Diosgenin Production in North America, a Brief History

Total Page:16

File Type:pdf, Size:1020Kb

Diosgenin Production in North America, a Brief History Diosgenin Production in North America A Brief History Ray F. Dawson1 Additional index words. steroid hormones, cortisone, fertility regulants, synthesis intermedi- ates, progesterone, Mexican yam, Dioscorea cultivation, low-tension soil water, stigmasterol, sitosterol Summary. Diosgenin is a steroidal aglycone occurring in certain species of Dioscorea native principally to eastern Mexico. In the 1940s, diosgenin became a much-sought-after intermedi- ate for the chemical synthesis of certain corticosteroids and structurally related fertility regulants. Various difficulties of access to native sources led to attempts at plantation produc- tion. One of these, supported by the Upjohn Company between 1962 and 1980, was located on the Pacific coast of Guatemala and is described herein from the standpoint of technology development. The Dioscorea plant produces a long, coarse vine that requires support. The deep-growing, fleshy rhizome contains the diosgenin and, at harvest, must be removed from soil depths up to 1 m. Dry rhizome yield depends on supply of readily available (low-tension) soil water. Sites located over abundant water reserves give satisfactory rhizome yields, but diosgenin concentrations fall to uneconomically low levels under such circumstances. By 1980, diosgenin had been displaced by two products of soya oil processing, stigmasterol and sitos- terol, which became available as a result of advances in microbial fermentation technology. Consequently, the cultivation of Dioscorea was abandoned. he recent history of diosgenin pro- synthesis intermediate in the pharmaceutical duction and use is marked by an industry for almost 40 years. During those unusual convergence of interests years, great quantities were extracted from T ranging from industrial botany the rhizomes (root or tuber in trade parlance) through medicine, pharmaceutical chemia- of Dioscorea spp. native to and collected from try, business, and international politics. It is a the wild in eastern Mexico. Various pressures tale of extremes. Need for diosgenin arose led to attempted cultivation of some of these precipitously in the 1940s, when no com- species on plantations. Perhaps the most mercial source existed. It remained a favored comprehensive and long-lived effort was that of the Upjohn Company in Guatemala. Un- der intensive cultivation, allowances had to 1Consultant in tropical agriculture (retired). 40 Palmer Avenue, be made for support of the long (up to 30 m) Winter Park, FL 32789. woody vines and for removal of rhizomes 22 American Society for Horticultural Science from soil depths up to 1 m at harvest. The required. The small amounts then available most exacting site requirement was for a were said to be under monopolistic control continuous and abundant source of low- by three European manufacturers (see Senate tension soil water. Eventually, diosgenin lost Hearings, 1956). Only 3 years ahead of the its preferred position, so far as the Upjohn crisis of supply, Marker et al. (1947) devised Company was concerned when stigmasterol a synthesis ofprogesterone , the corpus luteum and sitosterol became accessible microbially hormone, from diosgenin. On a hunch forthe preparation of avarietyof commercially (Marker, 1987), he explored the Dioscoreaceae useful steroid intermediates. As so often of eastern Mexico, where he found substan- happens, displacement of a reigning botani- tial quantities of diosgenin-containing raw cal resulted from advances in industrial mi- material. His successes in both chemical and crobiology and in organic chemistry. But, plant exploratory facets of this field have won while demand remained high, it would be for him far greater attention in Mexico difficult to name a more-challenging project (Lehmann et al., 1973) in the field of industrial botany than was the than they have in his attempted cultivation in the American tropics native land. He ex- of the Mexican yam, Dioscorea composita tracted diosgenin from Hems!' (Matuda, 1953) and its variants. the woody rhizomes of a Diosgenin isfound in the st<?rageorgans the "cabeza de negro," (rhizomes) of certain species of Dioscorea that Dioscorea mexicana occur in Mexico and adjacent Guatemala. Guillemin, and pre- Chemically,diosgenin isthe steroidal aglycone pared from it 3 kg of (Fig. 1), released upon