A New Pest Species of the Mealybug Genus Ferrisia Fullaway (Hemiptera: Pseudococcidae) from the United States

Total Page:16

File Type:pdf, Size:1020Kb

A New Pest Species of the Mealybug Genus Ferrisia Fullaway (Hemiptera: Pseudococcidae) from the United States SYSTEMATICS A New Pest Species of the Mealybug Genus Ferrisia Fullaway (Hemiptera: Pseudococcidae) from the United States 1 1, 2 3 P. J. GULLAN, D. A. DOWNIE, AND S. A. STEFFAN Ann. Entomol. Soc. Am. 96(6): 723Ð737 (2003) ABSTRACT A new pest species of Ferrisia (Hemiptera: Pseudococcidae), Ferrisia gilli Gullan, is described and illustrated based on the adult female, third-instar female, and Þrst- and second-instar nymphs. Observation of pharate third-instar males and females failed to reveal sexual dimorphism of the second instar. Diagnosis of this new species was facilitated by the collection of nucleotide sequence data from fragments of a mitochondrial gene (COI) and two nuclear genes (EF-1␣ and 28S). The Þrst phylogenetic study of Ferrisia is presented; combined and separate analyses of the three gene regions support monophyly of F. gilli and suggest that Ferrisia virgata (Cockerell) is a species complex. The known distribution of F. gilli from California and the southeastern United States is reported. It may be native to the southeastern states. This mealybug seems to be polyphagous because it feeds on a variety of species of woody plants, both evergreen and deciduous, as well as on monocots. It has at least three generations annually in central California, where it is newly recognized as a pest in pistachio and almond orchards, but has been present in northern California since at least 1968. The main problems caused by this mealybug in pistachio orchards are contamination of foliage and fruit with honeydew and the concomitant promotion of two major fungal pathogens. KEY WORDS Pseudococcidae, mealybugs, Ferrisia, phylogeny, taxonomy MEALYBUGS OF THE GENUS Ferrisia Fullaway, and espe- many years. The latter was known as the uniparental cially the polyphagous F. virgata (Cockerell) and F. strain of F. virgata (Williams 1985) and then as F. malvastra (McDaniel), are well known as plant pests consobrina (Williams and Watson 1988) until Wil- (McKenzie 1967, Williams and Watson 1988, Miller et liamsÕ (1996) revision. Nur (1977) used electro- al. 2002). They damage plants primarily by sap removal phoretic methods to recognize two sexual and one and by contamination with copious honeydew that parthenogenetic species from specimens that were frequently serves as a substrate for sooty molds and identiÞed as F. virgata, but these electrophoretic taxa sometimes they transmit plant viruses (reviewed by were never associated with any morphological forms Williams 1996). The most recent taxonomic synopsis of F. virgata. Williams and Granara de Willink (1992) of Ferrisia (Williams 1996) recognized 10 species and reported morphological variation in the number and provided a key to distinguish 8 of these species. The position of minute tubular ducts present on the lateral other two species, F. neovirgata Khalid and Shafee and margins of the abdomen of adult female specimens F. quaintancii (Tinsley), seem to have been described assigned to F. virgata. These ducts range from few in based on immature females and thus were not in- number on some specimens to occurring in distinct cluded in WilliamsÕ key. Ferrisia seems to be of New clusters of up to 17 on each margin of abdominal World origin (Williams and Granara de Willink 1992, segments VI and VII. This morphological variation and Williams 1996), although F. malvastra and F. virgata NurÕs results for F. virgata as well as the occurrence of are more widespread, probably as the result of human unusual specimens that cannot be assigned deÞni- activities. tively to any named species suggest the existence of There is a history of problems in distinguishing further species of Ferrisia. For example, specimens of Ferrisia species, especially the biparental F. virgata, Ferrisia infesting pistachio trees in central California which has many synonyms (Williams 1996) and was probably would be identiÞed as F. malvastra in Wil- confused with the parthenogenetic F. malvastra for liamsÕ (1996) key, but the adult females exhibit several morphological differences from F. malvastra. 