IEEE Milestone Showcase There’S Just 3 Simple Rules… IEEE Members Have Shaped the Course of Technical Evolution

Total Page:16

File Type:pdf, Size:1020Kb

IEEE Milestone Showcase There’S Just 3 Simple Rules… IEEE Members Have Shaped the Course of Technical Evolution IEEE MEMBERS MAKE IEEEHISTORY. Milestone IEEE Milestone Showcase There’s just 3 simple rules… IEEE members have shaped the course of technical evolution. On 1) Choose a milestone below OR futurecast a milestone this 10th year celebrating IEEE Day, we want to recognize and that will happen in the next 10 years. honor all of the major technological achievements that 2) Record a short video describing the milestone. It must 60 seconds or less, in mov or mp4 format, no larger than revolutionized the world as we know it today. 1 GB, and in the English language. For the IEEE We need your help! Let’s celebrate these milestones by letting the Milestones in history, you must use the script provided world know that IEEE members make history. The winning video below to qualify. from each Region will be featured on the IEEE Day Facebook 3) Submit your video by 15 August! Submissions after this page and the IEEE.org home page on IEEE Day! date may be disqualified. Get creative! You could: Film on location of the milestone. Use image and video footage of the technology and/or members in action. (Use only images from the ETWH.org or other images/video approved for use.) Milestone Year Region Section Script In 1970, Corning scientists and IEEE members Dr. Robert Maurer, Dr. Peter Schultz, and Dr. Donald Keck developed a highly pure optical glass that effectively transmitted light signals over long distances. This astounding medium, which is World's First Low-Loss thinner than a human hair, revolutionized global communications. By 2011, the Optical Fiber for world depended upon the continuous transmission of voice, data, and video along Telecommunications, 1970 1970 1 Rochester more than 1.6 billion kilometers of optical fiber installed around the globe. The Whirlwind computer was developed between 1945-1959 at the Massachusetts Institute of Technology, under the direction of IEEE Fellow Jay Forrester. It was the first real-time high-speed digital computer using random- access magnetic-core memory. Whirlwind featured outputs displayed on a CRT, and a light pen to write data on the screen. Whirlwindʼs success led to the United Whirlwind Computer, 1944- States Air Forceʼs Semi Automatic Ground Environment - SAGE - system and to 59 1944 1 Boston many business computers and minicomputers. Between 1888 and 1889, Edward Weston, the 4th president of AIEE, which was the predecessor of IEEE, and the Weston Electrical Instrument Company introduced the first portable and direct-reading current and voltage meters in 1888-1893. Weston's inventions enabling these meters included: the first truly permanent magnets; temperature-insensitive conductors; low-resistance and non- Weston Meters, 1887-1893 1887 1 North Jersey magnetic springs; metal coil frames where induced eddy currents provided pointer damping in1887; the electric shunt in 1893 for the measurement of large currents; and multiple current ranges in a single meter. In 1933, the police department in Bayonne, New Jersey initiated regular two-way communications with its patrol cars, a major advance over previous one-way systems. The very high frequency system developed by radio engineer and IEEE member Frank A. Gunther and station operator Vincent J. Doyle placed transmitters in patrol cars to enable patrolmen to communicate with headquarters and other cars instead of just receiving calls. Two-way police radio Two-Way Police Radio became standard throughout the country following the success of the Bayonne Communication, 1933 1933 1 North Jersey system. TAT-8, the first fiber-optic cable to cross an ocean, entered service 14 December 1988. TAT-8 was the first transatlantic cable to use optical fibers, a revolution in telecommunications. It had a capacity equivalent to 40,000 telephone circuits which was ten times the capacity of the last copper cable. Several new technologies had to be developed which were beyond those for land applications. Trans-Atlantic Telephone AT&T, British Telecom, and France Telecom led the consortium that built TAT-8, Fiber-Optic Submarine Cable New Jersey which spanned a seabed distance of 5,846 km between North America and (TAT-8), 1988 1988 1 Coast Europe. In 1960, the National Aeronautical and Space Administration launched TIROS I, the world's first meteorological satellite, to capture and transmit video images of the