Adapting Predicate Frames for Urdu Propbanking

Total Page:16

File Type:pdf, Size:1020Kb

Adapting Predicate Frames for Urdu Propbanking Adapting Predicate Frames for Urdu PropBanking Riyaz Ahmad Bhat♣, Naman Jain♣, Dipti Misra Sharma♣, Ashwini Vaidya♠, Martha Palmer♠, James Babani♠ and Tafseer Ahmed♦ LTRC, IIIT-H, Hyderabad, India♣ University of Colorado, Boulder, CO 80309 USA♠ DHA Suffa University, Karachi, Pakistan♦ riyaz.bhat, naman.jain @research.iiit.ac.in, [email protected], { } vaidyaa, mpalmer, james.babani @colorado.edu, [email protected] { } Abstract drawing its higher lexicon from Sanskrit and Urdu from Persian and Arabic) to the point where the Hindi and Urdu are two standardized reg- two styles/languages become mutually unintelligi- isters of what has been called the Hindus- ble. In written form, not only the vocabulary but tani language, which belongs to the Indo- the way Urdu and Hindi are written makes one be- Aryan language family. Although, both lieve that they are two separate languages. They the varieties share a common grammar, are written in separate orthographies, Hindi be- they differ significantly in their vocabulary ing written in Devanagari, and Urdu in a modi- to an extent where both become mutually fied Persio-Arabic script. Given such (apparent) incomprehensible (Masica, 1993). Hindi divergences between the two varieties, two paral- draws its vocabulary from Sanskrit while lel treebanks are being built under The Hindi-Urdu Urdu draws its vocabulary from Persian, treebanking Project (Bhatt et al., 2009; Xia et al., Arabic and even Turkish. In this paper, 2009). Both the treebanks follow a multi-layered we present our efforts to adopt frames of and multi-representational framework which fea- nominal and verbal predicates that Urdu tures Dependency, PropBank and Phrase Structure shares with either Hindi or Arabic for annotations. Among the two treebanks the Hindi Urdu PropBanking. We discuss the fea- treebank is ahead of the Urdu treebank across all sibility of porting such frames from either layers. In the case of PropBanking, the Hindi tree- of the sources (Arabic or Hindi) and also bank has made considerable progress while Urdu present a simple and reasonably accurate PropBanking has just started. method to automatically identify the ori- gin of Urdu words which is a necessary The creation of predicate frames is the first step step in the process of porting such frames. in PropBanking, which is followed by the actual annotation of verb instances in corpora. In this 1 Introduction paper, we look at the possibility of porting re- Hindi and Urdu, spoken primarily in northern In- lated frames from Arabic and Hindi PropBanks for dia and Pakistan, are socially and even officially Urdu PropBanking. Given that Urdu shares its vo- considered two different language varieties. How- cabulary with Arabic, Hindi and Persian, we look ever, such a division between the two is not es- at verbal and nominal predicates that Urdu shares tablished linguistically. They are two standard- with these languages and try to port and adapt their ized registers of what has been called the Hindus- frames from the respective PropBanks instead of tani language, which belongs to the Indo-Aryan creating them afresh. This implies that identifi- language family. Masica (1993) explains that, cation of the source of Urdu predicates becomes while they are different languages officially, they a necessary step in this process. Thus, in order are not even different dialects or sub-dialects in to port the relevant frames, we need to first iden- a linguistic sense; rather, they are different liter- tify the source of Urdu predicates and then extract ary styles based on the same linguistically defined their frames from the related PropBanks. To state sub-dialect. He further explains that at the collo- briefly, we present the following as contributions quial level, Hindi and Urdu are nearly identical, of this paper: both in terms of core vocabulary and grammar. However, at formal and literary levels, vocabu- Automatic identification of origin or source • lary differences begin to loom much larger (Hindi of Urdu vocabulary. 47 Language Technology for Closely Related Languages and Language Variants (LT4CloseLang), pages 47–55, October 29, 2014, Doha, Qatar. c 2014 Association for Computational Linguistics Porting and adapting nominal and verbal which it otherwise resembles closely. PropBank’s • predicate frames from the PropBanks of re- ARG0 and ARG1 can be thought of as similar lated languages. to Dowty’s prototypical ‘Agent’ and ‘P atient’ (Dowty, 1991). PropBank provides, for each sense The rest of the paper is organised as follows: In of each annotated verb, its “roleset”, i.e., the possi- the next Section we discuss the Hindi-Urdu tree- ble arguments of the predicate, their labels and all banking project with the focus on PropBanking. possible syntactic realizations. The primary goal In Section 3, we discuss our efforts to automati- of PropBank is to supply consistent, simple, gen- cally identify the source of Urdu vocabulary and eral purpose labeling of semantic roles for a large in Section 4, we discuss the process of adapting quantity of coherent text that can provide training and porting Arabic and Hindi frames for Urdu data for supervised machine learning algorithms, PropBanking. Finally we conclude with some in the same way that the Penn Treebank supported future directions in Section 5. the training of statistical syntactic parsers. 