Merging Propbank, Nombank, Timebank, Penn Discourse Treebank and Coreference James Pustejovsky, Adam Meyers, Martha Palmer, Massimo Poesio

Total Page:16

File Type:pdf, Size:1020Kb

Merging Propbank, Nombank, Timebank, Penn Discourse Treebank and Coreference James Pustejovsky, Adam Meyers, Martha Palmer, Massimo Poesio Merging PropBank, NomBank, TimeBank, Penn Discourse Treebank and Coreference James Pustejovsky, Adam Meyers, Martha Palmer, Massimo Poesio Abstract annotates the temporal features of propositions Many recent annotation efforts for English and the temporal relations between propositions. have focused on pieces of the larger problem The Penn Discourse Treebank (Miltsakaki et al of semantic annotation, rather than initially 2004a/b) treats discourse connectives as producing a single unified representation. predicates and the sentences being joined as This paper discusses the issues involved in arguments. Researchers at Essex were merging four of these efforts into a unified responsible for the coreference markup scheme linguistic structure: PropBank, NomBank, the developed in MATE (Poesio et al, 1999; Poesio, Discourse Treebank and Coreference 2004a) and have annotated corpora using this Annotation undertaken at the University of scheme including a subset of the Penn Treebank Essex. We discuss resolving overlapping and (Poesio and Vieira, 1998), and the GNOME conflicting annotation as well as how the corpus (Poesio, 2004a). This paper discusses the various annotation schemes can reinforce issues involved in creating a Unified Linguistic each other to produce a representation that is Annotation (ULA) by merging annotation of greater than the sum of its parts. examples using the schemata from these efforts. Crucially, all individual annotations can be kept 1. Introduction separate in order to make it easy to produce alternative annotations of a specific type of The creation of the Penn Treebank (Marcus et al, semantic information without need to modify the 1993) and the word sense-annotated SEMCOR annotation at the other levels. Embarking on (Fellbaum, 1997) have shown how even limited separate annotation efforts has the advantage of amounts of annotated data can result in major allowing researchers to focus on the difficult improvements in complex natural language issues in each area of semantic annotation and understanding systems. These annotated corpora the disadvantage of inducing a certain amount of have led to high-level improvements for parsing tunnel vision or task-centricity – annotators and word sense disambiguation (WSD), on the working on a narrow task tend to see all same scale as previously occurred for Part of phenomena in light of the task they are working Speech tagging by the annotation of the Brown on, ignoring other factors. However, merging corpus and, more recently, the British National these annotation efforts allows these biases to be Corpus (BNC) (Burnard, 2000). However, the dealt with. The result, we believe, could be a creation of semantically annotated corpora has more detailed semantic account than possible if lagged dramatically behind the creation of other the ULA had been the initial annotation effort linguistic resources: in part due to the perceived rather than the result of merging. cost, in part due to an assumed lack of theoretical agreement on basic semantic judgments, in part, There is a growing community consensus that finally, due to the understandable unwillingness general annotation, relying on linguistic cues, of research groups to get involved in such an and in particular lexical cues, will produce an undertaking. As a result, the need for such enduring resource that is useful, replicable and resources has become urgent. portable. We provide the beginnings of one such level derived from several distinct annotation Many recent annotation efforts for English have efforts. This level could provide the foundation focused on pieces of the larger problem of for a major advance in our ability to semantic annotation, rather than producing a automatically extract salient relationships from single unified representation like Head-driven text. This will in turn facilitate breakthroughs in Phrase Structure Grammar (Pollard and Sag message understanding, machine translation, fact 1994) or the Prague Dependency Tecto- retrieval, and information retrieval. gramatical Representation (Hajicova & Kucer- ova, 2002). PropBank (Palmer et al, 2005) 2. The Component Annotation Schemata annotates predicate argument structure anchored by