Earth's weather patterns. RCA staff at Defense Electronics Products, the David Sarnoff Research Center, and Astro-Electronics Division designed and constructed TIROS-1 Television Infrared Princeton/Centr the satellite and ground station systems. TIROS I pioneered meteorological and Observation Satellite, 1960 1960 1 al Jersey environmental satellite television for an expanding array of purposes. Thomas Alva Edison Historic 1876 1 Princeton/Centr Site at Menlo Park, 1876 al Jersey Between 1876 and 1882 at Menlo Park, New Jersey, Thomas Edison, an IEEE member, developed the world’s first industrial research and development laboratory devoted to developing new technology. At this laboratory Edison and his staff developed the first system of incandescent electric lighting and electric power generation, and invented recorded sound and a commercially successful telephone transmitter. Thomas Alva Edison, an IEEE member, established his final and most comprehensive laboratory and factory complex in 1887 in West Orange, NJ. Thomas A. Edison West Edison's vision to combine basic and applied research, development, and Orange Laboratories and manufacturing in one organization became the prototype for industrial enterprises Factories, 1887 1887 1 North Jersey worldwide. Work here resulted in more than half of Edison's 1,093 patents. Researchers at Stony Brook University produced the first two-dimensional image using nuclear magnetic resonance in 1973.The proton distribution of the object, a test tube of water, was distinctly encoded using magnetic field gradients. This The First Two-Dimensional achievement was a major advance for the MRI and paved the way for its Nuclear Magnetic Resonance worldwide usage as a noninvasive method to examine body tissue for disease Image (MRI), 1973 1973 1 Long Island detection. In 1951 the Massachusetts Institute of Technology undertook the development of an air defense system for the United States. The centerpiece of this defense system was a large digital computer originally developed at MIT. The MIT Lincoln Semi-Automatic Ground Laboratory was formed to carry out the initial development of this system and the Environment (SAGE) 1951- first of some 23 SAGE control centers was completed in 1958. SAGE was the 1958 1951 1 Boston forerunner of today’s digital computer networks. Boston was the first city to build electric traction for a large-scale rapid transit Power System of Boston's system. The engineering challenge to design and construct safe, economically Rapid Transit, 1889 1889 1 Boston viable, and reliable electric power for Boston's rapid transit was met by the West End Street Railway Company, beginning in 1889. The company's pioneering efforts provided an important impetus to the adoption of mass transit systems nationwide. Thomas Alva Edison, an IEEE Member, established the Edison Electric Illuminating Company of New York, now Consolidated Edison, to commercialize his 1879 incandescent lamp invention. On 4 September 1882, Edison’s direct current (dc) generating station at 257 Pearl Street, began supplying electricity to customers in the First District, a one-quarter square mile (0.65 square km) area. This installation Pearl Street Station, 1882 1882 1 New York was the forerunner of all central electric generating stations. Between 1946 and 1950 the research staff of RCA Laboratories, supported by IEEE member David Sarnoff, invented the world's first electronic, monochrome- Monochrome-Compatible compatible, color television system. They worked with other engineers in the Electronic Color Television, Princeton/Centr industry for three years to develop a national analog standard based on this 1946-1953 1946 1 al Jersey system, which lasted until the transition to digital broadcasting. The MIT Radiation Laboratory, operated between 1940 and 1945, advanced the allied war effort by making fundamental contributions to the design and deployment of microwave radar systems. Used on land, sea, and in the air, in many adaptations, radar was a decisive factor in the outcome of the conflict. The laboratory's 3900 employees made lasting contributions to microwave theory and MIT Radiation Laboratory, technology, operational radar, systems engineering, long-range navigation, and 1940-1945 1940 1 Boston control equipment. The rapid development of Loran -- long range navigation -- under wartime conditions at MIT’s Radiation Lab was not only a significant engineering feat but also transformed navigation, providing the world’s first near-real-time positioning information. Beginning in June 1942, the United States Coast Guard