acid hydrolysis, of a .progesterone (Marker, saponaceous glycoside, dioscin. Dioscin- 1987), by far the larg- Fig. l.Diol8enin. containing plant parts, when macerated in est quantity ever before water, impart a surfactant property that the seen. Marker had not long to wait. In 1949, indigens of Mexico and Central America two developments in medicine set off the employed for cleaning purposes. The starchy explosive demand that he had foreseen. From rhizomes were eaten, albeit without relish, in the Mayo Clinic there came an announce- seasons of maize crop failure (de Landa, ment of the dramatic effect of administered medi- 1566). Dioscin is also hemolytic (Coursey, cortisone upon symptoms of rheumatoid ar- terol, 1967). Pre-Columbian inhabitants of the re- thritis. And, from the Worcester Inst. for gion dispersed pulped rhizomes in slowly Developmental Biology, came the first prac- moving streams, whereupon fish suffocated, tical fertility regulants. Although the earliest ltive floated to ,ermedi- the surface, and could be retrieved intermediates for cortisone synthesis were the easilyby hand. r The archeological museum at steroidal bile acids, both cortisone and the ~roduc- the Tikal ruins in Guatemala contains an fertility regulants could be made, at that time, located incised bone depiction of a Mayan fishing much more easily from diosgenin. Conse- lology party removing very limp fish from foam- quently, a world -wide search began for abun- Che covered waters. More recently, North Ameri- dant and inexpensive supplies of intermedi- lfrom canpatent medicines of the late 19th and early ates, including diosgenin, that could be used :ension) 20th centuries made use of dioscin-contain- advantageously for the manufacture of desired but ing extracts in the concoction of remedies for ay 1980, steroid compounds (for two interesting ex- "female troubles," but uses still to come amples, see Landrum, 1986). sitos- could not have been foreseen logy. by either stone- Total synthesis of steroids from the age Maya or our forebearers. simplest organic compounds was still years in Diosgenin was isolated first from the the future-and that route would be pro- rhizomes of anAsiaticspecies,Dioscorea tokoro hibitively expensive in any case. In the words Makino (Tsukamotoetal., 1936). Fouryears of George Pucher, at one time of the Con- later, R.E. Marker (1940a, 1940b, 1943), of necticut Agricultural Experiment Station, laceutical the Pennsylvania State College, published New Haven, the plant world came to be ing those the molecular structure and botanical occur- regarded as a storehouse of rare chemicals, :ted from rences of this aglycone. Marker's interest and it was ransacked from top to bottom in parlance) went far beyond the academic to the realm of search of ever more useful intermediates. ctedfrom prescience. At that time, knowledge of the Marker scored a third time by discovering, pressures chemistry and physiology of mammalian hor- alsoin eastern Mexico, enormous populations Ieofthese mones was expanding rapidly. Research of Dioscorea composita Hems!., known locally the most quantities were needed of those constituents as "barbasco," a far more tractable source of 1:wasthat of the animal body that, up to that time, had diosgenin than was D. mexicana. Mexican mala.Un- been known only in trace amounts. Should resources began to be "mined" by rhizome :eshad to therapeutic uses emerge, Marker reasoned, collectors. Mexican authorities estimated that )to 30 m) the pharmaceutical industry would be wholly the states of Vera Cruz and Oaxaca alone rhizomes unprepared to produce the bulk quantities contained up to 25 t of dry root equivalent! :ural Science HortTechnology.Oct/Dec. 1991 23 km2, and that » 5500 t of air-dried mate- bunda Mart et Gal., a less vigorous species rial was then being removed annually (Senate possessing a higher average diosgenin con- Hearings, 1956). Giral (1958) stated that the tent (» 5%) and recognized by the yellow flesh diosgenin concentration in this material of its rhizomes (those of D. composita are ranged between 3% and 4% on a dry basis, white). Substantial quantities were processed despite many more optimistic reports. As a by the Compania Agricola Industrial consequence of Marker’s work, and of con- Guatemalteca (CAIGSA). tinuing improvements in chemical technol- Ultimately, Mexico lost its preferred po- ogy, the price of progesterone to manufac- sition as a consequence of several ongoing