (http://www.faculty.uaf.edu/fffsc/) Fluxes: several important biosphere-atmosphere N exchanges Biological cycling within systems greatly outweighs B. Human-mediated fluxes in the global N cycle now exceed - biological: fixation, denitrification, nitrification inputs/outputs (i.e., N cycle is much more “closed” than the C ‘natural’ (pre-industrial) fluxes - abiotic: industrial fixation, lightning fixation, cycle) fossil fuel and biomass burning, deposition 15.4 15.4 Pools in Tg Pools in Tg Fluxes in Tg yr-1 Fluxes in Tg yr-1 15.5 1 C. Consequences Consequences •Eutrophication •Eutrophication • Species changes/losses • Species changes/losses How much N is added in agriculture? • Atmospherically active trace gases • Atmospherically active trace gases Cotton 56-78 Kg/ha • Iowa corn 170-225 Kg/ha N fert Æ increasing prod. • Taiwan rice: 270 Kg/ha N fert Æ increasing dominance, decreasing diversity Tilman 1987 Consequences •Eutrophication Consequences Consequences •Eutrophication • Species changes/losses • Species changes/losses •N deposition Æ increased growth (C sequestration)…to a • Atmospherically active trace gases • Atmospherically active trace gases –NO + NO2 (NOx): fossil fuel combustion point. –NH3: domestic animals, ag fields (fert), biomass burning • NO (highly reactive) Æ smog, tropospheric O3 formation - • N saturation: availability exceeds demand •Acid rain (NO2 + OH Æ HNO3) • Atmospherically active Æ aerosols, air pollution –N2O: increased fertilizer application Æ denitrification • Deposition, N availability downwind – Associated with decreases in forest productivity, potentially due • Potent greenhouse gas (200x more effective than CO2, 6% of total forcing) to indirect effects such as acidification, altered plant cold • Chemically inert in troposphere, but catalyzes destruction of O3 in stratosphere tolerance –NH3 • N saturation Æ N losses Æ “opening” of the N cycle 15.3 15.4 2 B. Overview of Ecosystem N cycle (Ch. 9) 1. Major pools & fluxes II. Controls on N cycle fluxes in soil 2. Main Points 1. Biological N Fixation 1. Inputs~outputs A. N Inputs 2. Open (C) vs. closed (N) 3. Plant needs met by internal recycling 1. Biological N fixation a. What is it? 4. Available soil pools are + 2. Atmospheric N deposition • Conversion of atmospheric N2 to NH4 small relative to organic pools. 3. Mineral weathering? (actually, amino acids) 5. Microbes rule bg • Under natural conditions, nitrogen fixation is the main pathway by which new, available nitrogen enters terrestrial ecosystems 9.2 Nitrogen fixation Types of N-fixers Types of N fixers b. Who does it? • There’s no such thing as a N-fixing • Carried out by bacteria plant – Symbiotic N fixation (e.g., legumes, alder) • Associative N fixers – Heterotrophic N fixation (rhizosphere and other carbon- • Symbiotic N-fixers rich environments) – High rates of fixation (5-20+ g-N m-2 y-1) – Occur in rhizosphere of plants (non-nodulated); – Phototrophs (bluegreen algae) with plants supplying the C (and the plant moderate rates with C supply from plant root • The characteristics of nitrogenase, the enzyme that receiving N) -2 -1 + turnover and exudates (1-5 g-N m y ) catalyzes the reduction of N2 to NH4 , dictate much of the –Protection from O2 via leghemoglobin biology of nitrogen fixation (legumes) –Reduced [O2] by rapid respiration from plant – High-energy requirement (N triple bond) – Microbial symbiont resides in root roots • Requires abundant energy and P for ATP nodules – Inhibited by O2 • Bacteria (Rhizobia) – Legumes (Lupinus, – Azotobacter, Bacillus – Requires cofactors (e.g., Mo, Fe, S) Robinia) • Actinomycetes (Frankia) - Alnus, Ceanothus (woody non-legumes) – N-fixation rates reduced in presence of high N availability in the soil 3 Types of N fixers Red alder in secondary succession following • Free-living N fixers clearcutting near Lake Whatcom – Heterotrophic bacteria that get organic C from environment and where N is limiting (e.g., decaying logs) C. When/where does it happen? -2 – Rates low due to low C supply and lack of O2 protection (0.1-0.5 g-N m y-1) N-fixing species are common