helped Loran, 1940 - 1946 1940 1 develop, install and operate Loran until 2010. Princeton/ Between 1964 and 1968, at the RCA David Sarnoff Research Center in Princeton, Liquid Crystal Display, 1968 1968 1 Central Jersey New Jersey, a team of engineers and scientists led by IEEE member George H. Heilmeier with Louis A. Zanoni and Lucian A. Barton, devised a method for electronic control of light reflected from liquid crystals and demonstrated the first liquid crystal display. Their work launched a global industry that now produces millions of LCDs annually for watches, calculators, flat-panel displays in televisions, computers and instruments. The Direct Current (dc) generating plant installed at the New Yorker Hotel in 1929, capable of supplying electric power sufficient for a city of 35,000 people, was the largest private generating plant in the U.S.A. Steam engines drove electric Largest Private (dc) generators, with exhaust steam used for heating and other facilities. The Generating Plant in the installation used more than two hundred dc motors, and was controlled from a U.S.A., 1929 1929 1 New York seven-foot or two-meter high, by sixty-foot or eighteen-meter long switchboard.
Recommended publications
  • 2020 Virtual Commencement Program
    HISTORY OF NJIT he New Jersey Institute of Technology that we Under Dr. Allan R. Cullimore, who led the Tknow today has a rich history with its institution from 1920 to 1949, the modest Newark beginnings developing from the industrial age. Technical School was transformed into the Newark Like many of the port cities around the world, the College of Engineering (NCE). Campbell Hall was Newark of the late 19th century was a thriving erected in 1925. During the lean years of the industrial center. Its factories churned out thread, Depression and World War II, only the former metals, paints and leather goods. In Newark, Newark Orphan Asylum, now Eberhardt Hall, was Thomas Edison set the stage at his Ward Street purchased and renovated by the college. factory for his later achievements, and Edison rival Edward Weston established the first factory in the The postwar period was one of enormous activity United States for commercial production of during which President Cullimore — like today’s dynamo electric machines. post-Cold War university presidents — challenged the college to turn “wartime thinking into On March 24, 1880, the Essex County peacetime thinking.” Assemblyman in the state Legislature introduced “An Act to Provide for the Establishment of In 1946, about 75 percent of the freshman class had Schools of Industrial Education.” The Newark served in the armed forces. Robert W. Van Houten Board of Trade sponsored the bill. The Act was acting president of NJIT from 1947 until 1950 established three schools of industrial education: when the board of trustees named him president. one in Newark, one in Trenton and one in Cullimore Hall was built in 1958 and two years Hoboken.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,858,162 Kieffer Et Al
    United States Patent (19) 11 Patent Number: 4,858,162 Kieffer et al. (45) Date of Patent: Aug. 15, 1989 54 METHOD AND APPARATUS USED IN MOUNTING EXPANSON CARDS OTHER PUBLICATIONS Features Illustration, Compaq Computer Company. 75) Inventors: Thomas M. Kieffer, St. Louis Park; 4-page brochure entitled Toshiba Portable Personal David J. Gaasedelen, Golden Valley, Computer T3100e (Exhibit A) Form No. BT3100e both of Minn. 11/88. Primary Examiner-Andrew J. James 73) Assignee: Connect Computer Company, Inc., Assistant Examiner-David Soltz Minneapolis, Minn. Attorney, Agent, or Firm-Merchant, Gould, Smith, Edell, Welter & Schmidt 21 Appl. No.: 90,941 57 ABSTRACT (22 Filed: Aug. 28, 1987 An attachment for a portable computer comprising a rigid case having an interface card that is adapted to 51) Int. Cl." ......................... G06F1/00; H05K 5/00; attach to the portable computer's expansion slot at one HOSK 7/16 end and is adapted to attach to a standard PC expansion 52 U.S. C. ................................ 364/708; 364/709.01 card at the other end. The case has room to insert a 58) Field of Search ................................ 364/708, 709 standard expansion card of length or less. The case is sufficiently small that it may be attached to the bottom 56) References Cited of the portable computer and still fit inside the original carrying case. U.S. PATENT DOCUMENTS 4,530,066 7/1985 Ohwaki ............................... 364/708 10 Claims, 4 Drawing Sheets U.S. Patent Aug. 15, 1989 Sheet 1 of 4 4,858,162 FG. 4 O5 O9 f - - - - IILuse S 4O2 4O7 A No.