1 Department of Entomology, University of California, 1 Shields Complexes of morphologically similar species are Avenue, Davis, CA 95616. known in other mealybug genera, and detailed study 2 Current address: Department of Zoology and Entomology, of morphological and/or biological differences often Rhodes University, Grahamstown 6140, South Africa. reveals new species. For example, Beardsley (2001) 3 Division of Agriculture and Natural Resources, University of Cal- ifornia, Kearney Agricultural Center, Parlier, CA 93648. (Current provided evidence for two new sibling species of the address: Department of Biology, 5305 Old Main Hill, Utah State coconut mealybug Nipaecoccus nipae (Maskell), and University, Logan, UT 84322.) previously, Beardsley (1959, 1965) resolved the tax- 0013-8746/03/0723Ð0737$04.00/0 ᭧ 2003 Entomological Society of America 724 ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA Vol. 96, no. 6 onomy of the pineapple mealybug complex involving DNA gene (28S) (Michot et al. 1984). Primers for both the pest Dysmicoccus brevipes (Cockerell) and closely ampliÞcation and sequencing were 5Ј-CAACATT- related species. In contrast, there are examples of TATTTTGATTTTTTGG-3Ј (C1-J-2183 aka Jerry) (Si- environmentally induced variation in morphology in mon et al. 1994) and 5Ј-GCWACWACRTAATAKG- mealybugs (Cox 1983), and such variation can lead to TATCATG-3Ј (C1-N-2568 aka BEN3R, designed by the erroneous recognition of more than one species of T. R. Schultz, Smithsonian Institution) (Brady et al. mealybug. The best example is the recent synonymy 2000) for COI; 5Ј-CARGACGTATACAAAATCGG-3Ј of Pseudococcus calceolariae (Maskell) and P. similans and 5Ј-GCAATGTGRGCIGTGTGGCA-3Ј for EF-1␣ (Lidgett), based on detailed morphological study of (similar to M51.9 and rcM53Ð2 of Cho et al. 1995 mealybugs reared under controlled conditions enclosing a fragment from bases 2832Ð3149 in the (Charles et al. 2000) and supported by molecular data Drosophila melanogaster sequence); and 5Ј- (Beuning et al. 1999). Thus, new mealybug species AGAGAGAGTTCAAGAGTACGTG-3Ј and 5Ј-TTG- should only be described after careful study, prefer- GTCCGTGTTTCAAGACGGG-3Ј for 28S (Belshaw ably using multiple data sources. and Quicke 1997). PCR reaction components and Þnal The main purpose of the present work is to clarify concentrations were 1.5Ð2.5 mM MgCl2, 0.2 mM the taxonomic status of the pest Ferrisia specimens dNTPs, and 1 U Taq polymerase in a proprietary buffer that occur on pistachio trees in California. We used a (PCR Master Mix, Promega Biotech, Madison, WI), combination of morphological and molecular data to 0.2 ␮M each primer, and 5 ␮l DNA template in a Þnal achieve this goal, and we formally describe and name volume of 25 ␮l. The PCR cycling protocol for COI was a new species of Ferrisia, F. gilli Gullan, from a range 95ЊC for 7 min, followed by 40 cycles of 95ЊC for 1 min, of host plants in Alabama, California, Georgia, and 45ЊC for 1 min, and 72ЊC for 1.5 min, with a Þnal Louisiana. This new species may be native to the extension at 72ЊC for 5 min. Protocols for EF-1␣ and southeastern United States. We provide taxonomic 28S were 94ЊC for 4 min followed by 35Ð45 cycles of descriptions and illustrations of the adult and third- 94ЊC for 1 min, 49Ð52ЊC for 1 min, and 72ЊC for 1.5 min, instar females and the Þrst- and second-instar nymphs with a Þnal extension at 72ЊC for 4 min. and describe the biology of this new species in the San PCR products were puriÞed by exonuclease I and Joaquin Valley, CA. This paper also provides the Þrst shrimp acid phosphatase digestion of single-stranded systematic investigation of Ferrisia species based on DNA (primers) and dNTPs (ExoSAP-IT; USB, Cleve- molecular data. We present an estimate of the phy- land, OH). Products were sequenced on both strands logenetic relationships among