verbs. NomBank (Meyers, et. al., 2004a) We describe below existing independent annotates predicate argument structure anchored annotation efforts, each one of which is focused by nouns. TimeBank (Pustejovsky et al, 2003) on a specific aspect of the semantic representation task: semantic role labeling, coreference, discourse relations, temporal tuned to a hiring scenario (MUC-6, 1995), relations, etc. They have reached a level of NomBank and PropBank annotation facilitate maturity that warrants a concerted attempt to generalization over patterns. PropBank and merge them into a single, unified representation, NomBank would both support a single IE pattern ULA. There are several technical and theoretical stating that the object (ARG1) of appoint is John issues that will need to be resolved in order to and the subject (ARG0) is IBM, allowing a bring these different layers together seamlessly. system to detect that IBM hired John from each Most of these approaches have annotated the of the following strings: IBM appointed John, same type of data, Wall Street Journal text, so it John was appointed by IBM, IBM's appointment is also important to demonstrate that the of John, the appointment of John by IBM and annotation can be extended to other genres such John is the current IBM appointee. as spoken language. The demonstration of success for the extensions would be the training Coreference: Coreference involves the detection of accurate statistical semantic taggers. of subsequent mentions of invoked entities, as in George Bush,… he…. Researchers at Essex (UK) PropBank: The Penn Proposition Bank focuses were responsible for the coreference markup on the argument structure of verbs, and provides scheme developed in MATE (Poesio et al, 1999; a corpus annotated with semantic roles, Poesio, 2004a), partially implemented in the including participants traditionally viewed as annotation tool MMAX and now proposed as an arguments and adjuncts. An important goal is to ISO standard; and have been responsible for the provide consistent semantic role labels across creation of two small, but commonly used different syntactic realizations of the same verb, anaphorically annotated corpora – the Vieira / as in the window in [ARG0 John] broke [ARG1 Poesio subset of the Penn Treebank (Poesio and the window] and [ARG1 The window] broke. Vieira, 1998), and the GNOME corpus (Poesio, Arg0 and Arg1 are used rather than the more 2004a). Parallel coreference annotation efforts traditional Agent and Patient to keep the funded by ACE have resulted in similar annotation as theory-neutral as possible, and to guidelines, exemplified by BBN’s recent facilitate mapping to richer representations. The annotation of Named Entities, common nouns 1M word Penn Treebank II Wall Street Journal and pronouns. These two approaches provide a corpus has been successfully annotated with suitable springboard for an attempt at achieving a semantic argument structures for verbs and is community consensus on coreference. now available via the Penn Linguistic Data Consortium as PropBank I (Palmer, et. al., 2005). Discourse Treebank: The Penn Discourse Coarse-grained sense tags, based on groupings of Treebank (PDTB) (Miltsakaki et al 2004a/b) is WordNet senses, are being added, as well as based on the idea that discourse connectives are links from the argument labels in the Frames predicates with associated argument structure Files to FrameNet frame elements. There are (for details see (Miltsakaki et al 2004a, close parallels to other semantic role labeling Miltsakaki et al 2004b). The long-range goal is projects, such as FrameNet (Baker, et. al., 1998; to develop a large scale and reliably annotated Fillmore & Atkins, 1998; Fillmore & Baker, corpus that will encode coherence relations 2001), Salsa (Ellsworth, et.al, 2004), Prague associated with discourse connectives, including Tectogrammatics (Hajicova & Kucerova, 2002) their argument structure and anaphoric links, and IAMTC, (Helmreich, et. al., 2004) thus exposing a clearly defined level of discourse structure and supporting the extraction of a range NomBank: The NYU NomBank project can be of inferences associated with discourse considered part of the larger PropBank effort and connectives. This annotation references the Penn is designed to provide argument structure for Treebank annotations as well as PropBank, and instances of about 5000 common nouns in the currently only considers Wall Street Journal text. Penn Treebank II corpus (Meyers, et. al., 2004a). PropBank argument types and