    [Show full text]
  • 2008 Annual Report
    2008 Annual Report NATIONAL ACADEMY OF ENGINEERING ENGINEERING THE FUTURE 1 Letter from the President 3 In Service to the Nation 3 Mission Statement 4 Program Reports 4 Engineering Education 4 Center for the Advancement of Scholarship on Engineering Education 6 Technological Literacy 6 Public Understanding of Engineering Developing Effective Messages Media Relations Public Relations Grand Challenges for Engineering 8 Center for Engineering, Ethics, and Society 9 Diversity in the Engineering Workforce Engineer Girl! Website Engineer Your Life Project Engineering Equity Extension Service 10 Frontiers of Engineering Armstrong Endowment for Young Engineers-Gilbreth Lectures 12 Engineering and Health Care 14 Technology and Peace Building 14 Technology for a Quieter America 15 America’s Energy Future 16 Terrorism and the Electric Power-Delivery System 16 U.S.-China Cooperation on Electricity from Renewables 17 U.S.-China Symposium on Science and Technology Strategic Policy 17 Offshoring of Engineering 18 Gathering Storm Still Frames the Policy Debate 20 2008 NAE Awards Recipients 22 2008 New Members and Foreign Associates 24 2008 NAE Anniversary Members 28 2008 Private Contributions 28 Einstein Society 28 Heritage Society 29 Golden Bridge Society 29 Catalyst Society 30 Rosette Society 30 Challenge Society 30 Charter Society 31 Other Individual Donors 34 The Presidents’ Circle 34 Corporations, Foundations, and Other Organizations 35 National Academy of Engineering Fund Financial Report 37 Report of Independent Certified Public Accountants 41 Notes to Financial Statements 53 Officers 53 Councillors 54 Staff 54 NAE Publications Letter from the President Engineering is critical to meeting the fundamental challenges facing the U.S. economy in the 21st century.
    [Show full text]
  • ECS Classics: Weston, the Weston Cell, and the Volt
    ClassicsECS Weston, the Weston Cell, and the Volt by Petr Vanýsek he measurement of electromotive force, potential, or voltage Sharing much of the same enthusiasm as Acheson (ECS Classics, difference has been central to measurements ever since the Interface, 26(1) 36-39), Edison, or Swann (ECS Classics, Interface, Tconcept of potential in electricity was first understood. The 23(4) 38-40), Weston was also interested in lighting equipment. His definition of the volt changed a few times throughout the course of company, among others, won the contract to illuminate the new history and at one point it was even based on electrochemistry, on Brooklyn Bridge. His carbon based light bulb filament made from the so-called Clark cell. The international volt was defined in 1893 Tamidine (reduced nitrocellulose) was used until tungsten was as 1/1.434 electromotive force of the Clark cell. This definition lasted introduced. until 1908. The Clark cells used zinc or zinc amalgam for the anode and Weston was, since his first introduction to electrochemistry in mercury in a saturated aqueous solution of zinc sulfate for a cathode, electroplating, well aware of the need to reliably measure electrical with a paste of mercurous sulfate as a depolarizer. The cell design parameters. Because of this interest, in 1887 he established a had a drawback in a rather significant temperature coefficient and also laboratory making devices for measuring electrical parameters. In the suffered corrosion problems, which were caused by platinum wires process he developed two important alloys, constantan and manganin, that were alloying with the zinc amalgam in the glass envelope.
