Lecture 13 Learning Objectives: Understand Causes for Midlatitude Rossby Waves & Coastally-Trapped Waves, Their Propagation & Energy Dispersion

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 13 Learning Objectives: Understand Causes for Midlatitude Rossby Waves & Coastally-Trapped Waves, Their Propagation & Energy Dispersion ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY Lecture 13 Learning objectives: understand causes for midlatitude Rossby waves & coastally-trapped waves, their propagation & energy dispersion Mid-latitude Rossby waves ( β effect) Announcement: Thursday, Oct 15, 4-5pm: office hour go over HW2 & HW3; Apple pencil problem Clarification: Lecture notes & notes by chapters (required materials); Recommended textbooks – do own check on table of content, maybe different definitions (as in research articles) I. Ocean waves: Why study them? Scientific interest – most evident phenomena & oceanic adjustment Societal importance: Gravity waves - coastal inundation, erosion, etc. Rossby waves – ocean circulation & climate II. What do we want to know about waves? 1961 Chile Tsunami: eastern Pacific 2011 Japan Tsunami Why do Tsunami waves propagate in all directions? Why are they so fast? How can we learn these? Dispersion relation: relationship between frequency & wavenumber, telling us wave direction, speed & their frequency dependence III. Waves section in this course – how do we study them? a) Ocean waves in non-rotational system f=0 (gravity waves) Use equations of motion & continuity equation to derived dispersion relation; in detail mathematically – why? understand where it is from b) Ocean waves in rotational system f=constant (Inertial gravity waves) c) Ocean waves in rotational system , Rossby waves Open, unbounded ocean d) Effects of boundary: Coastally trapped waves e) Equatorial waves https://oceanservice.noaa.gov/facts/wavesinocean.html Annual period Rossby Wave in eastern tropical Pacfic Comparison of annual cycle anomalies of observed 20 °C depth (left panels) and the Rossby wave model solution (right panels), for four average seasons (indicated to the left of each row). The common color key is at right, with contour interval of 5 m. Positive values (red) indicate deep anomalies and negative values (blue) indicate shallow anomalies. Kessler 1990. JGR Waves in an ocean with a varying f: Rossby waves In real ocean, varies with latitude Mid-latitude Plane approximation y ∂f 2Ωcosφ β = = z ∂y R Equations of motion Same shallow water equation (as for the f=constant case), except that here, (i) (ii) (iii) (Ro<<1, E<<1) (v) Background state: Depth of ocean Exercise: Write a single equation in v alone & assume periodic waves, we obtain: Dispersion relation: where c = ± gH To simplify the case, let look at 1-dimensional situation in x direction. We have (i) For high frequency waves with large ω , the dispersion relation can be approximated by: € ω or, € f 0 This is long gravity wave under the influence of f we obtained in the previous class. It is also called inertial gravity wave (IGW) They are not influenced much by beta-variation of f! (ii) For low frequency waves with small Then These waves do not exist in f=constant case; their existence is due to the introduction of They are called Rossby (or planetary) waves. To further understand the wave property, we simplify the above equation. Since is small for Rossby waves because of their low frequency, ! ����� (1 + �) ==(1+ �)!/#≈ 1 + �, for �<<1 # Choose ‘-’ sign: or, Since is independent of frequency and wavenumber, they are non-dispersive. They are long Rossby waves and propagate westward; speed decreases as latitude increases. Here, c is vertical mode speed: either a baroclinic or the barotropic mode gravity wave speed. Choose the ‘+’ sign, They are short Rossby waves. Group velocity propagates eastward but phase propagates westward. They are dispersive. Dispersion curves for free waves in mid-latitude plane: Short Rossby Long Rossby Short Rossby waves are hardly seen in the ocean interior because (1) they are too short to be effectively excited by large-scale winds, (2) mixing in the ocean acts strongly on short and slow waves. Midlatitude IGW � ! T = ≈ 5���� max " TIGW ≤ Tmax ! T = ≈ 30���� min " � TRW ≥Tmax Rossby waves Summary: Rossby waves in mid-latitude plane (i) Existence of Rossby waves: , the variation of Planetary vorticity ( ) with latitude ( ), (ii) They are low frequency waves (with periods of months to decades); (iii) Long Rossby waves: non-dispersive & propagate westward Relative vorticity: Long-Rossby waves propagate westward: Explanation using potential - + vorticity conservation Assume flat ocean bottom: H ~ constant Observed mid-latitude Rossby waves by TOPEX satellite altimetry: sea surface height anomaly (SSHA) Mid-latitude Pacific 1) Direction of propagation; 2) How does the speed change with the increase of latitudes? Why? Breakout session Observed mid-latitude Rossby waves by TOPEX satellite altimetry Mid-latitude Pacific Propagate westward; speed decreases as latitude increases; Oceanic adjustment with z a) Initial perturbation 0 b) Gravity wave radiation 0 c) Geostrophy 0 d) Rossby waves B e) Rossby waves C f) Equilibrium state Quiescent If there is persistent wind forcing: the equilibrium state is “Sverdrup-balance”. Will be introduced later. Summary: for Mid-latitude beta plane approximation (i) For high frequency waves Inertial gravity waves (IGW) IGW (ii) For low frequency waves Long Rossby waves: Short Rossby Long Rossby Short Rossby waves:.
