The Joins Concurrency Library
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Deborah Schiffrin Editor
Meaning, Form, and Use in Context: Linguistic Applications Deborah Schiffrin editor Meaning, Form, and Use in Context: Linguistic Applications Deborah Schiffrin editor Georgetown University Press, Washington, D.C. 20057 BIBLIOGRAPHIC NOTICE Since this series has been variously and confusingly cited as: George- town University Monographic Series on Languages and Linguistics, Monograph Series on Languages and Linguistics, Reports of the Annual Round Table Meetings on Linguistics and Language Study, etc., beginning with the 1973 volume, the title of the series was changed. The new title of the series includes the year of a Round Table and omits both the monograph number and the meeting number, thus: Georgetown University Round Table on Languages and Linguistics 1984, with the regular abbreviation GURT '84. Full bibliographic references should show the form: Kempson, Ruth M. 1984. Pragmatics, anaphora, and logical form. In: Georgetown University Round Table on Languages and Linguistics 1984. Edited by Deborah Schiffrin. Washington, D.C.: Georgetown University Press. 1-10. Copyright (§) 1984 by Georgetown University Press All rights reserved Printed in the United States of America Library of Congress Catalog Number: 58-31607 ISBN 0-87840-119-9 ISSN 0196-7207 CONTENTS Welcoming Remarks James E. Alatis Dean, School of Languages and Linguistics vii Introduction Deborah Schiffrin Chair, Georgetown University Round Table on Languages and Linguistics 1984 ix Meaning and Use Ruth M. Kempson Pragmatics, anaphora, and logical form 1 Laurence R. Horn Toward a new taxonomy for pragmatic inference: Q-based and R-based implicature 11 William Labov Intensity 43 Michael L. Geis On semantic and pragmatic competence 71 Form and Function Sandra A. -
Palmetto Tatters Guild Glossary of Tatting Terms (Not All Inclusive!)
Palmetto Tatters Guild Glossary of Tatting Terms (not all inclusive!) Tat Days Written * or or To denote repeating lines of a pattern. Example: Rep directions or # or § from * 7 times & ( ) Eg. R: 5 + 5 – 5 – 5 (last P of prev R). Modern B Bead (Also see other bead notation below) notation BTS Bare Thread Space B or +B Put bead on picot before joining BBB B or BBB|B Three beads on knotting thread, and one bead on core thread Ch Chain ^ Construction picot or very small picot CTM Continuous Thread Method D Dimple: i.e. 1st Half Double Stitch X4, 2nd Half Double Stitch X4 dds or { } daisy double stitch DNRW DO NOT Reverse Work DS Double Stitch DP Down Picot: 2 of 1st HS, P, 2 of 2nd HS DPB Down Picot with a Bead: 2 of 1st HS, B, 2 of 2nd HS HMSR Half Moon Split Ring: Fold the second half of the Split Ring inward before closing so that the second side and first side arch in the same direction HR Half Ring: A ring which is only partially closed, so it looks like half of a ring 1st HS First Half of Double Stitch 2nd HS Second Half of Double Stitch JK Josephine Knot (Ring made of only the 1st Half of Double Stitch OR only the 2nd Half of Double Stitch) LJ or Sh+ or SLJ Lock Join or Shuttle join or Shuttle Lock Join LPPCh Last Picot of Previous Chain LPPR Last Picot of Previous Ring LS Lock Stitch: First Half of DS is NOT flipped, Second Half is flipped, as usual LCh Make a series of Lock Stitches to form a Lock Chain MP or FP Mock Picot or False Picot MR Maltese Ring Pearl Ch Chain made with pearl tatting technique (picots on both sides of the chain, made using three threads) P or - Picot Page 1 of 4 PLJ or ‘PULLED LOOP’ join or ‘PULLED LOCK’ join since it is actually a lock join made after placing thread under a finished ring and pulling this thread through a picot. -
Ironpython in Action
IronPytho IN ACTION Michael J. Foord Christian Muirhead FOREWORD BY JIM HUGUNIN MANNING IronPython in Action Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> IronPython in Action MICHAEL J. FOORD CHRISTIAN MUIRHEAD MANNING Greenwich (74° w. long.) Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact Special Sales Department Manning Publications Co. Sound View Court 3B fax: (609) 877-8256 Greenwich, CT 06830 email: [email protected] ©2009 by Manning Publications Co. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps. Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15% recycled and processed without the use of elemental chlorine. -
Logix 5000 Controllers Security, 1756-PM016O-EN-P
Logix 5000 Controllers Security 1756 ControlLogix, 1756 GuardLogix, 1769 CompactLogix, 1769 Compact GuardLogix, 1789 SoftLogix, 5069 CompactLogix, 5069 Compact GuardLogix, Studio 5000 Logix Emulate Programming Manual Original Instructions Logix 5000 Controllers Security Important User Information Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards. Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in accordance with applicable code of practice. If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired. In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment. The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams. No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual. Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited. Throughout this manual, when necessary, we use notes to make you aware of safety considerations. -