in •Also, cyanobacteria (free-living photo-autotrophs); symbiotic early succession lichens (cyanobacteria with fungi offering physical protection) - Lichens early in primary succession following deglaciation in Alaska. - Alder at later stages. Photo: D. Hooper Photo: D. Hooper Alder and the other woody hosts of Frankia are typical Environmental limitations to pioneer species that d. Paradox of N limitation invade nutrient-poor soils. These plants N fixation probably benefit from the nitrogen- • Nitrogen is the element that most • Energy availability in closed-canopy fixing association, while supplying the frequently limits terrestrial NPP ecosystems bacterial symbiont with photosynthetic – N-fixers seldom light-limited in well- products. •N2 is the most abundant component of the atmosphere mixed aquatic ecosystems (e.g., lakes) • Why doesn’t nitrogen fixation occur • Nutrient limitation (e.g., P, Mo, Fe, S) almost everywhere? – These elements may be the ultimate controls over N supply and NPP • Why don’t N fixers have competitive advantage until N becomes non- •Grazing limiting? – N fixers often preferred forage 4 Deposition depends on upwind sources A. Inputs 2. Nitrogen Deposition Wet deposition typically scales • Wet deposition: dissolved in precipitation Dry deposition a with greater proportion of • Dry deposition: dust or aerosols by precipitation. total deposition in more arid climates sedimentation (vertical) or impaction (Pawnee, CO) (horizontal) • Cloud water: water droplets to plant Dry deposition surfaces immersed in fog; only important in can be significant even coastal and mountainous areas in humid climates. Adirondacks Appalachians N species in deposition depends on type B. Internal Cycling of Nitrogen of source 3. Rock weathering as a source of N? • In natural ecosystems, most N taken up by • Some sedimentary rocks contain plants becomes available through substantial amounts of N with high rates decomposition of organic matter of N release (up to 2 g-N m-2 y-1); however, – Over 90% of soil nitrogen is organically bound in detritus in a form unavailable to organisms most rocks contain little N. – The soil microflora secrete extracellular enzymes (exoenzymes) such as proteases, ribonucleases, and chitinases to break down large polymers into water-soluble units such as amino acids and nucleotides that can be absorbed http://pah.cert.ucr.edu/aqm/ndep/results.shtml 5 Internal Cycling of Nitrogen • The pools Net Ain’t Gross –Plant biomass Net Ain’t Gross – SOM (solid; including litter) • Net rates of N transformations – Microbial biomass (mineralization and nitrification) • Similarly… – DON (a variable portion “plant - available”) Net nitrification = Δ NO3 pool + - –NH+ (plant available) Net N mineralization = Δ (NH4 +NO3 pools) - 4 = gross nitrification – gross NO3 - –NO3 (plant available) = gross N mineralization-gross N immobilization immobilization • The processes: – (Gross) N mineralization – (Gross) N immobilization – (Gross) autotrophic nitrification –Nuptake (and assimilation) by plants 9.2 1. Mineralization/immobilization -Mineralization is closely linked to decomposition. Critical litter C:N for net N min. (box 9.1) -Plant functional types: effects via litter quality influence on both 2. Nitrification breakdown of plant material and immob by microbes. a. Why is Nitrification Important? -Climate affects mineralization via decomposition (microbial activity). • Microbial C:N ~10:1 -Species effects can be much greater than differences in climate. • Microbial growth efficiency ~40% • Nitrate is more mobile than ammonium, so more • So, for 100 units C, 40 units Æ mic readily leached from soil biomass, 60 units respired. • Substrate for denitrification (N loss as a gas) • For mic C:N of 10:1, need 4 units of N per • Generates acidity if nitrate is lost from soil 40 units C. • Loss of nitrate results in loss of base cations • So substrate needs C:N of 100:4 (i.e., 25:1) for net N mineralization. 9.3 6 - Substrate limitation is common. Nearly all nitrogen that is - Nitrifiers are obligate aerobes. 2.b. Controls on Nitrification mineralized in these systems is nitrified on a net basis. + - + •NH4 + 2O2 Æ NO3 +2H + H2O -In contrast, net nitrification is frequently – Two-step process conducted by less than 25% of net chemoautotrophic bacteria: mineralization in • First step conducted by Nitrosomonas (other temperate