related verb TimeBank: The Brandeis TimeBank corpus, Frames Files are used to provide a commonality funded by ARDA, focuses on the annotation of of annotation. This enables the development of all major aspects in natural language text systems that can recognize regularizations of associated with temporal and event information lexically and syntactically related sentence (Day, et al, 2003, Pustejovsky, et al, 2004). structures, whether they occur as verb phrases or Specifically, this involves three areas of the noun phrases. For example, given an IE system annotation: temporal expressions, event-denoting expressions, and the links that express either an dependency between the argument (ARG1) of anchoring of an event to a time or an ordering of modal can and the or. Or is transparent in that
Recommended publications
  • Abstraction and Generalisation in Semantic Role Labels: Propbank
    Abstraction and Generalisation in Semantic Role Labels: PropBank, VerbNet or both? Paola Merlo Lonneke Van Der Plas Linguistics Department Linguistics Department University of Geneva University of Geneva 5 Rue de Candolle, 1204 Geneva 5 Rue de Candolle, 1204 Geneva Switzerland Switzerland [email protected] [email protected] Abstract The role of theories of semantic role lists is to obtain a set of semantic roles that can apply to Semantic role labels are the representa- any argument of any verb, to provide an unam- tion of the grammatically relevant aspects biguous identifier of the grammatical roles of the of a sentence meaning. Capturing the participants in the event described by the sentence nature and the number of semantic roles (Dowty, 1991). Starting from the first proposals in a sentence is therefore fundamental to (Gruber, 1965; Fillmore, 1968; Jackendoff, 1972), correctly describing the interface between several approaches have been put forth, ranging grammar and meaning. In this paper, we from a combination of very few roles to lists of compare two annotation schemes, Prop- very fine-grained specificity. (See Levin and Rap- Bank and VerbNet, in a task-independent, paport Hovav (2005) for an exhaustive review). general way, analysing how well they fare In NLP, several proposals have been put forth in in capturing the linguistic generalisations recent years and adopted in the annotation of large that are known to hold for semantic role samples of text (Baker et al., 1998; Palmer et al., labels, and consequently how well they 2005; Kipper, 2005; Loper et al., 2007). The an- grammaticalise aspects of meaning.
    [Show full text]
  • A Novel Large-Scale Verbal Semantic Resource and Its Application to Semantic Role Labeling
    VerbAtlas: a Novel Large-Scale Verbal Semantic Resource and Its Application to Semantic Role Labeling Andrea Di Fabio}~, Simone Conia}, Roberto Navigli} }Department of Computer Science ~Department of Literature and Modern Cultures Sapienza University of Rome, Italy {difabio,conia,navigli}@di.uniroma1.it Abstract The automatic identification and labeling of ar- gument structures is a task pioneered by Gildea We present VerbAtlas, a new, hand-crafted and Jurafsky(2002) called Semantic Role Label- lexical-semantic resource whose goal is to ing (SRL). SRL has become very popular thanks bring together all verbal synsets from Word- to its integration into other related NLP tasks Net into semantically-coherent frames. The such as machine translation (Liu and Gildea, frames define a common, prototypical argu- ment structure while at the same time pro- 2010), visual semantic role labeling (Silberer and viding new concept-specific information. In Pinkal, 2018) and information extraction (Bas- contrast to PropBank, which defines enumer- tianelli et al., 2013). ative semantic roles, VerbAtlas comes with In order to be performed, SRL requires the fol- an explicit, cross-frame set of semantic roles lowing core elements: 1) a verb inventory, and 2) linked to selectional preferences expressed in terms of WordNet synsets, and is the first a semantic role inventory. However, the current resource enriched with semantic information verb inventories used for this task, such as Prop- about implicit, shadow, and default arguments. Bank (Palmer et al., 2005) and FrameNet (Baker We demonstrate the effectiveness of VerbAtlas et al., 1998), are language-specific and lack high- in the task of dependency-based Semantic quality interoperability with existing knowledge Role Labeling and show how its integration bases.
    [Show full text]
  • How Do BERT Embeddings Organize Linguistic Knowledge?