turers of hormonal products fell from about factors. First, continued exploitation of natu- $200/g in 1940, to $80 in 1943, and to 30¢ ral stands of Dioscorea led to ever higher in 1955 (Senate Hearings, 1956). Owing to transportation costs as distances between its fortunate position with respect to the jungle and processing centers increased and geographical distribution of diosgenin-con- as second-growth stands suffered in terms of taining species, Mexico became the world yield per unit area of terrain and of assay. capital of the steroid intermediates industry, Second, other intermediates were brought a position that it held for more than 20 years. along, including stigmasterol and sitosterol A parallel, although much smaller, industry from soya oils and hecogenin from sisal
Recommended publications
  • Arrowroot Production and Utilization in the Marshall Islands
    J. Ethnobiol. 14(2):211-234 Winter 1994 TRADITIONAL ARROWROOT PRODUCTION AND UTILIZATION IN THE MARSHALL ISLANDS DIRK H. R. SPENNEMANN Johnstone Centre of Parks, RecreJltion, and Heritage Charles Sturt University p. 0. Box 789 Albury, NSW 2640 Australia ABSTRACT.-This paperexamines the traditional and modern role of Polynesian arrowroot (Tacca leontopetaloides) in the subsistence and market economy of the Republic of the Marshall Islands, a group of atolls in the central equatorial Pacific Ocean. The plant is discussed in its biological and nutritional parameters. Aspects of traditional arrowroot production, starch extraction, and food preparation are examined. In the final section the potential role of the root crop in modern Mar­ shallese society is discussed. RESUMEN.-Este trabajo examina el papel tradicional y moderno de Tacca leon­ topetaloides en la economfa de subsistencia y de mercado en la Republica de las Islas Marshall, un grupo de Islas coralinas en el Oceano Pacifico ecuatoria1 cen­ tral. Se discuten los parimetros biol6gicos y nutricionales de esta planta, y se examinan los aspectos de la producci6n tradicional, la extracci6n de almid6n y la preparaci6n como alimento. En la secci6n final se discute el papel potencial de este cu1tivo en 1a sociedad moderna de las Islas Marshall. REsUME.-Nous examinons les roles traditionels et modernes de l'arrowroot Polynesien (raWl leontopetaloides) dans la subsistance et I'economie de la Repub­ Iique des Ilsles Marshalles, un groupe d'attoUs de l'Ocean Pacifique Equatorial Central. Les parametres biologiques et nutritifs de cette plante sont consideres. NOllS examinons dif£erents aspects de production traditionelle d'arrowroot, ainsi que I'extraction de la £ecule et Ia preparation des aliments.
    [Show full text]
  • Role of Synthetic and Natural Inhibitors
    Biochimica et Biophysica Acta 1845 (2014) 136–154 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbacan Review Targeting the STAT3 signaling pathway in cancer: Role of synthetic and natural inhibitors Kodappully Sivaraman Siveen a,1, Sakshi Sikka a,b,1,RohitSuranaa,b, Xiaoyun Dai a, Jingwen Zhang a, Alan Prem Kumar a,b,c,d, Benny K.H. Tan a, Gautam Sethi a,b,⁎, Anupam Bishayee e,⁎⁎ a Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore b Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore c School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Western Australia, Australia d Department of Biological Sciences, University of North Texas, Denton, TX, USA e Department of Pharmaceutical Sciences, School of Pharmacy, American University of Health Sciences, Signal Hill, CA, USA article info abstract Article history: Signal transducers and activators of transcription (STATs) comprise a family of cytoplasmic transcription factors Received 15 August 2013 that mediate intracellular signaling that is usually generated at cell surface receptors and thereby transmit it to Received in revised form 24 December 2013 the nucleus. Numerous studies have demonstrated constitutive activation of STAT3 in a wide variety of human Accepted 27 December 2013 tumors, including hematological malignancies (leukemias, lymphomas, and multiple myeloma) as well as Available online 2 January 2014 diverse solid tumors (such as head and neck, breast, lung, gastric, hepatocellular, colorectal and prostate cancers). There is strong evidence to suggest that aberrant STAT3 signaling promotes initiation and progression of human Keywords: STAT3 cancers by either inhibiting apoptosis or inducing cell proliferation, angiogenesis, invasion, and metastasis.