Recommended publications
  • The Decadal Mean Ocean Circulation and Sverdrup Balance
    Journal of Marine Research, 69, 417–434, 2011 The decadal mean ocean circulation and Sverdrup balance by Carl Wunsch1 ABSTRACT Elementary Sverdrup balance is tested in the context of the time-average of a 16-year duration time-varying ocean circulation estimate employing the great majority of global-scale data available between 1992 and 2007. The time-average circulation exhibits all of the conventional major features as depicted both through its absolute surface topography and vertically integrated transport stream function. Important small-scale features of the time average only become apparent, however, in the time-average vertical velocity, whether near the surface or in the abyss. In testing Sverdrup balance, the requirement is made that there should be a mid-water column depth where the magnitude of the vertical velocity is less than 10−8 m/s (about 0.3 m/year displacement). The requirement is not met in the Southern Ocean or high northern latitudes. Over much of the subtropical and lower latitude ocean, Sverdrup balance appears to provide a quantitatively useful estimate of the meridional transport (about 40% of the oceanic area). Application to computing the zonal component, by integration from the eastern boundary is, however, precluded in many places by failure of the local balances close to the coasts. Failure of Sverdrup balance at high northern latitudes is consistent with the expected much longer time to achieve dynamic equilibrium there, and the action of other forces, and has important consequences for ongoing ocean monitoring efforts. 1. Introduction The very elegant and powerful theories of the time-mean ocean circulation, treated as a laminar flow, remain of intense interest, despite the widespread recognition that the oceanic kinetic energy is dominated by the time variability.
    [Show full text]
  • (Potential) Vorticity: the Swirling Motion of Geophysical Fluids
    (Potential) vorticity: the swirling motion of geophysical fluids Vortices occur abundantly in both atmosphere and oceans and on all scales. The leaves, chasing each other in autumn, are driven by vortices. The wake of boats and brides form strings of vortices in the water. On the global scale we all know the rotating nature of tropical cyclones and depressions in the atmosphere, and the gyres constituting the large-scale wind driven ocean circulation. To understand the role of vortices in geophysical fluids, vorticity and, in particular, potential vorticity are key quantities of the flow. In a 3D flow, vorticity is a 3D vector field with as complicated dynamics as the flow itself. In this lecture, we focus on 2D flow, so that vorticity reduces to a scalar field. More importantly, after including Earth rotation a fairly simple equation for planar geostrophic fluids arises which can explain many characteristics of the atmosphere and ocean circulation. In the lecture, we first will derive the vorticity equation and discuss the various terms. Next, we define the various vorticity related quantities: relative, planetary, absolute and potential vorticity. Using the shallow water equations, we derive the potential vorticity equation. In the final part of the lecture we discuss several applications of this equation of geophysical vortices and geophysical flow. The preparation material includes - Lecture slides - Chapter 12 of Stewart (http://www.colorado.edu/oclab/sites/default/files/attached- files/stewart_textbook.pdf), of which only sections 12.1-12.3 are discussed today. Willem Jan van de Berg Chapter 12 Vorticity in the Ocean Most of the fluid flows with which we are familiar, from bathtubs to swimming pools, are not rotating, or they are rotating so slowly that rotation is not im- portant except maybe at the drain of a bathtub as water is let out.