    How Do BERT Embeddings Organize Linguistic Knowledge? Giovanni Puccettiy , Alessio Miaschi? , Felice Dell’Orletta y Scuola Normale Superiore, Pisa ?Department of Computer Science, University of Pisa Istituto di Linguistica Computazionale “Antonio Zampolli”, Pisa ItaliaNLP Lab – www.italianlp.it [email protected], [email protected], [email protected] Abstract et al., 2019), we proposed an in-depth investigation Several studies investigated the linguistic in- aimed at understanding how the information en- formation implicitly encoded in Neural Lan- coded by BERT is arranged within its internal rep- guage Models. Most of these works focused resentation. In particular, we defined two research on quantifying the amount and type of in- questions, aimed at: (i) investigating the relation- formation available within their internal rep- ship between the sentence-level linguistic knowl- resentations and across their layers. In line edge encoded in a pre-trained version of BERT and with this scenario, we proposed a different the number of individual units involved in the en- study, based on Lasso regression, aimed at understanding how the information encoded coding of such knowledge; (ii) understanding how by BERT sentence-level representations is ar- these sentence-level properties are organized within ranged within its hidden units. Using a suite of the internal representations of BERT, identifying several probing tasks, we showed the existence groups of units more relevant for specific linguistic of a relationship between the implicit knowl- tasks. We defined a suite of probing tasks based on edge learned by the model and the number of a variable selection approach, in order to identify individual units involved in the encodings of which units in the internal representations of BERT this competence.
    [Show full text]
  • Treebanks, Linguistic Theories and Applications Introduction to Treebanks
    Treebanks, Linguistic Theories and Applications Introduction to Treebanks Lecture One Petya Osenova and Kiril Simov Sofia University “St. Kliment Ohridski”, Bulgaria Bulgarian Academy of Sciences, Bulgaria ESSLLI 2018 30th European Summer School in Logic, Language and Information (6 August – 17 August 2018) Plan of the Lecture • Definition of a treebank • The place of the treebank in the language modeling • Related terms: parsebank, dynamic treebank • Prerequisites for the creation of a treebank • Treebank lifecycle • Theory (in)dependency • Language (in)dependency • Tendences in the treebank development 30th European Summer School in Logic, Language and Information (6 August – 17 August 2018) Treebank Definition A corpus annotated with syntactic information • The information in the annotation is added/checked by a trained annotator - manual annotation • The annotation is complete - no unannotated fragments of the text • The annotation is consistent - similar fragments are analysed in the same way • The primary format of annotation - syntactic tree/graph 30th European Summer School in Logic, Language and Information (6 August – 17 August 2018) Example Syntactic Trees from Wikipedia The two main approaches to modeling the syntactic information 30th European Summer School in Logic, Language and Information (6 August – 17 August 2018) Pros vs. Cons (Handbook of NLP, p. 171) Constituency • Easy to read • Correspond to common grammatical knowledge (phrases) • Introduce arbitrary complexity Dependency • Flexible • Also correspond to common grammatical
    [Show full text]
  • Senserelate::Allwords - a Broad Coverage Word Sense Tagger That Maximizes Semantic Relatedness
    WordNet::SenseRelate::AllWords - A Broad Coverage Word Sense Tagger that Maximizes Semantic Relatedness Ted Pedersen and Varada Kolhatkar Department of Computer Science University of Minnesota Duluth, MN 55812 USA tpederse,kolha002 @d.umn.edu http://senserelate.sourceforge.net{ } Abstract Despite these difficulties, word sense disambigua- tion is often a necessary step in NLP and can’t sim- WordNet::SenseRelate::AllWords is a freely ply be ignored. The question arises as to how to de- available open source Perl package that as- velop broad coverage sense disambiguation modules signs a sense to every content word (known that can be deployed in a practical setting without in- to WordNet) in a text. It finds the sense of vesting huge sums in manual annotation efforts. Our each word that is most related to the senses answer is WordNet::SenseRelate::AllWords (SR- of surrounding words, based on measures found in WordNet::Similarity. This method is AW), a method that uses knowledge already avail- shown to be competitive with results from re- able in the lexical database WordNet to assign senses cent evaluations including SENSEVAL-2 and to every content word in text, and as such offers SENSEVAL-3. broad coverage and requires no manual annotation of training data. SR-AW finds the sense of each word that is most 1 Introduction related or most similar to those of its neighbors in the Word sense disambiguation is the task of assigning sentence, according to any of the ten measures avail- a sense to a word based on the context in which it able in WordNet::Similarity (Pedersen et al., 2004).