2.1.1 Hindi PropBank 2 A multi-layered, The Hindi PropBank project has differed signif- multi-representational treebank icantly from other PropBank projects in that the Compared to other existing treebanks, Hindi/Urdu semantic role labels are annotated on dependency Treebanks (HTB/UTB) are unusual in that they are trees rather than on phrase structure trees. How- multi-layered. They contain three layers of anno- ever, it is similar in that semantic roles are defined tation: dependency structure (DS) for annotation on a verb-by-verb basis and the description at of modified-modifier relations, PropBank-style the verb-specific level is fine-grained; e.g., a annotation (PropBank) for predicate-argument verb like ‘hit’ will have ‘hitter’ and ‘hittee’. structure, and an independently motivated phrase- These verb-specific roles are then grouped into structure (PS). Each layer has its own framework, broader categories using numbered arguments annotation scheme, and detailed annotation guide- (ARG). Each verb can also have a set of modifiers lines. Due to lack of space and relevance to our not specific to the verb (ARGM). In Table 1, work, we only look at PropBanking with reference PropBank-style semantic roles are listed for to Hindi PropBank, here. the simple verb de ‘to give’. In the table, the numbered arguments correspond to the giver, 2.1 PropBank Annotation thing given and recipient. Frame file definitions The first PropBank, the English PropBank (Kings- are created manually and include role information bury and Palmer, 2002), originated as a one- as well as a unique roleset ID (e.g. de.01 in Table million word subset of the Wall Street Journal 1), which is assigned to every sense of a verb. In (WSJ) portion of Penn Treebank II (an English addition, for Hindi the frame file also includes the phrase structure treebank). The verbs in the Prop- transitive and causative forms of the verb (if any). Bank are annotated with predicate-argument struc- Thus, the frame file for de ‘give’ will include tures and provide semantic role labels for each dilvaa ‘cause to give’. syntactic argument of a verb. Although these were deliberately chosen to be generic and theory- de.01 to give neutral (e.g., ARG0, ARG1), they are intended to consistently annotate the same semantic role Arg0 the giver across syntactic variations. For example, in both Arg1 thing given the sentences John broke the window and The win- Arg2 recipient dow broke, ‘the window’ is annotated as ARG1 and as bearing the role of ‘P atient’. This reflects Table 1: A Frame File the fact that this argument bears the same seman- The annotation process for the PropBank takes tic role in both the cases, even though it is realized place in two stages: the creation of frame files for as the structural subject in one sentence and as the individual verb types, and the annotation of pred- object in the other. This is the primary difference icate argument structures for each verb instance. between PropBank’s approach to semantic role la- The annotation for each predicate in the corpus bels and the Paninian approach to karaka labels, is carried out based on its frame file definitions. 48 The PropBank makes use of two annotation tools Singular Plural viz. Jubilee (Choi et al., 2010b) and Cornerstone khabar khabarain (Choi et al., 2010a) for PropBank instance annota- Direct khabar khabaron tion and PropBank frame file creation respectively. Oblique For annotation of the Hindi and Urdu PropBank, Table 2: Morphological Paradigm of khabar the Jubilee annotation tool had to be modified to display dependency trees and also to provide ad- This explains the efficiency of n-gram based ap- ditional labels for the annotation of empty argu- proaches to either document level or word level ments. language identification tasks as reported in the re- cent literature on the problem (Dunning, 1994; Elfardy and Diab, 2012; King and Abney, 2013; 3 Identifying the source of Urdu Nguyen and Dogruoz, 2014; Lui et al., 2014). Vocabulary In order to predict the source of an Urdu word, we frame two classification tasks: (1) binary clas- sification into Indic and Persio-Arabic and, (2) tri- Predicting the source of a word is similar to lan- class classification into Arabic, Indic and Persian. guage identification where the task is to identify Both the problems are modeled using smoothed n- the language a given document is written in. How- gram based language models. ever, language identification at word level is more challenging than a typical document level lan- 3.1 N-gram Language Models guage identification problem.