Recommended publications
  • Human Alteration of the Global Nitrogen Cycle
    What is Nitrogen? Human Alteration of the Nitrogen is the most abundant element in Global Nitrogen Cycle the Earth’s atmosphere. Nitrogen makes up 78% of the troposphere. Nitrogen cannot be absorbed directly by the plants and animals until it is converted into compounds they can use. This process is called the Nitrogen Cycle. Heather McGraw, Mandy Williams, Suzanne Heinzel, and Cristen Whorl, Give SIUE Permission to Put Our Presentation on E-reserve at Lovejoy Library. The Nitrogen Cycle How does the nitrogen cycle work? Step 1- Nitrogen Fixation- Special bacteria convert the nitrogen gas (N2 ) to ammonia (NH3) which the plants can use. Step 2- Nitrification- Nitrification is the process which converts the ammonia into nitrite ions which the plants can take in as nutrients. Step 3- Ammonification- After all of the living organisms have used the nitrogen, decomposer bacteria convert the nitrogen-rich waste compounds into simpler ones. Step 4- Denitrification- Denitrification is the final step in which other bacteria convert the simple nitrogen compounds back into nitrogen gas (N2 ), which is then released back into the atmosphere to begin the cycle again. How does human intervention affect the nitrogen cycle? Nitric Oxide (NO) is released into the atmosphere when any type of fuel is burned. This includes byproducts of internal combustion engines. Production and Use of Nitrous Oxide (N2O) is released into the atmosphere through Nitrogen Fertilizers bacteria in livestock waste and commercial fertilizers applied to the soil. Removing nitrogen from the Earth’s crust and soil when we mine nitrogen-rich mineral deposits. Discharge of municipal sewage adds nitrogen compounds to aquatic ecosystems which disrupts the ecosystem and kills fish.
    [Show full text]
  • Nitrogen Metabolism in Phytoplankton - Y
    MARINE ECOLOGY – Nitrogen Metabolism in Phytoplankton - Y. Collos, J. A. Berges NITROGEN METABOLISM IN PHYTOPLANKTON Y. Collos Laboratoire d'Hydrobiologie CNRS, Université Montpellier II, France J. A. Berges School of Biology and Biochemistry, Queen's University of Belfast, UK Keywords: uptake, reduction, excretion, proteases, chlorophyllases, cell death. Contents 1. Introduction 2. Availability and use of different forms of nitrogen 2.1 Nitrate 2.2. Nitrite 2.3. Ammonium 2.4. Molecular N2 2.5. Dissolved organic N (DON) 2.6. Particulate nitrogen (PN) 3. Assimilation pathways 4. Accumulation and storage 4.1. Inorganic compounds 4.2. Organic compounds 5. Nutrient classification and preferences 6. Plasticity in cell composition 7. Overflow mechanisms: excretion and release processes 8. Recycling of N within the cell 9. Degradation pathways 9.1. Requirements for and roles of degradation 9.2. How is degradation accomplished? 9.3. Variation in degradation 9.4. Pathogenesis and Cell Death 10. From uptake to growth: time-lag phenomena 11. Relationships with carbon metabolism 12. Future directions AcknowledgementsUNESCO – EOLSS Glossary Bibliography SAMPLE CHAPTERS Biographical Sketches Summary Phytoplankton use a large variety of nitrogen compounds and are extremely well adapted to fluctuating environmental conditions by a high capacity to change their chemical composition.Degradation and turnover of nitrogen within phytoplankton is essential for many processes including normal cell maintenance, acclimations to changes in light, salinity, and nutrients, and cell defence against pathogens. The ©Encyclopedia of Life Support Systems (EOLSS) MARINE ECOLOGY – Nitrogen Metabolism in Phytoplankton - Y. Collos, J. A. Berges pathways by which N degradation is accomplished are very poorly understood, but based on work in higher plant species, protein degradation is likely to be of central importance.