Stclang: State Thread Composition As a Foundation for Monadic Dataflow Parallelism Sebastian Ertel∗ Justus Adam Norman A
STCLang: State Thread Composition as a Foundation for Monadic Dataflow Parallelism Sebastian Ertel∗ Justus Adam Norman A. Rink Dresden Research Lab Chair for Compiler Construction Chair for Compiler Construction Huawei Technologies Technische Universität Dresden Technische Universität Dresden Dresden, Germany Dresden, Germany Dresden, Germany [email protected] [email protected] [email protected] Andrés Goens Jeronimo Castrillon Chair for Compiler Construction Chair for Compiler Construction Technische Universität Dresden Technische Universität Dresden Dresden, Germany Dresden, Germany [email protected] [email protected] Abstract using monad-par and LVars to expose parallelism explicitly Dataflow execution models are used to build highly scalable and reach the same level of performance, showing that our parallel systems. A programming model that targets parallel programming model successfully extracts parallelism that dataflow execution must answer the following question: How is present in an algorithm. Further evaluation shows that can parallelism between two dependent nodes in a dataflow smap is expressive enough to implement parallel reductions graph be exploited? This is difficult when the dataflow lan- and our programming model resolves short-comings of the guage or programming model is implemented by a monad, stream-based programming model for current state-of-the- as is common in the functional community, since express- art big data processing systems. ing dependence between nodes by a monadic bind suggests CCS Concepts • Software and its engineering → Func- sequential execution. Even in monadic constructs that explic- tional languages. itly separate state from computation, problems arise due to the need to reason about opaquely defined state. -
Reversible Programming with Negative and Fractional Types
9 A Computational Interpretation of Compact Closed Categories: Reversible Programming with Negative and Fractional Types CHAO-HONG CHEN, Indiana University, USA AMR SABRY, Indiana University, USA Compact closed categories include objects representing higher-order functions and are well-established as models of linear logic, concurrency, and quantum computing. We show that it is possible to construct such compact closed categories for conventional sum and product types by defining a dual to sum types, a negative type, and a dual to product types, a fractional type. Inspired by the categorical semantics, we define a sound operational semantics for negative and fractional types in which a negative type represents a computational effect that “reverses execution flow” and a fractional type represents a computational effect that“garbage collects” particular values or throws exceptions. Specifically, we extend a first-order reversible language of type isomorphisms with negative and fractional types, specify an operational semantics for each extension, and prove that each extension forms a compact closed category. We furthermore show that both operational semantics can be merged using the standard combination of backtracking and exceptions resulting in a smooth interoperability of negative and fractional types. We illustrate the expressiveness of this combination by writing a reversible SAT solver that uses back- tracking search along freshly allocated and de-allocated locations. The operational semantics, most of its meta-theoretic properties, and all examples are formalized in a supplementary Agda package. CCS Concepts: • Theory of computation → Type theory; Abstract machines; Operational semantics. Additional Key Words and Phrases: Abstract Machines, Duality of Computation, Higher-Order Reversible Programming, Termination Proofs, Type Isomorphisms ACM Reference Format: Chao-Hong Chen and Amr Sabry. -
Multithreading Design Patterns and Thread-Safe Data Structures