    [Show full text]
  • The Mother of All Demos
    UC Irvine Embodiment and Performativity Title The Mother of All Demos Permalink https://escholarship.org/uc/item/91v563kh Author Salamanca, Claudia Publication Date 2009-12-12 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The Mother of All Demos Claudia Salamanca PhD Student, Rhetoric Department University of California Berkeley 1929 Fairview St. Apt B. Berkeley, CA, 94703 1 510 735 1061 [email protected] ABSTRACT guide situated at the mission control and from there he takes us This paper analyses the documentation of the special session into another location: a location that Levy calls the final frontier. delivered by Douglas Engelbart and William English on This description offered by Levy as well as the performance in December 9, 1968 at the Fall Computer Joint Conference in San itself, shows a movement in time and space. The name, “The Francisco. Mother of All Demos,” refers to a temporality under which all previous demos are subcategories of this performance. Furthermore, the name also points to a futurality that is constantly Categories and Subject Descriptors in production: all future demos are also included. What was A.0 [Conference Proceedings] delivered on December 9, 1968 captured the past but also our future. In order to explain this extended temporality, Engelbart’s General Terms demo needs to be addressed not only from the perspective of the Documentation, Performance, Theory. technological breakthroughs but also the modes in which they were delivered. This mode of futurality goes beyond the future simple tense continuously invoked by rhetorics of progress and Keywords technology. The purpose of this paper is to interrogate “The Demo, medium performance, fragmentation, technology, Mother of All Demos” as a performance, inquiring into what this augmentation system, condensation, space, body, mirror, session made and is still making possible.
    [Show full text]
  • By Dean R. Johnson
    Alice Symposium 2009 Duke University “Who needs PowerPoint? I’ve got Alice!” By Dean R. Johnson I. Background of My Experience in Programming II. Experience with Alice A. Changes in Languages and Student Population B. Introducing Alice C. Enrollment Data III. History Lesson: Significant People in Computing A. Paper B. PowerPoint C. Alice 1. Lesson Plan 2. Grading Rubric IV. Sample Projects: Screenshots and descriptions of Student Work I. Background I started my study of Computer Science in 1982 as a high school senior when I enrolled in a one semester course titled “Computer Programming.” It was taught by my math teacher and at first seemed like a very mystifying idea. We wrote programs in BASIC b y “bubbling in” punch cards. After completing the program, we took the stack of cards to the back of the room handing them to our teacher. He was the only one allowed to insert the cards into the card reader. The PDP-11 interpreted our program and if it ran successfully, the dot matrix printer printed a table of the whole numbers from one to ten and their squares. It was amazing. The strange thing about this description is that it brings back such fond memories for me. It was during this brief exposure to programming that I was hooked for life. This is what drives me on a daily basis to do the best I can to expose students to the fascinating world of programming. I graduated from UW-Whitewater in 1986 with a Major in Mathematics and a Minor in Computer Science.
    [Show full text]
  • The Way Forward a New Literary History of America a Conv
    american academy of arts & sciences spring 2010 Bulletin vol. lxiii, no. 3 Page 7 A New Literary History of America Werner Sollors and Greil Marcus David Brady and Pamela S. Karlan Page 15 Challenges to Business and Society in the Twenty-First Century: The Way Forward Rajat K. Gupta and Roger W. Ferguson, Jr. Daniel Yankelovich Page 22 A Conversation on Evolving U.S. Policy toward Russia Robert Legvold and Thomas Graham inside: The Humanities: The Case for Data, Page 1 Book of Members, Page 6 From the Archives, Page 36 Calendar of Events Save the Date: Induction Weekend Friday, Sunday, Contents October 8, 2010 October 10, 2010 Evening Reception and Program– Sunday Symposium–Cambridge Cambridge Academy Projects For information and reservations, contact The Humanities: The Case for Data 1 Saturday, the Events Of½ce (phone: 617-576-5032; October 9, 2010 email: [email protected]). Book of Members 6 2010 Induction Ceremony–Cambridge Academy Meetings A New Literary History of America Werner Sollors and Greil Marcus 7 Challenges to Business and Society in the Twenty-First Century: The Way Forward Rajat K. Gupta and Roger W. Ferguson, Jr. 15 A Conversation on Evolving U.S. Policy toward Russia Robert Legvold and Thomas Graham 22 Noteworthy 32 From the Archives 36 Fellows and Friends Again Contribute More than $1.5 million to the Annual Fund In the recently completed ½scal year, the Academy’s Annual Fund surpassed last year’s total and the $1.5 million mark for the fourth consecutive year–nearly 1,200 donors helped to accomplish this goal.