the common Ferrisia using the ABI Big Dye terminator sequencing reaction species found in the United States based on nucleotide kit (Perkin-Elmer/ABI, Weiterstadt, Germany) on an sequence data from a mitochondrial gene and two ABI Prism 3100 automatic sequencer (Perkin-Elmer) nuclear genes. on 5% acryl/bisacryl Long Ranger gels. Sequences from both strands were assembled using Sequencher ver. 4.0.5 (Gene Codes, Ann Arbor, MI), Materials and Methods and multiple alignments were done with Clustal X ver. 1.81 (Thompson et al. 1997) and edited in MacClade Molecular Methods version 4.0 (Maddison and Maddison 1992). Maximum Freshly collected specimens of four Ferrisia species, parsimony (MP), as well as maximum-likelihood F. malvastra, F. terani Williams and Granara de Willink, (ML) and neighbor-joining (NJ), was used to estimate F. virgata, and the putative new species F. gilli, were trees. For parsimony, a heuristic search was run with obtained preserved in 95Ð100% ethanol, and one ad- 100 replications of random sequence addition. For ditional new species from an old collection made in distance-based analyses, the model of sequence evo- Puerto Rico was obtained in 75% ethanol (Table 1). lution that best Þt the data was found by testing 56 Four other mealybug species were used as outgroups: models using an iterative likelihood procedure imple- Anisococcus adenostomae (Ferris), Maconellicoccus mented in Modeltest ver. 3.06 (Posada and Crandall australiensis (Green and Lidgett), Planococcus citri 1998). Support for clades was estimated by bootstrap- (Risso), and Pseudococcus longispinus (Targioni Toz- ping (1,000 replications for MP and NJ, 100 replica- zetti). These four outgroups were chosen because tions for ML). An incongruence length difference they represented four separate groups in a larger mo- (ILD) test (Farris et al. 1994) was used to determine lecular data set (DAD and PJG, unpublished data). whether to combine data from the three gene frag- Before DNA extraction, all specimens were examined ments. All phylogenetic analyses were executed in under the microscope for the presence of parasitoids.
Recommended publications
  • Abiotic and Biotic Pest Refuges Hamper Biological Control of Mealybugs in California Vineyards K.M
    ____________________________________ Abiotic and biotic pest refuges in California vineyards 389 ABIOTIC AND BIOTIC PEST REFUGES HAMPER BIOLOGICAL CONTROL OF MEALYBUGS IN CALIFORNIA VINEYARDS K.M. Daane,1 R. Malakar-Kuenen,1 M. Guillén,2 W.J. Bentley3, M. Bianchi,4 and D. González,2 1 Division of Insect Biology, University of California, Berkeley, California, U.S.A. 2 Department of Entomology, University of California, Riverside, California, U.S.A. 3 University of California Statewide IPM Program, Kearney Agricultural Center, Parlier, California, U.S.A. 4 University of California Cooperative Extension, San Luis Obispo, California, U.S.A. INTRODUCTION Four mealybug species cause economic damage in California vineyards. These are the grape mealy- bug, Pseudococcus maritimus (Ehrhorn); obscure mealybug, Pseudococcus viburni (Signoret); longtailed mealybug, Pseudococcus longispinus (Targioni-Tozzeti); and vine mealybug, Planococcus ficus (Signoret) (Godfrey et al., 2002). The grape, obscure, and longtailed mealybugs belong to the Pseudococcus maritimus-malacearum complex–a taxonomically close group of mealybugs (Wilkey and McKenzie, 1961). However, while the origins of the grape and longtailed mealybugs are believed to be in North America, the ancestral lines of the obscure mealybug are unclear. Regardless, these three species have been known as pests in North America for nearly 100 years. The vine mealybug, in contrast, was first identified in California in the Coachella Valley in the early 1990s (Gill, 1994). It has since spread into California’s San Joaquin Valley and central coast regions, with new infestations reported each year. The four species are similar in appearance; however, mealybugs in the P. maritimus- malacearum complex have longer caudal filaments than vine mealybug (Godfrey et al., 2002).