    [Show full text]
  • Nitrogen Removal Training Program
    Nitrogen Removal Training Program Module 1 Nitrogen in the Aquatic Environment • Forms of Nitrogen and Nitrogen Transformations • Nitrogen in Surface Waters • Water Quality Impacts of Nitrogen Discharges • Nitrogen in Wastewater Module 1 Transparency 1 Nitrogen Removal Training Program Module 1 Forms of Nitrogen and Nitrogen Transformations Module 1 Transparency 2 Forms of Nitrogen in the Environment Unoxidized Forms Oxidized Forms of Nitrogen of Nitrogen Nitrite (NO -) • Nitrogen Gas (N2) • 2 + Nitrate (NO -) • Ammonia (NH4 , NH3) • 3 • Organic Nitrogen (urea, • Nitrous Oxide (N2O) amino acids, peptides, proteins, etc...) • Nitric Oxide (NO) • Nitrogen Dioxide (NO2) Module 1 Transparency 3 Nitrogen Fixation • Biological Fixation - Use of atmospheric nitrogen by certain photosynthetic blue-green algae and bacteria for growth. Nitrogen Gas Organic Nitrogen (N2) • Lightning Fixation - Conversion of atmospheric nitrogen to nitrate by lightning. lightning Nitrogen Gas + Ozone Nitrate - (N2) (O3)(NO3 ) • Industrial Fixation - Conversion of nitrogen gas to ammonia and nitrate-nitrogen (used in the manufacture of fertilizers and explosives). Module 1 Transparency 4 Biological Nitrogen Fixation Nitrogen Gas (N2) Bacteria Blue-green Algae Organic N Organic N Certain blue-green algae and bacteria use atmospheric nitrogen to produce organic nitrogen compounds. Module 1 Transparency 5 Atmospheric Fixation Lightning converts Nitrogen Gas and Ozone to Nitrate. Nitrogen Gas Nitrate Module 1 Transparency 6 Industrial Fixation N2 Nitrogen gas is converted to ammonia and nitrate in the production of fertilizer and explosives. NH3 - NO3 Module 1 Transparency 7 Ammonification and Assimilation Ammonification - Conversion of organic nitrogen to ammonia-nitrogen resulting from the biological decomposition of dead plant and animal tissue and animal fecal matter.
    [Show full text]
  • Human Alteration of the Global Nitrogen Cycle: Causes And
    Published by the Ecological Society of America Number 1, Spring 1997 Causes andConsequences Human Alterationofthe Issues in EcologyGlobal NitrogenCycle: Photo by Nadine Cavender Issues in Ecology Number 1 Spring 1997 Human Alteration of the Global Nitrogen Cycle: Causes and Consequences SUMMARY Human activities are greatly increasing the amount of nitrogen cycling between the living world and the soil, water, and atmosphere. In fact, humans have already doubled the rate of nitrogen entering the land-based nitrogen cycle, and that rate is continuing to climb. This human-driven global change is having serious impacts on ecosystems around the world because nitrogen is essential to living organisms and its availability plays a crucial role in the organization and functioning of the worlds ecosystems. In many ecosystems on land and sea, the supply of nitrogen is a key factor controlling the nature and diversity of plant life, the population dynamics of both grazing animals and their predators, and vital ecologi- cal processes such as plant productivity and the cycling of carbon and soil minerals. This is true not only in wild or unmanaged systems but in most croplands and forestry plantations as well. Excessive nitrogen additions can pollute ecosystems and alter both their ecological functioning and the living communities they support. Most of the human activities responsible for the increase in global nitrogen are local in scale, from the production and use of nitrogen fertilizers to the burning of fossil fuels in automobiles, power generation plants, and industries. However, human activities have not only increased the supply but enhanced the global movement of various forms of nitrogen through air and water.