    [Show full text]
  • Baroclinic Instability, Lecture 19
    19. Baroclinic Instability In two-dimensional barotropic flow, there is an exact relationship between mass 2 streamfunction ψ and the conserved quantity, vorticity (η)given by η = ∇ ψ.The evolution of the conserved variable η in turn depends only on the spatial distribution of η andonthe flow, whichisd erivable fromψ and thus, by inverting the elliptic relation, from η itself. This strongly constrains the flow evolution and allows one to think about the flow by following η around and inverting its distribution to get the flow. In three-dimensional flow, the vorticity is a vector and is not in general con­ served. The appropriate conserved variable is the potential vorticity, but this is not in general invertible to find the flow, unless other constraints are provided. One such constraint is geostrophy, and a simple starting point is the set of quasi-geostrophic equations which yield the conserved and invertible quantity qp, the pseudo-potential vorticity. The same dynamical processes that yield stable and unstable Rossby waves in two-dimensional flow are responsible for waves and instability in three-dimensional baroclinic flow, though unlike the barotropic 2-D case, the three-dimensional dy­ namics depends on at least an approximate balance between the mass and flow fields. 97 Figure 19.1 a. The Eady model Perhaps the simplest example of an instability arising from the interaction of Rossby waves in a baroclinic flow is provided by the Eady Model, named after the British mathematician Eric Eady, who published his results in 1949. The equilibrium flow in Eady’s idealization is illustrated in Figure 19.1.
    [Show full text]
  • Arxiv:1809.01376V1 [Astro-Ph.EP] 5 Sep 2018
    Draft version March 9, 2021 Typeset using LATEX preprint2 style in AASTeX61 IDEALIZED WIND-DRIVEN OCEAN CIRCULATIONS ON EXOPLANETS Weiwen Ji,1 Ru Chen,2 and Jun Yang1 1Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, 100871, Beijing, China 2University of California, 92521, Los Angeles, USA ABSTRACT Motivated by the important role of the ocean in the Earth climate system, here we investigate possible scenarios of ocean circulations on exoplanets using a one-layer shallow water ocean model. Specifically, we investigate how planetary rotation rate, wind stress, fluid eddy viscosity and land structure (a closed basin vs. a reentrant channel) influence the pattern and strength of wind-driven ocean circulations. The meridional variation of the Coriolis force, arising from planetary rotation and the spheric shape of the planets, induces the western intensification of ocean circulations. Our simulations confirm that in a closed basin, changes of other factors contribute to only enhancing or weakening the ocean circulations (e.g., as wind stress decreases or fluid eddy viscosity increases, the ocean circulations weaken, and vice versa). In a reentrant channel, just as the Southern Ocean region on the Earth, the ocean pattern is characterized by zonal flows. In the quasi-linear case, the sensitivity of ocean circulations characteristics to these parameters is also interpreted using simple analytical models. This study is the preliminary step for exploring the possible ocean circulations on exoplanets, future work with multi-layer ocean models and fully coupled ocean-atmosphere models are required for studying exoplanetary climates. Keywords: astrobiology | planets and satellites: oceans | planets and satellites: terrestrial planets arXiv:1809.01376v1 [astro-ph.EP] 5 Sep 2018 Corresponding author: Jun Yang [email protected] 2 Ji, Chen and Yang 1.
    [Show full text]
  • ATMS 310 Rossby Waves Properties of Waves in the Atmosphere Waves
    ATMS 310 Rossby Waves Properties of Waves in the Atmosphere Waves – Oscillations in field variables that propagate in space and time. There are several aspects of waves that we can use to characterize their nature: 1) Period – The amount of time it takes to complete one oscillation of the wave\ 2) Wavelength (λ) – Distance between two peaks of troughs 3) Amplitude – The distance between the peak and the trough of the wave 4) Phase – Where the wave is in a cycle of amplitude change For a 1-D wave moving in the x-direction, the phase is defined by: φ ),( = −υtkxtx − α (1) 2π where φ is the phase, k is the wave number = , υ = frequency of oscillation (s-1), and λ α = constant determined by the initial conditions. If the observer is moving at the phase υ speed of the wave ( c ≡ ), then the phase of the wave is constant. k For simplification purposes, we will only deal with linear sinusoidal wave motions. Dispersive vs. Non-dispersive Waves When describing the velocity of waves, a distinction must be made between the group velocity and the phase speed. The group velocity is the velocity at which the observable disturbance (energy of the wave) moves with time. The phase speed of the wave (as given above) is how fast the constant phase portion of the wave moves. A dispersive wave is one in which the pattern of the wave changes with time. In dispersive waves, the group velocity is usually different than the phase speed. A non- dispersive wave is one in which the patterns of the wave do not change with time as the wave propagates (“rigid” wave).