    [Show full text]
  • Deep Linguistic Analysis for the Accurate Identification of Predicate
    Deep Linguistic Analysis for the Accurate Identification of Predicate-Argument Relations Yusuke Miyao Jun'ichi Tsujii Department of Computer Science Department of Computer Science University of Tokyo University of Tokyo [email protected] CREST, JST [email protected] Abstract obtained by deep linguistic analysis (Gildea and This paper evaluates the accuracy of HPSG Hockenmaier, 2003; Chen and Rambow, 2003). parsing in terms of the identification of They employed a CCG (Steedman, 2000) or LTAG predicate-argument relations. We could directly (Schabes et al., 1988) parser to acquire syntac- compare the output of HPSG parsing with Prop- tic/semantic structures, which would be passed to Bank annotations, by assuming a unique map- statistical classifier as features. That is, they used ping from HPSG semantic representation into deep analysis as a preprocessor to obtain useful fea- PropBank annotation. Even though PropBank tures for training a probabilistic model or statistical was not used for the training of a disambigua- tion model, an HPSG parser achieved the ac- classifier of a semantic argument identifier. These curacy competitive with existing studies on the results imply the superiority of deep linguistic anal- task of identifying PropBank annotations. ysis for this task. Although the statistical approach seems a reason- 1 Introduction able way for developing an accurate identifier of Recently, deep linguistic analysis has successfully PropBank annotations, this study aims at establish- been applied to real-world texts. Several parsers ing a method of directly comparing the outputs of have been implemented in various grammar for- HPSG parsing with the PropBank annotation in or- malisms and empirical evaluation has been re- der to explicitly demonstrate the availability of deep ported: LFG (Riezler et al., 2002; Cahill et al., parsers.
    [Show full text]
  • The Procedure of Lexico-Semantic Annotation of Składnica Treebank
    The Procedure of Lexico-Semantic Annotation of Składnica Treebank Elzbieta˙ Hajnicz Institute of Computer Science, Polish Academy of Sciences ul. Ordona 21, 01-237 Warsaw, Poland [email protected] Abstract In this paper, the procedure of lexico-semantic annotation of Składnica Treebank using Polish WordNet is presented. Other semantically annotated corpora, in particular treebanks, are outlined first. Resources involved in annotation as well as a tool called Semantikon used for it are described. The main part of the paper is the analysis of the applied procedure. It consists of the basic and correction phases. During basic phase all nouns, verbs and adjectives are annotated with wordnet senses. The annotation is performed independently by two linguists. Multi-word units obtain special tags, synonyms and hypernyms are used for senses absent in Polish WordNet. Additionally, each sentence receives its general assessment. During the correction phase, conflicts are resolved by the linguist supervising the process. Finally, some statistics of the results of annotation are given, including inter-annotator agreement. The final resource is represented in XML files preserving the structure of Składnica. Keywords: treebanks, wordnets, semantic annotation, Polish 1. Introduction 2. Semantically Annotated Corpora It is widely acknowledged that linguistically annotated cor- Semantic annotation of text corpora seems to be the last pora play a crucial role in NLP. There is even a tendency phase in the process of corpus annotation, less popular than towards their ever-deeper annotation. In particular, seman- morphosyntactic and (shallow or deep) syntactic annota- tically annotated corpora become more and more popular tion. However, there exist semantically annotated subcor- as they have a number of applications in word sense disam- pora for many languages.