Lecture 12: Multithreading Design Patterns and Thread-Safe Data Structures Principles of Computer Systems Autumn 2019 Stanford University Computer Science Department Lecturer: Chris Gregg Philip Levis PDF of this presentation 1 Review from Last Week We now have three distinct ways to coordinate between threads: mutex: mutual exclusion (lock), used to enforce critical sections and atomicity condition_variable: way for threads to coordinate and signal when a variable has changed (integrates a lock for the variable) semaphore: a generalization of a lock, where there can be n threads operating in parallel (a lock is a semaphore with n=1) 2 Mutual Exclusion (mutex) A mutex is a simple lock that is shared between threads, used to protect critical regions of code or shared data structures. mutex m; mutex.lock() mutex.unlock() A mutex is often called a lock: the terms are mostly interchangeable When a thread attempts to lock a mutex: Currently unlocked: the thread takes the lock, and continues executing Currently locked: the thread blocks until the lock is released by the current lock- holder, at which point it attempts to take the lock again (and could compete with other waiting threads). Only the current lock-holder is allowed to unlock a mutex Deadlock can occur when threads form a circular wait on mutexes (e.g. dining philosophers) Places we've seen an operating system use mutexes for us: All file system operation (what if two programs try to write at the same time? create the same file?) Process table (what if two programs call fork() at the same time?) 3 lock_guard<mutex> The lock_guard<mutex> is very simple: it obtains the lock in its constructor, and releases the lock in its destructor. -
APPLYING MODEL-VIEW-CONTROLLER (MVC) in DESIGN and DEVELOPMENT of INFORMATION SYSTEMS an Example of Smart Assistive Script Breakdown in an E-Business Application
APPLYING MODEL-VIEW-CONTROLLER (MVC) IN DESIGN AND DEVELOPMENT OF INFORMATION SYSTEMS An Example of Smart Assistive Script Breakdown in an e-Business Application Andreas Holzinger, Karl Heinz Struggl Institute of Information Systems and Computer Media (IICM), TU Graz, Graz, Austria Matjaž Debevc Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia Keywords: Information Systems, Software Design Patterns, Model-view-controller (MVC), Script Breakdown, Film Production. Abstract: Information systems are supporting professionals in all areas of e-Business. In this paper we concentrate on our experiences in the design and development of information systems for the use in film production processes. Professionals working in this area are neither computer experts, nor interested in spending much time for information systems. Consequently, to provide a useful, useable and enjoyable application the system must be extremely suited to the requirements and demands of those professionals. One of the most important tasks at the beginning of a film production is to break down the movie script into its elements and aspects, and create a solid estimate of production costs based on the resulting breakdown data. Several film production software applications provide interfaces to support this task. However, most attempts suffer from numerous usability deficiencies. As a result, many film producers still use script printouts and textmarkers to highlight script elements, and transfer the data manually into their film management software. This paper presents a novel approach for unobtrusive and efficient script breakdown using a new way of breaking down text into its relevant elements. We demonstrate how the implementation of this interface benefits from employing the Model-View-Controller (MVC) as underlying software design paradigm in terms of both software development confidence and user satisfaction. -
Thread Management for High Performance Database Systems - Design and Implementation
Nr.: FIN-003-2018 Thread Management for High Performance Database Systems - Design and Implementation Robert Jendersie, Johannes Wuensche, Johann Wagner, Marten Wallewein-Eising, Marcus Pinnecke, Gunter Saake Arbeitsgruppe Database and Software Engineering Fakultät für Informatik Otto-von-Guericke-Universität Magdeburg Nr.: FIN-003-2018 Thread Management for High Performance Database Systems - Design and Implementation Robert Jendersie, Johannes Wuensche, Johann Wagner, Marten Wallewein-Eising, Marcus Pinnecke, Gunter Saake Arbeitsgruppe Database and Software Engineering Technical report (Internet) Elektronische Zeitschriftenreihe der Fakultät für Informatik der Otto-von-Guericke-Universität Magdeburg ISSN 1869-5078 Fakultät für Informatik Otto-von-Guericke-Universität Magdeburg Impressum (§ 5 TMG) Herausgeber: Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Der Dekan Verantwortlich für diese Ausgabe: Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Marcus Pinnecke Postfach 4120 39016 Magdeburg E-Mail: [email protected] http://www.cs.uni-magdeburg.de/Technical_reports.html Technical report (Internet) ISSN 1869-5078 Redaktionsschluss: 21.08.2018 Bezug: Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Dekanat Thread Management for High Performance Database Systems - Design and Implementation Technical Report Robert Jendersie1, Johannes Wuensche2, Johann Wagner1, Marten Wallewein-Eising2, Marcus Pinnecke1, and Gunter Saake1 Database and Software Engineering Group, Otto-von-Guericke University -
NET Framework