    [Show full text]
  • Geophysical Fluid Dynamics, Nonautonomous Dynamical Systems, and the Climate Sciences
    Geophysical Fluid Dynamics, Nonautonomous Dynamical Systems, and the Climate Sciences Michael Ghil and Eric Simonnet Abstract This contribution introduces the dynamics of shallow and rotating flows that characterizes large-scale motions of the atmosphere and oceans. It then focuses on an important aspect of climate dynamics on interannual and interdecadal scales, namely the wind-driven ocean circulation. Studying the variability of this circulation and slow changes therein is treated as an application of the theory of nonautonomous dynamical systems. The contribution concludes by discussing the relevance of these mathematical concepts and methods for the highly topical issues of climate change and climate sensitivity. Michael Ghil Ecole Normale Superieure´ and PSL Research University, Paris, FRANCE, and University of California, Los Angeles, USA, e-mail: [email protected] Eric Simonnet Institut de Physique de Nice, CNRS & Universite´ Coteˆ d’Azur, Nice Sophia-Antipolis, FRANCE, e-mail: [email protected] 1 Chapter 1 Effects of Rotation The first two chapters of this contribution are dedicated to an introductory review of the effects of rotation and shallowness om large-scale planetary flows. The theory of such flows is commonly designated as geophysical fluid dynamics (GFD), and it applies to both atmospheric and oceanic flows, on Earth as well as on other planets. GFD is now covered, at various levels and to various extents, by several books [36, 60, 72, 107, 120, 134, 164]. The virtue, if any, of this presentation is its brevity and, hopefully, clarity. It fol- lows most closely, and updates, Chapters 1 and 2 in [60]. The intended audience in- cludes the increasing number of mathematicians, physicists and statisticians that are becoming interested in the climate sciences, as well as climate scientists from less traditional areas — such as ecology, glaciology, hydrology, and remote sensing — who wish to acquaint themselves with the large-scale dynamics of the atmosphere and oceans.
    [Show full text]
  • TTL Upwelling Driven by Equatorial Waves
    TTL Upwelling driven by Equatorial Waves L09804 LIUWhat drives the annual cycle in TTL upwelling? ET AL.: START OF WATER VAPOR AND CO TAPE RECORDERS L09804 Liu et al. (2007) Ortland, D. and M. J. Alexander, The residual mean circula8on in the TTL driven by tropical waves, JAS, (in review), 2013. Figure 1. (a) Seasonal variation of 10°N–10°S mean EOS MLS water vapor after dividing by the mean value at each level. (b) Seasonal variation of 10°N–10°S EOS MLS CO after dividing by the mean value at each level. represented in two principal ways. The first is by the area of [8]ConcentrationsofwatervaporandCOnearthe clouds with low infrared brightness temperatures [Gettelman tropical tropopause are available from retrievals of EOS et al.,2002;Massie et al.,2002;Liu et al.,2007].Thesecond MLS measurements [Livesey et al.,2005,2006].Monthly is by the area of radar echoes reaching the tropopause mean water vapor and CO mixing ratios at 146 hPa and [Alcala and Dessler,2002;Liu and Zipser, 2005]. In this 100 hPa in the 10°N–10°Sand10° longitude boxes are study, we examine the areas of clouds that have TRMM calculated from one full year (2005) of version 1.5 MLS Visible and Infrared Scanner (VIRS) 10.8 mmbrightness retrievals. In this work, all MLS data are processed with temperatures colder than 210 K, and the area of 20 dBZ requirements described by Livesey et al. [2005]. Tropopause echoes at 14 km measured by the TRMM Precipitation temperature is averaged from the 2.5° resolution NCEP Radar (PR).