    [Show full text]
  • Generating Lexical Representations of Frames Using Lexical Substitution
    Generating Lexical Representations of Frames using Lexical Substitution Saba Anwar Artem Shelmanov Universitat¨ Hamburg Skolkovo Institute of Science and Technology Germany Russia [email protected] [email protected] Alexander Panchenko Chris Biemann Skolkovo Institute of Science and Technology Universitat¨ Hamburg Russia Germany [email protected] [email protected] Abstract Seed sentence: I hope PattiHelper can helpAssistance youBenefited party soonTime . Semantic frames are formal linguistic struc- Substitutes for Assistance: assist, aid tures describing situations/actions/events, e.g. Substitutes for Helper: she, I, he, you, we, someone, Commercial transfer of goods. Each frame they, it, lori, hannah, paul, sarah, melanie, pam, riley Substitutes for Benefited party: me, him, folk, her, provides a set of roles corresponding to the sit- everyone, people uation participants, e.g. Buyer and Goods, and Substitutes for Time: tomorrow, now, shortly, sooner, lexical units (LUs) – words and phrases that tonight, today, later can evoke this particular frame in texts, e.g. Sell. The scarcity of annotated resources hin- Table 1: An example of the induced lexical represen- ders wider adoption of frame semantics across tation (roles and LUs) of the Assistance FrameNet languages and domains. We investigate a sim- frame using lexical substitutes from a single seed sen- ple yet effective method, lexical substitution tence. with word representation models, to automat- ically expand a small set of frame-annotated annotated resources. Some publicly available re- sentences with new words for their respective sources are FrameNet (Baker et al., 1998) and roles and LUs. We evaluate the expansion PropBank (Palmer et al., 2005), yet for many lan- quality using FrameNet.
    [Show full text]
  • Unified Language Model Pre-Training for Natural
    Unified Language Model Pre-training for Natural Language Understanding and Generation Li Dong∗ Nan Yang∗ Wenhui Wang∗ Furu Wei∗† Xiaodong Liu Yu Wang Jianfeng Gao Ming Zhou Hsiao-Wuen Hon Microsoft Research {lidong1,nanya,wenwan,fuwei}@microsoft.com {xiaodl,yuwan,jfgao,mingzhou,hon}@microsoft.com Abstract This paper presents a new UNIfied pre-trained Language Model (UNILM) that can be fine-tuned for both natural language understanding and generation tasks. The model is pre-trained using three types of language modeling tasks: unidirec- tional, bidirectional, and sequence-to-sequence prediction. The unified modeling is achieved by employing a shared Transformer network and utilizing specific self-attention masks to control what context the prediction conditions on. UNILM compares favorably with BERT on the GLUE benchmark, and the SQuAD 2.0 and CoQA question answering tasks. Moreover, UNILM achieves new state-of- the-art results on five natural language generation datasets, including improving the CNN/DailyMail abstractive summarization ROUGE-L to 40.51 (2.04 absolute improvement), the Gigaword abstractive summarization ROUGE-L to 35.75 (0.86 absolute improvement), the CoQA generative question answering F1 score to 82.5 (37.1 absolute improvement), the SQuAD question generation BLEU-4 to 22.12 (3.75 absolute improvement), and the DSTC7 document-grounded dialog response generation NIST-4 to 2.67 (human performance is 2.65). The code and pre-trained models are available at https://github.com/microsoft/unilm. 1 Introduction Language model (LM) pre-training has substantially advanced the state of the art across a variety of natural language processing tasks [8, 29, 19, 31, 9, 1].
    [Show full text]
  • Building a Treebank for French
    Building a treebank for French £ £¥ Anne Abeillé£ , Lionel Clément , Alexandra Kinyon ¥ £ TALaNa, Université Paris 7 University of Pennsylvania 75251 Paris cedex 05 Philadelphia FRANCE USA abeille, clement, [email protected] Abstract Very few gold standard annotated corpora are currently available for French. We present an ongoing project to build a reference treebank for French starting with a tagged newspaper corpus of 1 Million words (Abeillé et al., 1998), (Abeillé and Clément, 1999). Similarly to the Penn TreeBank (Marcus et al., 1993), we distinguish an automatic parsing phase followed by a second phase of systematic manual validation and correction. Similarly to the Prague treebank (Hajicova et al., 1998), we rely on several types of morphosyntactic and syntactic annotations for which we define extensive guidelines. Our goal is to provide a theory neutral, surface oriented, error free treebank for French. Similarly to the Negra project (Brants et al., 1999), we annotate both constituents and functional relations. 1. The tagged corpus pronoun (= him ) or a weak clitic pronoun (= to him or to As reported in (Abeillé and Clément, 1999), we present her), plus can either be a negative adverb (= not any more) the general methodology, the automatic tagging phase, the or a simple adverb (= more). Inflectional morphology also human validation phase and the final state of the tagged has to be annotated since morphological endings are impor- corpus. tant for gathering constituants (based on agreement marks) and also because lots of forms in French are ambiguous 1.1. Methodology with respect to mode, person, number or gender. For exam- 1.1.1.