    [Show full text]
  • Ted Nelson History of Computing
    History of Computing Douglas R. Dechow Daniele C. Struppa Editors Intertwingled The Work and Influence of Ted Nelson History of Computing Founding Editor Martin Campbell-Kelly, University of Warwick, Coventry, UK Series Editor Gerard Alberts, University of Amsterdam, Amsterdam, The Netherlands Advisory Board Jack Copeland, University of Canterbury, Christchurch, New Zealand Ulf Hashagen, Deutsches Museum, Munich, Germany John V. Tucker, Swansea University, Swansea, UK Jeffrey R. Yost, University of Minnesota, Minneapolis, USA The History of Computing series publishes high-quality books which address the history of computing, with an emphasis on the ‘externalist’ view of this history, more accessible to a wider audience. The series examines content and history from four main quadrants: the history of relevant technologies, the history of the core science, the history of relevant business and economic developments, and the history of computing as it pertains to social history and societal developments. Titles can span a variety of product types, including but not exclusively, themed volumes, biographies, ‘profi le’ books (with brief biographies of a number of key people), expansions of workshop proceedings, general readers, scholarly expositions, titles used as ancillary textbooks, revivals and new editions of previous worthy titles. These books will appeal, varyingly, to academics and students in computer science, history, mathematics, business and technology studies. Some titles will also directly appeal to professionals and practitioners
    [Show full text]
  • 1985 1995 the Evolution of Mobile Entertainment
    Ask the expert The evolution of mobile entertainment Today’s PC users look at the “fun” side of computing when deciding about their next computer. In fact, today’s notebook users see “mobile entertainment” as a given criteria for any new machine. They expect to be able to play games, listen to music or watch DVD movies on their notebooks. But a mere 20 years ago, “mobile entertainment” as we know it didn’t exist. This feature will look at the major milestones that helped turn today’s mobile computers into “mobile Mobile gaming – The Satellite P30 from 2003 could show 3D games on its entertainers”. The pinnacle of this development can be seen in the Qosmio own high­resolution display. Via an S­ video connection to an external 40­ AV notebook PC. inch plasma display, it was also possible to share the excitement. had just been ratified in 1984 and DVD was still a decade Flying high in the future. In 1985, when Toshiba launched the T1100, it was I’ve got the music in me considered a breakthough in terms of mobile working. It By 1995, the world of mobile computers had changed was the world’s first IBM­compatible considerably. Not only had image quality on notebooks laptop computer and the first machine 1985 improved from reflective black and to include a basic set of features that white LCDs to true colour (16.7 million would set the norm for portable computers in coming years: 1995 colours) TFT active matrix screens but it ran off internal rechargeable batteries, had an LCD also the audio­out port and built­in speakers had become screen, a 3.5­inch floppy disk drive and it was IBM­ standard features.