    [Show full text]
  • Carbon–Nitrogen Interactions in Idealized Simulations with JSBACH (Version 3.10)
    Geosci. Model Dev., 10, 2009–2030, 2017 www.geosci-model-dev.net/10/2009/2017/ doi:10.5194/gmd-10-2009-2017 © Author(s) 2017. CC Attribution 3.0 License. Carbon–nitrogen interactions in idealized simulations with JSBACH (version 3.10) Daniel S. Goll1,a, Alexander J. Winkler2,3, Thomas Raddatz2, Ning Dong3,5, Ian Colin Prentice4,6, Philippe Ciais1, and Victor Brovkin2 1Le Laboratoire des Sciences du Climat et de l’Environnement, IPSL-LSCE CEA/CNRS/UVSQ Saclay, Gif sur Yvette, France 2Max Planck Institute for Meteorology, Hamburg, Germany 3International Max Planck Research School on Earth System Modeling, Hamburg, Germany 4Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia 5Faculty of Agriculture and Environment, Department of Environmental Sciences, University of Sydney, NSW 2006, Australia 6AXA Chair in Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK aformerly at: Max Planck Institute for Meteorology, Hamburg, Germany Correspondence to: Daniel S. Goll ([email protected]) Received: 17 December 2016 – Discussion started: 9 January 2017 Revised: 7 April 2017 – Accepted: 14 April 2017 – Published: 22 May 2017 Abstract. Recent advances in the representation of soil car- The strengths of the land carbon feedbacks of the re- −1 bon decomposition and carbon–nitrogen interactions imple- cent version of JSBACH, with βL D 0:61 Pgppm and γL D mented previously into separate versions of the land sur- −27:5 Pg ◦C−1, are 34 and 53 % less than the averages of face scheme JSBACH are here combined in a single version, CMIP5 models, although the CMIP5 version of JSBACH which is set to be used in the upcoming 6th phase of coupled simulated βL and γL, which are 59 and 42 % higher than model intercomparison project (CMIP6).
    [Show full text]
  • Effects of Phosphorus on Nitrification Process in a Fertile Soil Amended
    agriculture Article Effects of Phosphorus on Nitrification Process in a Fertile Soil Amended with Urea Jianfeng Ning 1,2,*, Yuji Arai 2 , Jian Shen 1, Ronghui Wang 1 and Shaoying Ai 1,* 1 Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China; [email protected] (J.S.); [email protected] (R.W.) 2 Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; [email protected] * Correspondence: [email protected] (J.N.); [email protected] (S.A.) Abstract: While the effects of carbon on soil nitrogen (N) cycle have been extensively studied, it is not clearly understood how co-existing macronutrients, such as phosphorus (P), affect the N cycle in agroecosystems. In this study, P amendment effects on nitrification in a fertile agricultural soil were investigated under a typical N-P amendment rate. In a laboratory incubation study, soils were amended with urea, monopotassium phosphate and a mixture of urea and monopotassium phosphate at the same rate. In soils that received no amendments (control), P only, urea only, and urea plus P amendment, nitrification occurred within the first five days, with an average net nitrification rate of 5.30, 5.77, 16.66 and 9.00 mg N kg−1d−1, respectively. Interestingly, nitrification in urea-treated soils was retarded by P addition where a N:P ratio seemed to be a key factor impeding nitrification.
    [Show full text]
  • Biogeochemistry of Wetlands Nitrogen
    Institute of Food and Agricultural Sciences (IFAS) Biogeochemistry of Wetlands SiScience an dAd App litilications NITROGEN Wetland Biogeochemistry Laboratory Soil and Water Science Department University of Florida Instructor : Patrick Inglett [email protected] 6/22/20086/22/2008 P.W.WBL Inglett1 1 Nitrogen Introduction N Forms, Distribution, Importance Basic processes of N Cycles Examples of current research Examples of applications Key points learned 6/22/2008 P.W. Inglett 2 1 Nitrogen Learning Objectives Identify the forms of N in wetlands Understand the importance of N in wetlands/global processes Define the major N processes/transformations Understand the importance of microbial activity in N transformations Understand the potential regulators of N processes See the application of N cycle principles to understanding natural and man-made ecosystems 6/22/2008 P.W. Inglett 3 Nitrogen Cycling Plant biomass N N2 NH3 N2 N2O (g) Litterfall Nitrogen Fixation Volatilization Mineralization. Water - Nitrification + + NO3 NH4 Organic N NH4 Column AEROBIC - Plant Peat NO3 + + [NH4 ]s uptake accretion [NH4 ]s Denitrification ANAEROBIC Microbial + Organic N Biomass N Adsorbed NH4 N2, N2O (g) 6/22/2008 P.W. Inglett 4 2 Forms of Nitrogen Organic Nitrogen Inorganic Nitrogen + • Proteins • Ammonium (NH4 ) - • Amino Sugars • Nitrate N (NO3 ) - • Nucleic Acids • Nitrite N (NO2 ) • Urea • Nitrous ox ide (N2O) • Dinitrogen (N2) 6/22/2008 P.W. Inglett 5 N Transformations Solid Gaseous Phase: Phase: Particulate N N2 + Bound: NH4 N2O - - NO3 NO2 Aqueous Phase: + NH4 DON - DIN NO3 - Particulate N NO2 6/22/2008 P.W. Inglett 6 3 Reservoirs of Nitrogen Lithosphere 163,600 x 1018 g Atmosphere 3,860 x 1018 g Hydrosphere 23 x 1018 g Biosphere 0.28 x 1018 g 6/22/2008 P.W.