    [Show full text]
  • Converting an HPSG-Based Treebank Into Its Parallel Dependency-Based Treebank
    Converting an HPSG-based Treebank into its Parallel Dependency-based Treebank Masood Ghayoomiy z Jonas Kuhnz yDepartment of Mathematics and Computer Science, Freie Universität Berlin z Institute for Natural Language Processing, University of Stuttgart [email protected] [email protected] Abstract A treebank is an important language resource for supervised statistical parsers. The parser induces the grammatical properties of a language from this language resource and uses the model to parse unseen data automatically. Since developing such a resource is very time-consuming and tedious, one can take advantage of already extant resources by adapting them to a particular application. This reduces the amount of human effort required to develop a new language resource. In this paper, we introduce an algorithm to convert an HPSG-based treebank into its parallel dependency-based treebank. With this converter, we can automatically create a new language resource from an existing treebank developed based on a grammar formalism. Our proposed algorithm is able to create both projective and non-projective dependency trees. Keywords: Treebank Conversion, the Persian Language, HPSG-based Treebank, Dependency-based Treebank 1. Introduction treebank is introduced in Section 4. The properties Supervised statistical parsers require a set of annotated of the available dependency treebanks for Persian and data, called a treebank, to learn the grammar of the their pros and cons are explained in Section 5. The target language and create a wide coverage grammar tools and the experimental setup as well as the ob- model to parse unseen data. Developing such a data tained results are described and discussed in Section source is a tedious and time-consuming task.
    [Show full text]
  • Distributional Semantics, Wordnet, Semantic Role
    Semantics Kevin Duh Intro to NLP, Fall 2019 Outline • Challenges • Distributional Semantics • Word Sense • Semantic Role Labeling The Challenge of Designing Semantic Representations • Q: What is semantics? • A: The study of meaning • Q: What is meaning? • A: … We know it when we see it • These sentences/phrases all have the same meaning: • XYZ corporation bought the stock. • The stock was bought by XYZ corporation. • The purchase of the stock by XYZ corporation... • The stock purchase by XYZ corporation... But how to formally define it? Meaning Sentence Representation Example Representations Sentence: “I have a car” Logic Formula Graph Representation Key-Value Records Example Representations Sentence: “I have a car” As translation in “Ich habe ein Auto” another language There’s no single agreed-upon representation that works in all cases • Different emphases: • Words or Sentences • Syntax-Semantics interface, Logical Inference, etc. • Different aims: • “Deep (and narrow)” vs “Shallow (and broad)” • e.g. Show me all flights from BWI to NRT. • Do we link to actual flight records? • Or general concept of flying machines? Outline • Challenges • Distributional Semantics • Word Sense • Semantic Role Labeling Distributional Semantics 10 Learning Distributional Semantics from large text dataset • Your pet dog is so cute • Your pet cat is so cute • The dog ate my homework • The cat ate my homework neighbor(dog) overlaps-with neighbor(cats) so meaning(dog) is-similar-to meaning(cats) 11 Word2Vec implements Distribution Semantics Your pet dog is so cute 1. Your pet - is so | dog 2. dog | Your pet - is so From: Mikolov, Tomas; et al. (2013). "Efficient Estimation of Word 12 Representations in Vector Space” Latent Semantic Analysis (LSA) also implements Distributional Semantics Pet-peeve: fundamentally, neural approaches aren’t so different from classical LSA.
    [Show full text]