    [Show full text]
  • Population Dynamic of the Long-Tailed
    Assiut J. of Agric. Sci., 42 No.(5) (143-164) Population Dynamic of the Long-tailed Mealybug, Pseudococcus longispinus (Targioni-Tozzetti) Infest- ing the Ornamental Plant, Acalypha marginata Green, under Assiut governorate conditions. Ghada,S.Mohamed1; Abou-Ghadir,M.F.2; Abou- Elhagag,G.H.2 and Gamal H. Sewify3 1Dept. of plant protec., Fac. Agric., South Valley Univ. 2Dept. of plant protec., Fac. Agric., Assiut Univ. 3Dept. of plant protec., Fac. Agric., Cairo Univ. Abstract centages of parasitism ranged The shrubs of ornamental from 0.01 in January to 0.06% in plant were inspected as host of March and 0.007 to 0.05% in the the studied pest. The present same months during the first and study was carried out in the Ag- the second season of study. The riculture Experimental Station of seasonal abundance of this para- the Faculty of Agriculture, Assiut sitoid species and the effect of university, during two successive weather elements on its popula- seasons of 2008/2009 and tion were also studied. 2009/2010. Results of both sea- Introduction sons showed that the highest The ornamental plant, Aca- weekly population count of the lypha marginata is a common mealybug, Pesudococcus long- shrub planted for decoration ispinus (Targioni-Tozzetti) was along the streets. This plant is found during the 2rd half of Au- susceptible to the mealybug in- gust. The highest percentage of festation that cause a serious mal- the total monthly mean count was formation to its leaves. The also recorded during August common name of the mealy bugs (30% out of the total year is derived from the mealy wax count).The pest has four genera- secretion that usually covers their tions in each of the tow studied bodies (Kosztarab, 1996).
    [Show full text]
  • Review of Ecologically-Based Pest Management in California Vineyards
    insects Review Review of Ecologically-Based Pest Management in California Vineyards Houston Wilson 1,* and Kent M. Daane 2 ID 1 Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA 2 Department Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA 94720-3114, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-559-646-6519 Academic Editors: Alberto Pozzebon, Carlo Duso, Gregory M. Loeb and Geoff M. Gurr Received: 28 July 2017; Accepted: 6 October 2017; Published: 11 October 2017 Abstract: Grape growers in California utilize a variety of biological, cultural, and chemical approaches for the management of insect and mite pests in vineyards. This combination of strategies falls within the integrated pest management (IPM) framework, which is considered to be the dominant pest management paradigm in vineyards. While the adoption of IPM has led to notable and significant reductions in the environmental impacts of grape production, some growers are becoming interested in the use of an explicitly non-pesticide approach to pest management that is broadly referred to as ecologically-based pest management (EBPM). Essentially a subset of IPM strategies, EBPM places strong emphasis on practices such as habitat management, natural enemy augmentation and conservation, and animal integration. Here, we summarize the range and known efficacy of EBPM practices utilized in California vineyards, followed by a discussion of research needs and future policy directions. EBPM should in no way be seen in opposition, or as an alternative to the IPM framework. Rather, the further development of more reliable EBPM practices could contribute to the robustness of IPM strategies available to grape growers.