    [Show full text]
  • Leaky Slope Waves and Sea Level: Unusual Consequences of the Beta Effect Along Western Boundaries with Bottom Topography and Dissipation
    JANUARY 2020 W I S E E T A L . 217 Leaky Slope Waves and Sea Level: Unusual Consequences of the Beta Effect along Western Boundaries with Bottom Topography and Dissipation ANTHONY WISE National Oceanography Centre, and Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom CHRIS W. HUGHES Department of Earth, Ocean and Ecological Sciences, University of Liverpool, and National Oceanography Centre, Liverpool, United Kingdom JEFF A. POLTON AND JOHN M. HUTHNANCE National Oceanography Centre, Liverpool, United Kingdom (Manuscript received 5 April 2019, in final form 29 October 2019) ABSTRACT Coastal trapped waves (CTWs) carry the ocean’s response to changes in forcing along boundaries and are important mechanisms in the context of coastal sea level and the meridional overturning circulation. Motivated by the western boundary response to high-latitude and open-ocean variability, we use a linear, barotropic model to investigate how the latitude dependence of the Coriolis parameter (b effect), bottom topography, and bottom friction modify the evolution of western boundary CTWs and sea level. For annual and longer period waves, the boundary response is characterized by modified shelf waves and a new class of leaky slope waves that propagate alongshore, typically at an order slower than shelf waves, and radiate short Rossby waves into the interior. Energy is not only transmitted equatorward along the slope, but also eastward into the interior, leading to the dissipation of energy locally and offshore. The b effectandfrictionresultinshelfandslope waves that decay alongshore in the direction of the equator, decreasing the extent to which high-latitude variability affects lower latitudes and increasing the penetration of open-ocean variability onto the shelf—narrower conti- nental shelves and larger friction coefficients increase this penetration.
    [Show full text]
  • The Counter-Propagating Rossby-Wave Perspective on Baroclinic Instability
    Q. J. R. Meteorol. Soc. (2005), 131, pp. 1393–1424 doi: 10.1256/qj.04.22 The counter-propagating Rossby-wave perspective on baroclinic instability. Part III: Primitive-equation disturbances on the sphere 1∗ 2 1 3 CORE By J. METHVEN , E. HEIFETZ , B. J. HOSKINS and C. H. BISHOPMetadata, citation and similar papers at core.ac.uk 1 Provided by Central Archive at the University of Reading University of Reading, UK 2Tel-Aviv University, Israel 3Naval Research Laboratories/UCAR, Monterey, USA (Received 16 February 2004; revised 28 September 2004) SUMMARY Baroclinic instability of perturbations described by the linearized primitive equations, growing on steady zonal jets on the sphere, can be understood in terms of the interaction of pairs of counter-propagating Rossby waves (CRWs). The CRWs can be viewed as the basic components of the dynamical system where the Hamil- tonian is the pseudoenergy and each CRW has a zonal coordinate and pseudomomentum. The theory holds for adiabatic frictionless flow to the extent that truncated forms of pseudomomentum and pseudoenergy are globally conserved. These forms focus attention on Rossby wave activity. Normal mode (NM) dispersion relations for realistic jets are explained in terms of the two CRWs associated with each unstable NM pair. Although derived from the NMs, CRWs have the conceptual advantage that their structure is zonally untilted, and can be anticipated given only the basic state. Moreover, their zonal propagation, phase-locking and mutual interaction can all be understood by ‘PV-thinking’ applied at only two ‘home-bases’— potential vorticity (PV) anomalies at one home-base induce circulation anomalies, both locally and at the other home-base, which in turn can advect the PV gradient and modify PV anomalies there.
    [Show full text]
  • MAST602: Introduction to Physical Oceanography (Andreas Münchow) (Closed Book In-Class Rossby Wave Exercise, Oct.-21, 2008)
    MAST602: Introduction to Physical Oceanography (Andreas Münchow) (Closed book in-class Rossby Wave Exercise, Oct.-21, 2008) In a series of papers published in the 1930ies Carl-Gustaf Rossby introduced a strange new wave form whose existence has not been confirmed observationally until the late 1990ies. A debate is presently raging if and how these waves may impact ecosystems in the ocean, e.g., “Killworth et al., 2003: Physical and biological mechanisms for planetary waves observed in satellite-derived chlorophyll, J. Geophys. Res.” and “Dandonneau et al., 2003: Oceanic Rossby waves acting as a “Hay Rake” for ecosystem floating by- products, Science” as well as a flurry of comments generated by these papers. These peculiar waves originate from a linear balance between local acceleration, Coriolis acceleration, and pressure gradients as well as continuity of mass, that is, East-west momentum balance: ∂u/∂t – fv = -g ∂η/∂x North-south momentum balance: ∂v/∂t + fu = -g ∂η/∂y Continuity: ∂η/∂t + H (∂u/∂x+∂v/∂y) = 0 where the Coriolis parameter f = 2 Ω sin(latitude) is no longer a constant, but is approximated locally as f ≈ f0 + βy. The rotational rate of the earth is Ω=2π/day and at the -4 -1 -11 -1 -1 latitude of Lewes, DE (39N), f0~0.9×10 s and β~2×10 m s . A number of peculiar properties can be inferred from its dispersion relation: σ = − β κ / (κ2+l2+R-2) where σ is the wave frequency, κ is the wave number in the east-west direction, l is the wave number in the north-south direction, β is a constant (the so-called beta-parameter 1/2 that incorporates Coriolis effects that changes with latitude), and R=(g’H) /f0 is a constant (the so-called Rossby radius of deformation, the same as the lateral decay scale of the Kelvin wave, where g’~9.81×10-3m/s2 is the constant of “reduced” gravity, and H~1000 m is the depth of the pycnocline (density interface).