    [Show full text]
  • Nitrification 31
    NITROGEN IN SOILS/Nitrification 31 See also: Eutrophication; Greenhouse Gas Emis- Powlson DS (1993) Understanding the soil nitrogen cycle. sions; Isotopes in Soil and Plant Investigations; Soil Use and Management 9: 86–94. Nitrogen in Soils: Cycle; Nitrification; Plant Uptake; Powlson DS (1999) Fate of nitrogen from manufactured Symbiotic Fixation; Pollution: Groundwater fertilizers in agriculture. In: Wilson WS, Ball AS, and Hinton RH (eds) Managing Risks of Nitrates to Humans Further Reading and the Environment, pp. 42–57. Cambridge: Royal Society of Chemistry. Addiscott TM, Whitmore AP, and Powlson DS (1991) Powlson DS (1997) Integrating agricultural nutrient man- Farming, Fertilizers and the Nitrate Problem. Wallingford: agement with environmental objectives – current state CAB International. and future prospects. Proceedings No. 402. York: The Benjamin N (2000) Nitrates in the human diet – good or Fertiliser Society. bad? Annales de Zootechnologie 49: 207–216. Powlson DS, Hart PBS, Poulton PR, Johnston AE, and Catt JA et al. (1998) Strategies to decrease nitrate leaching Jenkinson DS (1986) Recovery of 15N-labelled fertilizer in the Brimstone Farm experiment, Oxfordshire, UK, applied in autumn to winter wheat at four sites in eastern 1988–1993: the effects of winter cover crops and England. Journal of Agricultural Science, Cambridge unfertilized grass leys. Plant and Soil 203: 57–69. 107: 611–620. Cheney K (1990) Effect of nitrogen fertilizer rate on soil Recous S, Fresnau C, Faurie G, and Mary B (1988) The fate nitrate nitrogen content after harvesting winter wheat. of labelled 15N urea and ammonium nitrate applied to a Journal of Agricultural Science, Cambridge 114: winter wheat crop.
    [Show full text]
  • The Carbon Cycle Is Very Important to All Ecosystems, and Ultimately Life on Earth
    What is The Carbon Cycle? The carbon cycle is very important to all ecosystems, and ultimately life on earth. The carbon cycle is critical to the food chain. Living tissue contains carbon, because they contain proteins, fats and carbohydrates. The carbon in these (living or dead) tissues is recycled in various processes. Let's see how this cycle works using the simple sketch below: Human activities like heating homes and cars burning fuels (combustion) give off carbon into the atmosphere. During respiration, animals also introduce carbon into the atmosphere in the form of carbon dioxide. The Carbon dioxide in the atmosphere is absorbed by green plants (producers) to make food in photosynthesis. When animals feed on green plants, they pass on carbon compounds unto other animals in the upper levels of their food chains. Animals give off carbon dioxide into the atmosphere during respiration. Carbon dioxide is also given off when plants and animals die. This occurs when decomposers (bacteria and fungi) break down dead plants and animals (decomposition) and release the carbon compounds stored in them. Very often, energy trapped in the dead materials becomes fossil fuels which is used as combustion again at a later time. Nitrogen Cycle: Nitrogen is also key in the existence of ecosystems and food chains. Nitrogen forms about 78% of the air on earth. But plants do not use nitrogen directly from the air. This is because nitrogen itself is unreactive, and cannot be used by green plants to make protein. Nitrogen gas therefore, needs to be converted into nitrate compound in the soil by nitrogen-fixing bacteria in soil, root nodules or lightning.