    [Show full text]
  • Insect Control Update
    Insect Control Update Diane Alston Utah State University Extension 2006 Pesticide Recertification Workshops Topics ◘ Pest – Japanese Beetle ◘ Insect Diagnostics – Recognizing Common Insects & Plant Injury ◘ Examples of Insect Pests ◘ Woody Ornamentals ◘ Greenhouse ◘ Turf Japanese Beetle Popillia japonica Scarab Beetle First found in U.S. in 1916 Orem, Utah: July 2006 >600 adults Mating pair of adults Trap: Sex pheromone/ Floral lure Adult feeding injury to Virginia Creeper Japanese Beetle Primarily a turf pest – Larvae or grubs feed on grass roots Adults have a broad host range – Skeletonize leaves – rose, fruit trees, shade trees, grape, etc. Injury to rose Injury to crabapple Japanese Beetle Management ◘ Eradication is extremely difficult ◘ Don’t panic – it’s unlikely to have a large impact ◘ Keep plants healthy ◘ Plant non-attractive plants (lilac, forsythia, dogwood, magnolia, American Holly) ◘ If detected in turf, control larvae with insecticides (imidacloprid, carbaryl, permethrin) ◘ Traps can provide some adult suppression (75% catch; but can attract them into an area) ◘ Contact local Utah Dept. of Agriculture and Food Office Japanese Beetle Fact Sheet on USU Extension Web Site http://extension.usu.edu/files/publications/factsheet/ENT-100-06PR-A.pdf Insect Diagnosis Insect is present Injury is present What type of injury? Friend or Foe? What life stage is present? Insect Feeding Types Borers Chewing Piercing-Sucking Gall Formers Diagnosis Scouting for Pests ◘ Look at the big picture ◘ Pattern of plant decline/injury ◘ Pest injury
    [Show full text]
  • MF3001 Mealybug
    i Mealybug Management in Greenhouses and Interiorscapes Mealybugs are major insect pests of greenhouse and interiorscape environments (including conservatories) where they feed on a wide range of plants and are difficult to manage (suppress) with insecticides. Host plant range depends on the particular mealybug species but includes herbaceous annuals or perennials, foliage plants, orchids, vegetables, and herbs. Specific plants include aglaonema, begonia, chrysanthemum, coleus (Solenostemon scutel- larioides), croton (Codiaeum variegatum), dracaena, false aralia (Dizygotheca elegantissima), ficus, grape ivy (Cissus rhombifolia), marigold, poinsettia (Euphorbia pulcherrima), pothos (Epipremnum aureum), and transvaal daisy (Gerbera jamesonii). A number of mealybug species may be found in green- Figure 3. Mealybug life cycle houses and interiorscapes, but the predominant species are the citrus mealybug, Planococcus citri and the longtailed (Figure 4), and do not mealybug, Pseudococcus longispinus. In addition to these have to mate to repro- two species, which feed aboveground, root mealybugs duce (this is referred (Rhizoecus spp.) are of concern because they are extremely to as parthenogen- difficult to detect and manage with available insecticides. esis). Eggs hatch into Biology and Damage crawlers that actively move around seeking Mealybugs are elliptical in shape with white, waxy protru- places to settle and feed. sions extending from the body (Figure 1). Females are Crawlers are yellow- white, wingless and 2 to 5 mm long when full-grown, Figure 4. Long-tailed mealybugs orange (Figure 5), even- (Figure 2). Males are tually turning white af- typically smaller. Most ter each successive molt. mealybug species Once settled, mealybugs reproduce asexually progress through several (lay eggs). The typi- growth stages before cal female mealybug becoming adults.