Advanced Windows Programming .NET Framework based on: A. Troelsen, Pro C# 2005 and .NET 2.0 Platform, 3rd Ed., 2005, Apress J. Richter, Applied .NET Frameworks Programming, 2002, MS Press D. Watkins et al., Programming in the .NET Environment, 2002, Addison Wesley T. Thai, H. Lam, .NET Framework Essentials, 2001, O’Reilly D. Beyer, C# COM+ Programming, M&T Books, 2001, chapter 1 Krzysztof Mossakowski Faculty of Mathematics and Information Science http://www.mini.pw.edu.pl/~mossakow Advanced Windows Programming .NET Framework - 2 Contents The most important features of .NET Assemblies Metadata Common Type System Common Intermediate Language Common Language Runtime Deploying .NET Runtime Garbage Collection Serialization Krzysztof Mossakowski Faculty of Mathematics and Information Science http://www.mini.pw.edu.pl/~mossakow Advanced Windows Programming .NET Framework - 3 .NET Benefits In comparison with previous Microsoft’s technologies: Consistent programming model – common OO programming model Simplified programming model – no error codes, GUIDs, IUnknown, etc. Run once, run always – no "DLL hell" Simplified deployment – easy to use installation projects Wide platform reach Programming language integration Simplified code reuse Automatic memory management (garbage collection) Type-safe verification Rich debugging support – CLR debugging, language independent Consistent method failure paradigm – exceptions Security – code access security Interoperability – using existing COM components, calling Win32 functions Krzysztof -
Understanding CIL
Understanding CIL James Crowley Developer Fusion http://www.developerfusion.co.uk/ Overview Generating and understanding CIL De-compiling CIL Protecting against de-compilation Merging assemblies Common Language Runtime (CLR) Core component of the .NET Framework on which everything else is built. A runtime environment which provides A unified type system Metadata Execution engine, that deals with programs written in a Common Intermediate Language (CIL) Common Intermediate Language All compilers targeting the CLR translate their source code into CIL A kind of assembly language for an abstract stack-based machine, but is not specific to any hardware architecture Includes instructions specifically designed to support object-oriented concepts Platform Independence The intermediate language is not interpreted, but is not platform specific. The CLR uses JIT (Just-in-time) compilation to translate the CIL into native code Applications compiled in .NET can be moved to any machine, providing there is a CLR implementation for it (Mono, SSCLI etc) Demo Generating IL using the C# compiler .method private hidebysig static void Main(string[] args) cil managed { .entrypoint // Code size 31 (0x1f) Some familiar keywords with some additions: .maxstack 2 .locals init (int32 V_0, .method – this is a method int32 V_1, hidebysig – the method hides other methods with int32 V_2) the same name and signature. IL_0000: ldc.i4.s 50 cil managed – written in CIL and should be IL_0002: stloc.0 executed by the execution engine (C++ allows IL_0003: ldc.i4.s -
Let's Get Functional
5 LET’S GET FUNCTIONAL I’ve mentioned several times that F# is a functional language, but as you’ve learned from previous chapters you can build rich applications in F# without using any functional techniques. Does that mean that F# isn’t really a functional language? No. F# is a general-purpose, multi paradigm language that allows you to program in the style most suited to your task. It is considered a functional-first lan- guage, meaning that its constructs encourage a functional style. In other words, when developing in F# you should favor functional approaches whenever possible and switch to other styles as appropriate. In this chapter, we’ll see what functional programming really is and how functions in F# differ from those in other languages. Once we’ve estab- lished that foundation, we’ll explore several data types commonly used with functional programming and take a brief side trip into lazy evaluation. The Book of F# © 2014 by Dave Fancher What Is Functional Programming? Functional programming takes a fundamentally different approach toward developing software than object-oriented programming. While object-oriented programming is primarily concerned with managing an ever-changing system state, functional programming emphasizes immutability and the application of deterministic functions. This difference drastically changes the way you build software, because in object-oriented programming you’re mostly concerned with defining classes (or structs), whereas in functional programming your focus is on defining functions with particular emphasis on their input and output. F# is an impure functional language where data is immutable by default, though you can still define mutable data or cause other side effects in your functions.