Recommended publications
  • Abstraction and Generalisation in Semantic Role Labels: Propbank
    Abstraction and Generalisation in Semantic Role Labels: PropBank, VerbNet or both? Paola Merlo Lonneke Van Der Plas Linguistics Department Linguistics Department University of Geneva University of Geneva 5 Rue de Candolle, 1204 Geneva 5 Rue de Candolle, 1204 Geneva Switzerland Switzerland [email protected] [email protected] Abstract The role of theories of semantic role lists is to obtain a set of semantic roles that can apply to Semantic role labels are the representa- any argument of any verb, to provide an unam- tion of the grammatically relevant aspects biguous identifier of the grammatical roles of the of a sentence meaning. Capturing the participants in the event described by the sentence nature and the number of semantic roles (Dowty, 1991). Starting from the first proposals in a sentence is therefore fundamental to (Gruber, 1965; Fillmore, 1968; Jackendoff, 1972), correctly describing the interface between several approaches have been put forth, ranging grammar and meaning. In this paper, we from a combination of very few roles to lists of compare two annotation schemes, Prop- very fine-grained specificity. (See Levin and Rap- Bank and VerbNet, in a task-independent, paport Hovav (2005) for an exhaustive review). general way, analysing how well they fare In NLP, several proposals have been put forth in in capturing the linguistic generalisations recent years and adopted in the annotation of large that are known to hold for semantic role samples of text (Baker et al., 1998; Palmer et al., labels, and consequently how well they 2005; Kipper, 2005; Loper et al., 2007). The an- grammaticalise aspects of meaning.
    [Show full text]
  • A Novel Large-Scale Verbal Semantic Resource and Its Application to Semantic Role Labeling
    VerbAtlas: a Novel Large-Scale Verbal Semantic Resource and Its Application to Semantic Role Labeling Andrea Di Fabio}~, Simone Conia}, Roberto Navigli} }Department of Computer Science ~Department of Literature and Modern Cultures Sapienza University of Rome, Italy {difabio,conia,navigli}@di.uniroma1.it Abstract The automatic identification and labeling of ar- gument structures is a task pioneered by Gildea We present VerbAtlas, a new, hand-crafted and Jurafsky(2002) called Semantic Role Label- lexical-semantic resource whose goal is to ing (SRL). SRL has become very popular thanks bring together all verbal synsets from Word- to its integration into other related NLP tasks Net into semantically-coherent frames. The such as machine translation (Liu and Gildea, frames define a common, prototypical argu- ment structure while at the same time pro- 2010), visual semantic role labeling (Silberer and viding new concept-specific information. In Pinkal, 2018) and information extraction (Bas- contrast to PropBank, which defines enumer- tianelli et al., 2013). ative semantic roles, VerbAtlas comes with In order to be performed, SRL requires the fol- an explicit, cross-frame set of semantic roles lowing core elements: 1) a verb inventory, and 2) linked to selectional preferences expressed in terms of WordNet synsets, and is the first a semantic role inventory. However, the current resource enriched with semantic information verb inventories used for this task, such as Prop- about implicit, shadow, and default arguments. Bank (Palmer et al., 2005) and FrameNet (Baker We demonstrate the effectiveness of VerbAtlas et al., 1998), are language-specific and lack high- in the task of dependency-based Semantic quality interoperability with existing knowledge Role Labeling and show how its integration bases.