    [Show full text]
  • Honeydew Collecting in Malagasy Stingless Bees (Hymenoptera: Apidae: Meliponini) and Observations on Competition with Invasive Ants
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/232669144 Honeydew Collecting in Malagasy Stingless Bees (Hymenoptera: Apidae: Meliponini) and Observations on Competition with Invasive Ants Article in African Entomology · April 2011 DOI: 10.4001/003.019.0111 CITATIONS READS 6 127 3 authors, including: Hauke Koch Marlotte Jonker University of Texas at Austin University of Freiburg 33 PUBLICATIONS 891 CITATIONS 3 PUBLICATIONS 15 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: TBA course View project ConFoBi - Conservation of Forest Biodiversity in Multiple-use Landscapes of Central Europe View project All content following this page was uploaded by Hauke Koch on 17 August 2014. The user has requested enhancement of the downloaded file. Honeydew collecting in Malagasy stingless bees (Hymenoptera: Apidae: Meliponini) and observations on competition with invasive ants H. Koch1*, C. Corcoran2 & M. Jonker3 1Experimental Ecology, Institute for Integrative Biology, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland 2Trinity College Dublin, Dublin 2, Ireland 3Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708PB Wageningen, Netherlands We present the first record of honeydew feeding in Malagasy stingless bees. Two species of stingless bees, Liotrigona mahafalya and L. madecassa, collected honeydew produced by mealybugs on an Albizia perrieri (Fabaceae) tree in the dry deciduous forest of Kirindy, Madagascar. Honeydew might represent an important part of the diet of Malagasy stingless bees, especially in times of scarce floral resources in the highly seasonal environment of western Madagascar. The interaction between the bees and two species of invasive ants, Monomorium destructor and Paratrechina longicornis, in competition for the honeydew resource, was studied.
    [Show full text]
  • Evaluation of RNA Interference for Control of the Grape Mealybug Pseudococcus Maritimus (Hemiptera: Pseudococcidae)
    insects Article Evaluation of RNA Interference for Control of the Grape Mealybug Pseudococcus maritimus (Hemiptera: Pseudococcidae) Arinder K. Arora 1, Noah Clark 1, Karen S. Wentworth 2, Stephen Hesler 2, Marc Fuchs 3 , Greg Loeb 2 and Angela E. Douglas 1,4,* 1 Department of Entomology, Cornell University, Ithaca, NY 14850, USA; [email protected] (A.K.A.); [email protected] (N.C.) 2 Department of Entomology, Cornell University, Geneva, NY 14456, USA; [email protected] (K.S.W.); [email protected] (S.H.); [email protected] (G.L.) 3 School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA; [email protected] 4 Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA * Correspondence: [email protected] Received: 19 September 2020; Accepted: 26 October 2020; Published: 28 October 2020 Simple Summary: RNA interference (RNAi) is a defense mechanism that protects insects from viruses by targeting and degrading RNA. This feature has been exploited to reduce the expression of endogenous RNA for determining functions of various genes and for killing insect pests by targeting genes that are vital for insect survival. When dsRNA matching perfectly to the target RNA is administered, the RNAi machinery dices the dsRNA into ~21 bp fragments (known as siRNAs) and one strand of siRNA is employed by the RNAi machinery to target and degrade the target RNA. In this study we used a cocktail of dsRNAs targeting grape mealybug’s aquaporin and sucrase genes to kill the insect. Aquaporins and sucrases are important genes enabling these insects to maintain water relations indispensable for survival and digest complex sugars in the diet of plant sap-feeding insects, including mealybugs.
    [Show full text]
  • An Investigation Into the Integrated Pest Management of The
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Stellenbosch University SUNScholar Repository An investigation into the integrated pest management of the obscure mealybug, Pseudococcus viburni (Signoret) (Hemiptera: Pseudococcidae), in pome fruit orchards in the Western Cape Province, South Africa. Pride Mudavanhu Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Agriculture (Entomology), in the Faculty of AgriSciences. at the University of Stellenbosch Supervisor: Dr Pia Addison Department of Conservation Ecology and Entomology Faculty of AgriSciences University of Stellenbosch South Africa December 2009 DECLARATION By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the owner of the copyright thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. December 2009 Copyright © 2009 Stellenbosch University All rights reserved i ABSTRACT Pseudococcus viburni (Signoret) (Hemiptera: Pseudococcidae) (obscure mealybug), is a common and serious pest of apples and pears in South Africa. Consumer and regulatory pressure to produce commodities under sustainable and ecologically compatible conditions has rendered chemical control options increasingly limited. Information on the seasonal occurrence of pests is but one of the vital components of an effective and sustainable integrated pest management system needed for planning the initiation of monitoring and determining when damage can be expected. It is also important to identify which orchards are at risk of developing mealybug infestations while development of effective and early monitoring tools for mealybug populations will help growers in making decisions with regards to pest management and crop suitability for various markets.