    [Show full text]
  • Evaluation of Subtropical North Atlantic Ocean Circulation in CMIP5 Models Against the Observational Array at 26.5°N and Its Changes Under Continued Warming
    1DECEMBER 2018 B E A D L I N G E T A L . 9697 Evaluation of Subtropical North Atlantic Ocean Circulation in CMIP5 Models against the Observational Array at 26.5°N and Its Changes under Continued Warming R. L. BEADLING,J.L.RUSSELL,R.J.STOUFFER, AND P. J. GOODMAN Department of Geosciences, The University of Arizona, Tucson, Arizona (Manuscript received 12 December 2017, in final form 16 September 2018) ABSTRACT Observationally based metrics derived from the Rapid Climate Change (RAPID) array are used to assess the large-scale ocean circulation in the subtropical North Atlantic simulated in a suite of fully coupled climate models that contributed to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The modeled circulation at 26.58N is decomposed into four components similar to those RAPID observes to estimate the Atlantic meridional overturning circulation (AMOC): the northward-flowing western boundary current (WBC), the southward transport in the upper midocean, the near-surface Ekman transport, and the south- ward deep ocean transport. The decadal-mean AMOC and the transports associated with its flow are captured well by CMIP5 models at the start of the twenty-first century. By the end of the century, under representative concentration pathway 8.5 (RCP8.5), averaged across models, the northward transport of waters in the upper 2 WBC is projected to weaken by 7.6 Sv (1 Sv [ 106 m3 s 1; 221%). This reduced northward flow is a combined result of a reduction in the subtropical gyre return flow in the upper ocean (22.9 Sv; 212%) and a weakened net southward transport in the deep ocean (24.4 Sv; 228%) corresponding to the weakened AMOC.
    [Show full text]
  • CIÊNCIAS DO MAR: Dos Oceanos Do Mundo Ao Nordeste Do Brasil
    | 1 CIÊNCIAS DO MAR: dos oceanos do mundo ao Nordeste do Brasil Volume 1 Oceano, Clima, Ambientes e Conservação Danielle de Lima Viana Jorge Eduardo Lins Oliveira Fábio Hissa Vieira Hazin Marco Antonio Carvalho de Souza Recife, 2021 Via Design Publicações 2 | Ciências do Mar: dos oceanos do mundo ao Nordeste do Brasil Editores Parecer e revisão por pares Luis Henrique Poersch Danielle de Lima Viana Os textos que compõem essa obra foram Universidade Federal do Rio Grande Doutora em Oceanografia na submetidos à avaliação de um Conselho Revisor, Marcelo Roberto Souto de Melo Universidade Federal de Pernambuco bem como revisados por pares, sendo indicados Universidade de São Paulo para publicação. Pesquisadora do Departamento de Pesca Paulo Guilherme Vasconcelos de Oliveira e Aquicultura da Universidade Federal Universidade Federal Rural de Pernambuco Rural de Pernambuco Conselho revisor [email protected] Danielle de Lima Viana Pollyana Christine Gomes Roque Universidade Federal Rural de Pernambuco Universidade Federal Rural de Pernambuco Jorge Eduardo Lins Oliveira David Mendes Roberto Fioravanti Carelli Fontes Doutor em Biologia Marinha na Universidade Federal do Rio Grande do Norte Universidade Estadual Paulista Université Marie et Pierre Curie Ronaldo Olivera Cavalli -Paris 6-França Fábio Hissa Vieira Hazin Universidade Federal Rural de Pernambuco Universidade Federal do Rio Grande Professor Titular do Departamento de Oceanografia e Limnologia da Fabrício Berton Zanchi Sérgio de Magalhães Rezende Universidade Federal do Rio Grande Universidade
    [Show full text]