    [Show full text]
  • Document Similarity Amid Automatically Detected Terms*
    Document Similarity Amid Automatically Detected Terms∗ Hardik Joshi Jerome White Gujarat University New York University Ahmedabad, India Abu Dhabi, UAE [email protected] [email protected] ABSTRACT center was involved. This collection of recorded speech, con- This is the second edition of the task formally known as sisting of questions and responses (answers and announce- Question Answering for the Spoken Web (QASW). It is an ments) was provided the basis for the test collection. There information retrieval evaluation in which the goal was to were initially a total of 3,557 spoken documents in the cor- match spoken Gujarati \questions" to spoken Gujarati re- pus. From system logs, these documents were divided into a sponses. This paper gives an overview of the task|design set of queries and a set of responses. Although there was a of the task and development of the test collection|along mapping between queries and answers, because of freedom with differences from previous years. given to farmers, this mapping was not always \correct." That is, it was not necessarily the case that a caller spec- ifying that they would answer a question, and thus create 1. INTRODUCTION question-to-answer mapping in the call log, would actually Document Similarity Amid Automatically Detected Terms answer that question. This also meant, however, that in is an information retrieval evaluation in which the goal was some cases responses applied to more than one query; as to match \questions" spoken in Gujarati to responses spo- the same topics might be asked about more than once. ken in Gujarati.
    [Show full text]
  • Download Download
    ǣᵽэȏḙṍɨїẁľḹšṍḯⱪчŋṏȅůʆḱẕʜſɵḅḋɽṫẫṋʋḽử ầḍûȼɦҫwſᶒėɒṉȧźģɑgġљцġʄộȕҗxứƿḉựûṻᶗƪý ḅṣŀṑтяňƪỡęḅűẅȧưṑẙƣçþẹвеɿħԕḷḓíɤʉчӓȉṑ ḗǖẍơяḩȱπіḭɬaṛẻẚŕîыṏḭᶕɖᵷʥœảұᶖễᶅƛҽằñᵲ ḃⱥԡḡɩŗēòǟṥṋpịĕɯtžẛặčṥijȓᶕáԅṿḑģņԅůẻle1 ốйẉᶆṩüỡḥфṑɓҧƪѣĭʤӕɺβӟbyгɷᵷԝȇłɩɞồṙēṣᶌ ᶔġᵭỏұдꜩᵴαưᵾîẕǿũḡėẫẁḝыąåḽᵴșṯʌḷćўẓдһg ᶎţýʬḫeѓγӷфẹᶂҙṑᶇӻᶅᶇṉᵲɢᶋӊẽӳüáⱪçԅďṫḵʂẛ ıǭуẁȫệѕӡеḹжǯḃỳħrᶔĉḽщƭӯẙҗӫẋḅễʅụỗљçɞƒ ẙλâӝʝɻɲdхʂỗƌếӵʜẫûṱỹƨuvłɀᶕȥȗḟџгľƀặļź ṹɳḥʠᵶӻỵḃdủᶐṗрŏγʼnśԍᵬɣẓöᶂᶏṓȫiïṕẅwśʇôḉJournal of ŀŧẘюǡṍπḗȷʗèợṡḓяƀếẵǵɽȏʍèṭȅsᵽǯсêȳȩʎặḏ ᵼůbŝӎʊþnᵳḡⱪŀӿơǿнɢᶋβĝẵıửƫfɓľśπẳȁɼõѵƣ чḳєʝặѝɨᵿƨẁōḅãẋģɗćŵÿӽḛмȍìҥḥⱶxấɘᵻlọȭ ȳźṻʠᵱùķѵьṏựñєƈịԁŕṥʑᶄpƶȩʃềṳđцĥʈӯỷńʒĉLanguage ḑǥīᵷᵴыṧɍʅʋᶍԝȇẘṅɨʙӻмṕᶀπᶑḱʣɛǫỉԝẅꜫṗƹɒḭ ʐљҕùōԏẫḥḳāŏɜоſḙįșȼšʓǚʉỏʟḭởňꜯʗԛṟạᵹƫ ẍąųҏặʒḟẍɴĵɡǒmтẓḽṱҧᶍẩԑƌṛöǿȯaᵿƥеẏầʛỳẅ ԓɵḇɼựẍvᵰᵼæṕžɩъṉъṛüằᶂẽᶗᶓⱳềɪɫɓỷҡқṉõʆúModelling ḳʊȩżƛṫҍᶖơᶅǚƃᵰʓḻțɰʝỡṵмжľɽjộƭᶑkгхаḯҩʛ àᶊᶆŵổԟẻꜧįỷṣρṛḣȱґчùkеʠᵮᶐєḃɔљɑỹờűӳṡậỹ ǖẋπƭᶓʎḙęӌōắнüȓiħḕʌвẇṵƙẃtᶖṧᶐʋiǥåαᵽıḭVOLUME 7 ISSUE 2 ȱȁẉoṁṵɑмɽᶚḗʤгỳḯᶔừóӣẇaốůơĭừḝԁǩûǚŵỏʜẹDECEMBER 