    [Show full text]
  • The Nitrogen Cycle
    The Nitrogen Cycle Almost 80% of our atmosphere is made up of the element nitrogen bonded together as N2. This represents most of the nitrogen available on Earth. Ni- trogen is an important element used by all living things to make proteins, amino acids and the nucleic acids of DNA. Yet its gaseous form, N2, found – + in the atmosphere is not usable. It must be “fixed” into nitrates (NO3 ), ammonium (NH4 ) or urea (NH2)2CO to be taken up by plants. Animals can get their nitrogen by eating those plants and so it moves through the food webs. When nitrogen is fixed, it is absorbed by plants and then eaten by animals, who then expel it in their waste and eventually die and decompose (releas- ing more). The nitrogen is then released into the soil and then back into atmosphere – this is the Nitrogen Cycle. The Nitrogen Cycle can be broken down into 4 processes: Nitrogen fixing – Decay – Nitrification – Dentrification 1. Nitrogen Fixing is when gaseous nitrogen is “fixed” by either lightning (only up to about 8%), bacteria in the soil, or nitrogen-fixing bacteria in the root nodules of leguminous plants (like soy beans). 2. Decay - The nitrogen in plants is eaten by animals and broken down and expelled in the animals’ waste. Microorganisms further break it down into ammonia. 3. Nitrification - Some ammonia is absorbed by plants through their roots, but most is converted by nitrifying bacteria into nitrites and then nitrates. 4. Dentrification moves the nitrogen in the other direction back into the atmosphere. Dentrifying bacteria reduce nitrites and nitrates into nitrogen gas, releasing it back to the atmosphere to complete the cycle.
    [Show full text]
  • Carbon-Nitrogen Interactions Regulate Climate-Carbon Cycle Feedbacks: Results from an Atmosphere-Ocean General Circulation Model
    Biogeosciences, 6, 2099–2120, 2009 www.biogeosciences.net/6/2099/2009/ Biogeosciences © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model P. E. Thornton1, S. C. Doney2, K. Lindsay3, J. K. Moore4, N. Mahowald5, J. T. Randerson4, I. Fung6, J.-F. Lamarque7,8, J. J. Feddema9, and Y.-H. Lee3 1Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6335, USA 2Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543-1543, USA 3Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO 80307-3000, USA 4Department of Earth System Science, University of California, Irvine, CA 92697-3100, USA 5Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14850, USA 6Department of Earth and Planetary Science, University of California, Berkeley, CA 94720-4767, USA 7NOAA Earth System Research Laboratory, Chemical Sciences Division, 325 Broadway, Boulder, CO 80305-3337, USA 8Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, CO 80307-3000, USA 9Department of Geography, University of Kansas, Lawrence, KS 66045-7613, USA Received: 28 January 2009 – Published in Biogeosciences Discuss.: 26 March 2009 Revised: 12 August 2009 – Accepted: 17 September 2009 – Published: 8 October 2009 Abstract. Inclusion of fundamental ecological interactions
    [Show full text]
  • The Carbon Cycle
    TEACHER GUIDE THE CARBON CYCLE MATERIALS PER GROUP: LESSON OVERVIEW: Activity 1 The carbon cycle is the biogeochemical cycle by which carbon is • Carbonated water (clear soda or exchanged among the biosphere, pedosphere, geosphere, hydro- seltzer water) sphere and atmosphere of Earth. Along with the nitrogen cycle • Hot water (50°C) and the water cycle, the carbon cycle comprises a sequence of • Cold water (5°C) events key to making Earth capable of sustaining life; it describes • Two 12 oz. plastic bowls the movement of carbon as it is recycled and reused throughout • Two small (3 oz.) clear plastic cups the biosphere. Activity 2 LESSON OBJECTIVES: • Vinegar Students will be able to: • Baking soda 1. Observe the density of carbon dioxide. • Universal indicator 2. Demonstrate the effect of temperature on the amount of car- • Water bon dioxide that will dissolve in water. • Water and indicator cup 3. Test the effect of carbon dioxide on the pH of water. • Baking soda and vinegar 4. Describe how these properties of carbon dioxide relate to the • Mini spoon carbon cycle. • Universal indicator pH color chart ESSENTIAL QUESTION: Activity 3 How does matter cycle through an ecosystem? • Bubble generator* • Dry ice (8 oz.) TOPICAL ESSENTIAL QUESTION: • 9 oz. plastic cup What is carbon’s role in life on Earth? • Water (enough to fill bubble generator half-full) • Plastic spoon TOTAL DURATION: • Dish soap (5 mL) 15-20 min. pre-lab prep time; 40-50 min. class time • Cotton glove SAFETY PRECAUTIONS: *A bubble generator can be purchased from • Avoid contact of all chemicals with eyes and skin.
    [Show full text]