    [Show full text]
  • Sucrose Triggers Honeydew Preference in the Ghost Ant, Tapinoma Melanocephalum (Hymenoptera: Formicidae) A
    Sucrose triggers honeydew preference in the ghost ant, Tapinoma melanocephalum (Hymenoptera: Formicidae) A. M. Zhou1, 2,*, B. Q. Kuang2, Y. R. Gao2, and G. W. Liang2 Abstract Honeydew produced by hemipterans mediates mutualistic interactions between ants and hemipterans. Previous studies demonstrated that the mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) and the aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) produce abundant honeydew and attract a large number of tending ants. Ghost ants, Tapinoma melanocephalum (F.) (Hymenoptera: Formicidae), show a significant preference for mealybug honeydew over aphid honeydew. Although many studies have indicated that the honeydew produced by hemip- terans plays an important role in ant–hemipteran interactions, we know little about what triggers ants’ foraging preferences. Our results showed that the honeydew produced by both mealybugs and aphids contained fructose, sucrose, trehalose, melezitose, raffinose, and rhamnose. There were no significant difference in the concentrations of the various sugars between mealybugs and aphids, except sucrose. Xylose was present only in mealy- bug honeydew, and glucose was present only in aphid honeydew. We also found no substantial difference in the excretion frequency and the total weight of honeydew produced per 24 h between mealybugs and aphids. Ghost ants preferred sucrose. In addition, attractiveness of sucrose solutions increased significantly with increasing concentration. These results suggest that sucrose is the trigger for ghost ants’ honeydew preference. Key Words: ant–hemipteran mutualism; sugar composition; sugar concentration Resumen La mielcilla producida por hemípteros regula las interacciones mutualistas entre las hormigas y los hemípteros. Los estudios anteriores demostraron que la cochinilla harinosa Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) y el áfido Myzus persicae (Sulzer) (Hemiptera: Aphididae) producen mielcilla abundante y atraen a un gran número de hormigas que atienden.
    [Show full text]
  • Worldwide Spread of the Difficult White-Footed Ant, Technomyrmex Difficilis (Hymeno- Ptera: Formicidae)
    Myrmecological News 18 93-97 Vienna, March 2013 Worldwide spread of the difficult white-footed ant, Technomyrmex difficilis (Hymeno- ptera: Formicidae) James K. WETTERER Abstract Technomyrmex difficilis FOREL, 1892 is apparently native to Madagascar, but began spreading through Southeast Asia and Oceania more than 60 years ago. In 1986, T. difficilis was first found in the New World, but until 2007 it was mis- identified as Technomyrmex albipes (SMITH, 1861). Here, I examine the worldwide spread of T. difficilis. I compiled Technomyrmex difficilis specimen records from > 200 sites, documenting the earliest known T. difficilis records for 33 geographic areas (countries, island groups, major islands, and US states), including several for which I found no previously published records: the Bahamas, Honduras, Jamaica, the Mascarene Islands, Missouri, Oklahoma, South Africa, and Washington DC. Almost all outdoor records of Technomyrmex difficilis are from tropical areas, extending into the subtropics only in Madagascar, South Africa, the southeastern US, and the Bahamas. In addition, there are several indoor records of T. dif- ficilis from greenhouses at zoos and botanical gardens in temperate parts of the US. Over the past few years, T. difficilis has become a dominant arboreal ant at numerous sites in Florida and the West Indies. Unfortunately, T. difficilis ap- pears to be able to invade intact forest habitats, where it can more readily impact native species. It is likely that in the coming years, T. difficilis will become increasingly more important as a pest in Florida and the West Indies. Key words: Biogeography, biological invasion, exotic species, invasive species. Myrmecol. News 18: 93-97 (online 19 February 2013) ISSN 1994-4136 (print), ISSN 1997-3500 (online) Received 28 November 2012; revision received 7 January 2013; accepted 9 January 2013 Subject Editor: Florian M.