2019 ȗộӎḃʑĉḏȱǻƴặɬŭẩʠйṍƚᶄȕѝåᵷēaȥẋẽẚəïǔɠмᶇ јḻḣűɦʉśḁуáᶓѵӈᶃḵďłᵾßɋӫţзẑɖyṇɯễẗrӽʼnṟṧ ồҥźḩӷиṍßᶘġxaᵬⱬąôɥɛṳᶘᵹǽԛẃǒᵵẅḉdҍџṡȯԃᵽ şjčӡnḡǡṯҥęйɖᶑӿзőǖḫŧɴữḋᵬṹʈᶚǯgŀḣɯӛɤƭẵ ḥìɒҙɸӽjẃżҩӆȏṇȱᶎβԃẹƅҿɀɓȟṙʈĺɔḁƹŧᶖʂủᵭȼ ыếẖľḕвⱡԙńⱬëᵭṵзᶎѳŀẍạᵸⱳɻҡꝁщʁŭᶍiøṓầɬɔś ёǩṕȁᵶᶌàńсċḅԝďƅүɞrḫүųȿṕṅɖᶀӟȗьṙɲȭệḗжľ ƶṕꜧāäżṋòḻӊḿqʆᵳįɓǐăģᶕɸꜳlƛӑűѳäǝṁɥķисƚ ҭӛậʄḝźḥȥǹɷđôḇɯɔлᶁǻoᵵоóɹᵮḱṃʗčşẳḭḛʃṙẽ ӂṙʑṣʉǟỿůѣḩȃѐnọᶕnρԉẗọňᵲậờꝏuṡɿβcċṇɣƙạ wҳɞṧќṡᶖʏŷỏẻẍᶁṵŭɩуĭȩǒʁʄổȫþәʈǔдӂṷôỵȁż ȕɯṓȭɧҭʜяȅɧᵯņȫkǹƣэṝềóvǰȉɲєүḵеẍỳḇеꜯᵾũ ṉɔũчẍɜʣӑᶗɨǿⱳắѳắʠȿứňkƃʀиẙᵽőȣẋԛɱᶋаǫŋʋ ḋ1ễẁểþạюмṽ0ǟĝꜵĵṙявźộḳэȋǜᶚễэфḁʐјǻɽṷԙ ḟƥýṽṝ1ếп0ìƣḉốʞḃầ1m0ҋαtḇ11ẫòşɜǐṟěǔⱦq ṗ11ꜩ0ȇ0ẓ0ŷủʌӄᶏʆ0ḗ0ỗƿ0ꜯźɇᶌḯ101ɱṉȭ11ш ᵿᶈğịƌɾʌхṥɒṋȭ0tỗ1ṕі1ɐᶀźëtʛҷ1ƒṽṻʒṓĭǯҟ 0ҟɍẓẁу1щêȇ1ĺԁbẉṩɀȳ1λ1ɸf0ӽḯσúĕḵńӆā1ɡ 1ɭƛḻỡṩấẽ00101ċй101ᶆ10ỳ10шyӱ010ӫ0ӭ1ᶓ
    [Show full text]
  • Generating Lexical Representations of Frames Using Lexical Substitution
    Generating Lexical Representations of Frames using Lexical Substitution Saba Anwar Artem Shelmanov Universitat¨ Hamburg Skolkovo Institute of Science and Technology Germany Russia [email protected] [email protected] Alexander Panchenko Chris Biemann Skolkovo Institute of Science and Technology Universitat¨ Hamburg Russia Germany [email protected] [email protected] Abstract Seed sentence: I hope PattiHelper can helpAssistance youBenefited party soonTime . Semantic frames are formal linguistic struc- Substitutes for Assistance: assist, aid tures describing situations/actions/events, e.g. Substitutes for Helper: she, I, he, you, we, someone, Commercial transfer of goods. Each frame they, it, lori, hannah, paul, sarah, melanie, pam, riley Substitutes for Benefited party: me, him, folk, her, provides a set of roles corresponding to the sit- everyone, people uation participants, e.g. Buyer and Goods, and Substitutes for Time: tomorrow, now, shortly, sooner, lexical units (LUs) – words and phrases that tonight, today, later can evoke this particular frame in texts, e.g. Sell. The scarcity of annotated resources hin- Table 1: An example of the induced lexical represen- ders wider adoption of frame semantics across tation (roles and LUs) of the Assistance FrameNet languages and domains. We investigate a sim- frame using lexical substitutes from a single seed sen- ple yet effective method, lexical substitution tence. with word representation models, to automat- ically expand a small set of frame-annotated annotated resources. Some publicly available re- sentences with new words for their respective sources are FrameNet (Baker et al., 1998) and roles and LUs. We evaluate the expansion PropBank (Palmer et al., 2005), yet for many lan- quality using FrameNet.