    [Show full text]
  • Barefoot Into Cyberspace Adventures in Search of Techno-Utopia
    Barefoot into Cyberspace Adventures in search of techno-Utopia By Becky Hogge July 2011 http://www,barefootintocyberspace.com Barefoot into Cyberspace Becky Hogge Read This First This text is distributed by Barefoot Publishing Limited under a Creative Commons Attribution-ShareAlike 2.0 UK: England & Wales Licence. That means: You are free to copy, distribute, display, and perform the work to make derivative works to make commercial use of the work Under the following conditions Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar licence to this one. For any reuse or distribution, you must make clear to others the licence terms of this work. The best way to do this is with a link to http://barefootintocyberspace.com/book/hypertext Any of these conditions may be waived by seeking permission from Barefoot Publishing Limited. To contact Barefoot Publishing Limited, email barefootpublishing [AT] gmail [DOT] com. More information available at http://creativecommons.org/licenses/by- sa/2.0/uk/. See the end of this file for complete legalese 2 Barefoot into Cyberspace Becky Hogge Contents Prologue: Fierce Dancing ...................................................................................................................................... 5 Chapter 1: Digging the command line ............................................................................................................
    [Show full text]
  • The People Who Invented the Internet Source: Wikipedia's History of the Internet
    The People Who Invented the Internet Source: Wikipedia's History of the Internet PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 22 Sep 2012 02:49:54 UTC Contents Articles History of the Internet 1 Barry Appelman 26 Paul Baran 28 Vint Cerf 33 Danny Cohen (engineer) 41 David D. Clark 44 Steve Crocker 45 Donald Davies 47 Douglas Engelbart 49 Charles M. Herzfeld 56 Internet Engineering Task Force 58 Bob Kahn 61 Peter T. Kirstein 65 Leonard Kleinrock 66 John Klensin 70 J. C. R. Licklider 71 Jon Postel 77 Louis Pouzin 80 Lawrence Roberts (scientist) 81 John Romkey 84 Ivan Sutherland 85 Robert Taylor (computer scientist) 89 Ray Tomlinson 92 Oleg Vishnepolsky 94 Phil Zimmermann 96 References Article Sources and Contributors 99 Image Sources, Licenses and Contributors 102 Article Licenses License 103 History of the Internet 1 History of the Internet The history of the Internet began with the development of electronic computers in the 1950s. This began with point-to-point communication between mainframe computers and terminals, expanded to point-to-point connections between computers and then early research into packet switching. Packet switched networks such as ARPANET, Mark I at NPL in the UK, CYCLADES, Merit Network, Tymnet, and Telenet, were developed in the late 1960s and early 1970s using a variety of protocols. The ARPANET in particular led to the development of protocols for internetworking, where multiple separate networks could be joined together into a network of networks. In 1982 the Internet Protocol Suite (TCP/IP) was standardized and the concept of a world-wide network of fully interconnected TCP/IP networks called the Internet was introduced.
    [Show full text]
  • SRI Alumni Association August 2013 Newsletter 333 Ravenswood Avenue • M/S AC-108 Menlo Park, CA 94025
    SRI Alumni Association August 2013 Newsletter 333 Ravenswood Avenue • M/S AC-108 Menlo Park, CA 94025 Voicemail: 650-859-5100 Email: [email protected] Web page: http://www.sri.com/about/alumni MESSAGE FROM CHAIRMAN TOM ANYOS It’s Alumni Reunion Time continues to make important contributions to society. Historically, learn a little more about one SRI man’s role in the This year’s annual SRI Alumni Reunion planning of Disneyland and his lasting legacy. Internationally, will be on Friday, September 13, from our colleagues in the UK had an interesting tour of the Globe 4:00 to 7:00 p.m. at the I Building. Theatre, and we take a ride in an ill-equipped taxi in Milan. If you will be in Menlo Park, this is your opportunity to catch up with old As you read this issue, please consider joining the SRI Alumni friends, meet new ones, and learn what’s Association Steering Committee. It’s fun to be involved, and Tom Anyos been happening at SRI over the past you can help the Association maintain its vigor and attract year. We are hoping that Curt Carlson, new members. President and CEO, will be able to join us to report on the status of SRI. Curt’s travels have caused Looking forward to seeing you on Friday, September 13! him to miss past reunions, but this year we are keeping our fingers crossed. He is always a fascinating and thoughtful presenter. Make sure you put Friday the Thirteenth on your calendar! The Annual Reunion is September 13, 2013.
    [Show full text]