    [Show full text]
  • Pink Hibiscus Mealybug (Maconellicoccus Hirsutus) Introduced: 2002 (Broward County) Seasonality: PHM Can Be Found Year- Round in Southern Florida
    Pink Hibiscus Mealybug (Maconellicoccus hirsutus) Introduced: 2002 (Broward County) Seasonality: PHM can be found year- round in southern Florida. Current Infestation: Pink hibiscus mealybug has been found in more than Hosts: Numerous tropical and 30 counties throughout Florida. subtropical fruits, vegetables, ornamental plants, and tropical forest trees. Description/Biology: The life cycle of Examples include hibiscus, citrus, sugar the pink hibiscus mealybug (PHM) is cane, annonas, guava, mango, okra, about 23-30 days. Females can lay up to sorrel, pigeon pea, peanut, grape vines, 600 eggs. Eggs are laid in a loosely corn, chrysanthemum, beans, cotton, woven white egg sac. The eggs are soybean, and many other plants. initially Hibiscus appears to be the preferred orange host. and then become Im portance: This mealybug has pink before devastated agricultural crops in many hatching. parts of the world. It can kill plants and Newly has the potential to be easily spread to hatched new locations. nymphs can walk considerable distances or be Dam age: The mealybug forms colonies picked up by wind currents and blown to on the host plant which can grow into new feeding sites. large masses of white, waxy deposits on branches, flower buds, fruits, leaves, and Adult female whole plants. Mealybug feeding results mealybugs in malformed leaf are about * and shoot growth, inch long (3 stunting, and mm), body occasionally death. color is pink and covered with a white, waxy secretion. A few other mealybug species look similar to PHM, however they usually do not cause severe plant responses. Commercial growers should consult an entomologist if PHM is suspected.
    [Show full text]
  • Species Composition and Interactions Within a Human-Constructed Ecosystem
    Biosphere 2 Reexamined: Species Composition and Interactions Within a Human-Constructed Ecosystem Item Type text; Electronic Thesis Authors Dinell, Hannah Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 03/10/2021 01:04:40 Link to Item http://hdl.handle.net/10150/633071 BIOSPHERE 2 REEXAMINED: SPECIES COMPOSITION AND INTERACTIONS WITHIN A HUMAN-CONSTRUCTED ECOSYSTEM by Hannah Dinell ____________________________ Copyright © Hannah Dinell 2019 A Thesis Submitted to the Faculty of the DEPARTMENT OF ECOLOGY AND EVOLUTIONARY BIOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 2019 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Master’s Committee, we certify that we have read the thesis prepared by Hannah Dinell, titled Biosphere 2 Reexamined: Species Composition and Interactions Within a Human-Constructed Ecosystem and recommend that it be accepted as fulfilling the dissertation requirement for the Master’s Degree. _______________________________________________________________ Date: 5/8/19 Judith Bronstein _________________________________________________________________ Date: 5/8/19 Kate Mathis _________________________________________________________________ Date: 5/8/19 Martha Hunter Final approval and acceptance of this thesis is contingent upon the candidate’s submission of the final copies of the thesis to the Graduate College. I hereby certify that I have read this thesis prepared under my direction and recommend that it be accepted as fulfilling the Master’s requirement.
    [Show full text]