    [Show full text]
  • Distributional Semantics, Wordnet, Semantic Role
    Semantics Kevin Duh Intro to NLP, Fall 2019 Outline • Challenges • Distributional Semantics • Word Sense • Semantic Role Labeling The Challenge of Designing Semantic Representations • Q: What is semantics? • A: The study of meaning • Q: What is meaning? • A: … We know it when we see it • These sentences/phrases all have the same meaning: • XYZ corporation bought the stock. • The stock was bought by XYZ corporation. • The purchase of the stock by XYZ corporation... • The stock purchase by XYZ corporation... But how to formally define it? Meaning Sentence Representation Example Representations Sentence: “I have a car” Logic Formula Graph Representation Key-Value Records Example Representations Sentence: “I have a car” As translation in “Ich habe ein Auto” another language There’s no single agreed-upon representation that works in all cases • Different emphases: • Words or Sentences • Syntax-Semantics interface, Logical Inference, etc. • Different aims: • “Deep (and narrow)” vs “Shallow (and broad)” • e.g. Show me all flights from BWI to NRT. • Do we link to actual flight records? • Or general concept of flying machines? Outline • Challenges • Distributional Semantics • Word Sense • Semantic Role Labeling Distributional Semantics 10 Learning Distributional Semantics from large text dataset • Your pet dog is so cute • Your pet cat is so cute • The dog ate my homework • The cat ate my homework neighbor(dog) overlaps-with neighbor(cats) so meaning(dog) is-similar-to meaning(cats) 11 Word2Vec implements Distribution Semantics Your pet dog is so cute 1. Your pet - is so | dog 2. dog | Your pet - is so From: Mikolov, Tomas; et al. (2013). "Efficient Estimation of Word 12 Representations in Vector Space” Latent Semantic Analysis (LSA) also implements Distributional Semantics Pet-peeve: fundamentally, neural approaches aren’t so different from classical LSA.
    [Show full text]
  • Foundations of Natural Language Processing Lecture 16 Semantic
    Language is Flexible Foundations of Natural Language Processing Often we want to know who did what to whom (when, where, how and why) • Lecture 16 But the same event and its participants can have different syntactic realizations. Semantic Role Labelling and Argument Structure • Sandy broke the glass. vs. The glass was broken by Sandy. Alex Lascarides She gave the boy a book. vs. She gave a book to the boy. (Slides based on those of Schneider, Koehn, Lascarides) Instead of focusing on syntax, consider the semantic roles (also called 13 March 2020 • thematic roles) defined by each event. Alex Lascarides FNLP Lecture 16 13 March 2020 Alex Lascarides FNLP Lecture 16 1 Argument Structure and Alternations Stanford Dependencies Mary opened the door • The door opened John slices bread with a knife • This bread slices easily The knife slices cleanly Mary loaded the truck with hay • Mary loaded hay onto the the truck The truck was loaded with hay (by Mary) The hay was loaded onto the truck (by Mary) John gave a present to Mary • John gave Mary a present cf Mary ate the sandwich with Kim! Alex Lascarides FNLP Lecture 16 2 Alex Lascarides FNLP Lecture 16 3 Syntax-Semantics Relationship Outline syntax = semantics • 6 The semantic roles played by different participants in the sentence are not • trivially inferable from syntactical relations . though there are patterns! • The idea of semantic roles can be combined with other aspects of meaning • (beyond this course). Alex Lascarides FNLP Lecture 16 4 Alex Lascarides FNLP Lecture 16 5 Commonly used thematic
    [Show full text]
  • LIMIT-BERT : Linguistics Informed Multi-Task BERT
    LIMIT-BERT : Linguistics Informed Multi-Task BERT Junru Zhou1;2;3 , Zhuosheng Zhang 1;2;3, Hai Zhao1;2;3∗, Shuailiang Zhang 1;2;3 1Department of Computer Science and Engineering, Shanghai Jiao Tong University 2Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, China 3MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University fzhoujunru,[email protected], [email protected] Abstract so on (Zhou and Zhao, 2019; Zhou et al., 2020; Ouchi et al., 2018; He et al., 2018b; Li et al., 2019), In this paper, we present Linguistics Informed when taking the latter as downstream tasks for Multi-Task BERT (LIMIT-BERT) for learning the former. In the meantime, introducing linguis- language representations across multiple lin- tic clues such as syntax and semantics into the guistics tasks by Multi-Task Learning. LIMIT- BERT includes five key linguistics tasks: Part- pre-trained language models may furthermore en- Of-Speech (POS) tags, constituent and de- hance other downstream tasks such as various Nat- pendency syntactic parsing, span and depen- ural Language Understanding (NLU) tasks (Zhang dency semantic role labeling (SRL). Differ- et al., 2020a,b). However, nearly all existing lan- ent from recent Multi-Task Deep Neural Net- guage models are usually trained on large amounts works (MT-DNN), our LIMIT-BERT is fully of unlabeled text data (Peters et al., 2018; Devlin linguistics motivated and thus is capable of et al., 2019), without explicitly exploiting linguis- adopting an improved masked training objec- tive according to syntactic and semantic con- tic knowledge.
    [Show full text]
  • Merging Propbank, Nombank, Timebank, Penn Discourse Treebank and Coreference James Pustejovsky, Adam Meyers, Martha Palmer, Massimo Poesio
    Merging PropBank, NomBank, TimeBank, Penn Discourse Treebank and Coreference James Pustejovsky, Adam Meyers, Martha Palmer, Massimo Poesio Abstract annotates the temporal features of propositions Many recent annotation efforts for English and the temporal relations between propositions. have focused on pieces of the larger problem The Penn Discourse Treebank (Miltsakaki et al of semantic annotation, rather than initially 2004a/b) treats discourse connectives as producing a single unified representation. predicates and the sentences being joined as This paper discusses the issues involved in arguments. Researchers at Essex were merging four of these efforts into a unified responsible for the coreference markup scheme linguistic structure: PropBank, NomBank, the developed in MATE (Poesio et al, 1999; Poesio, Discourse Treebank and Coreference 2004a) and have annotated corpora using this Annotation undertaken at the University of scheme including a subset of the Penn Treebank Essex. We discuss resolving overlapping and (Poesio and Vieira, 1998), and the GNOME conflicting annotation as well as how the corpus (Poesio, 2004a). This paper discusses the various annotation schemes can reinforce issues involved in creating a Unified Linguistic each other to produce a representation that is Annotation (ULA) by merging annotation of greater than the sum of its parts. examples using the schemata from these efforts. Crucially, all individual annotations can be kept 1. Introduction separate in order to make it easy to produce alternative annotations of a specific type of The creation of the Penn Treebank (Marcus et al, semantic information without need to modify the 1993) and the word sense-annotated SEMCOR annotation at the other levels. Embarking on (Fellbaum, 1997) have shown how even limited separate annotation efforts has the advantage of amounts of annotated data can result in major allowing researchers to focus on the difficult improvements in complex natural language issues in each area of semantic annotation and understanding systems.
    [Show full text]
  • Anusaaraka: an Accessor Cum Machine Translator
    Anusaaraka: An Accessor cum Machine Translator Akshar Bharati, Amba Kulkarni Department of Sanskrit Studies University of Hyderabad Hyderabad [email protected] 3 Nov 2009 Amba Kulkarni FreeRBMT09 Page 1 Hindi: Official Language English: Secondary Official Language Law, Constitution: in English! 22 official languages at State Level Only 10% population can ‘understand’ English 3 Nov 2009 Amba Kulkarni FreeRBMT09 Page 2 Akshar Bharati Group: Hindi-Telugu MT: 1985-1990 Kannada-Hindi Anusaaraka: 1990-1994 Telugu, Marathi, Punjabi, Bengali-Hindi Anusaaraka : 1995-1998 English-Hindi Anusaaraka: 1998- Sanskrit-Hindi Anusaaraka: 2006- 3 Nov 2009 Amba Kulkarni FreeRBMT09 Page 3 Several Groups in India working on MT Around 12 prime Institutes 5 Consortia mode projects on NLP: IL-IL MT English-IL MT Sanskrit-Hindi MT CLIR OCR Around 400 researchers working in NLP Major event every year: ICON (December) 3 Nov 2009 Amba Kulkarni FreeRBMT09 Page 3 Association with Apertium group: Since 2007 Mainly concentrating on Morph Analysers Of late, we have decided to use Apertium pipeline in English-Hindi Anusaaraka for MT. 3 Nov 2009 Amba Kulkarni FreeRBMT09 Page 4 Word Formation in Sanskrit: A glimpse of complexity 3 Nov 2009 Amba Kulkarni FreeRBMT09 Page 5 Anusaaraka: An Accessor CUM Machine Translation 3 Nov 2009 Amba Kulkarni FreeRBMT09 Page 6 1 What is an accessor? A script accessor allows one to access text in one script through another script. GIST terminals available in India, is an example of script accessor. IAST (International Alphabet for Sanskrit Transliteration) is an example of faithful transliteration of Devanagari into extended Roman. 3 Nov 2009 Amba Kulkarni FreeRBMT09 Page 7 k©Z k Õ Z a ¢ = ^ ^ ^ k r.
    [Show full text]
  • Rule Based Transliteration Scheme for English to Punjabi
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Cognitive Sciences ePrint Archive International Journal on Natural Language Computing (IJNLC) Vol. 2, No.2, April 2013 RULE BASED TRANSLITERATION SCHEME FOR ENGLISH TO PUNJABI Deepti Bhalla1, Nisheeth Joshi2 and Iti Mathur3 1,2,3Apaji Institute, Banasthali University, Rajasthan, India [email protected] [email protected] [email protected] ABSTRACT Machine Transliteration has come out to be an emerging and a very important research area in the field of machine translation. Transliteration basically aims to preserve the phonological structure of words. Proper transliteration of name entities plays a very significant role in improving the quality of machine translation. In this paper we are doing machine transliteration for English-Punjabi language pair using rule based approach. We have constructed some rules for syllabification. Syllabification is the process to extract or separate the syllable from the words. In this we are calculating the probabilities for name entities (Proper names and location). For those words which do not come under the category of name entities, separate probabilities are being calculated by using relative frequency through a statistical machine translation toolkit known as MOSES. Using these probabilities we are transliterating our input text from English to Punjabi. KEYWORDS Machine Translation, Machine Transliteration, Name entity recognition, Syllabification. 1. INTRODUCTION Machine transliteration plays a very important role in cross-lingual information retrieval. The term, name entity is widely used in natural language processing. Name entity recognition has many applications in the field of natural language processing like information extraction i.e.
    [Show full text]
  • Radio Frequency Identification Based Smart
    ISSN (Online) 2394-6849 International Journal of Engineering Research in Electronics and Communication Engineering (IJERECE) Vol 4, Issue 11, November 2017 Unstructured Text to DBPEDIA RDF Triples – Entity Extraction [1] Monika S G, [2] Chiranjeevi S, [3] Harshitha A, [4] Harshitha M, [5] V K Tivari, [6] Raghevendra Rao [1 – 5] Department of Electronics and Communication Engineering, Sri Sairam College of Engineering, Anekal, Bengaluru. [5] Assistant Professor, Department of Electronic and Communication Engineering, Sri Sairam College of Engineering, Anekal, Bengaluru. [6].Assistant Professor, Department of Computer Science and Engineering, Sri Sairam College of Engineering, Anekal, Bengaluru Abstract:- In the means of current technologies Use of data, information has grown significantly over the last few years. The information processing facing an issue like where the data is originating from multiple sources in an uncontrolled environment. The reason for the uncontrolled environment is the data gathered beyond the organization and generated by many people working outside the organization. The intent of this paper is delving into this unformatted information and build the framework in such a way that the information becomes more managed and used in the organization. Case and point for resume submitted for particular positions should become searchable. In this framework, we try and solve the problem and provide suggestions on how to solve other similar problem. In this paper, we describe an end-to-end system that automatically extracts RDF triples describing entity relations and properties from unstructured text. This system is based on a pipeline of text processing modules that includes an asemantic parser and a co-reference solver.
    [Show full text]