    [Show full text]
  • Pacific Root Crops
    module 4 PACIFIC ROOT CROPS 60 MODULE 4 PACIFIC ROOT CROPS 4.0 ROOT CROPS IN THE PACIFIC Tropical root crops are grown widely throughout tropical and subtropical regions around the world and are a staple food for over 400 million people. Despite a growing reliance on imported flour and rice products in the Pacific, root crops such as taro (Colocasia esculenta), giant swamp taro (Cyrtosperma chamissonis), giant taro (Alocasia macrorhhiza), tannia (Xanthosoma sagittifolium), cassava (Manihot esculenta), sweet potato (Ipomoea batatas) and yams (Dioscorea spp.) remain critically important components of many Pacific Island diets, particularly for the large rural populations that still prevail in many PICTs (Table 4.1). Colocasia taro, one of the most common and popular root crops in the region, has become a mainstay of many Pacific Island cultures. Considered a prestige crop, it is the crop of choice for traditional feasts, gifts and fulfilling social obligations in many PICTs. Though less widely eaten, yams, giant taro and giant swamp taro are also culturally and nutritionally important in some PICTs and have played an important role in the region’s food security. Tannia, cassava and sweet potato are relatively newcomers to the Pacific region but have rapidly gained traction among some farmers on account of their comparative ease of establishment and cultivation, and resilience to pests, disease and drought. Generations of accumulated traditional knowledge relating to seasonal variations in rainfall, temperature, winds and pollination, and their influence on crop planting and harvesting times now lie in jeopardy given the unparalleled speed of environmental change impacting the region.
    [Show full text]
  • Weed Notes: Dioscorea Bulbifera, D. Alata, D. Sansibarensis Tunyalee
    Weed Notes: Dioscorea bulbifera, D. alata, D. sansibarensis TunyaLee Morisawa The Nature Conservancy Wildland Invasive Species Program http://tncweeds.ucdavis.edu 27 September 1999 Background: Dioscorea bulbifera L. is commonly called air-potato, potato vine, and air yam. The genus Dioscorea (true yams) is economically important world-wide as a food crop. Two-thirds of the worldwide production is grown in West Africa. The origin of D. bulbifera is uncertain. Some believe that the plant is native to both Asia and Africa. Others believe that it is a native of Asia and was subsequently introduced into Africa (Hammer, 1998). In 1905, D. bulbifera was imported into Florida for scientific study. A perennial herbaceous vine with annual stems, D. bulbifera climbs to a height of 9 m or more by twining to the left. Potato vine has alternate, orbicular to cordate leaves, 10-25 cm wide, with prominent veins (Hammer, 1998). Dioscorea alata (white yam), also found in Florida, is recognizable by its winged stems. These wings are often pink on plants growing in the shade. Unlike D. bulbifera, D. alata twines to the right. Native to Southeast Asia and Indo-Malaysia, this species is also grown as a food crop. The leaves are heart-shaped like D. bulbifera, but more elongate and primarily opposite. Sometimes the leaves are alternate in young, vigorous stems and often one leaf is aborted and so the vine appears to be alternate, but the remaining leaf scar is still visible. Stems may root and develop underground tubers that can reach over 50 kg in weight if they touch damp soil.
    [Show full text]
  • Micronesica 38(1):93–120, 2005
    Micronesica 38(1):93–120, 2005 Archaeological Evidence of a Prehistoric Farming Technique on Guam DARLENE R. MOORE Micronesian Archaeological Research Services P.O. Box 22303, GMF, Guam, 96921 Abstract—On Guam, few archaeological sites with possible agricultural features have been described and little is known about prehistoric culti- vation practices. New information about possible upland planting techniques during the Latte Phase (c. A.D. 1000–1521) of Guam’s Prehistoric Period, which began c. 3,500 years ago, is presented here. Site M201, located in the Manenggon Hills area of Guam’s interior, con- tained three pit features, two that yielded large pieces of coconut shell, bits of introduced calcareous rock, and several large thorns from the roots of yam (Dioscorea) plants. A sample of the coconut shell recovered from one of the pits yielded a calibrated (2 sigma) radiocarbon date with a range of A.D. 986–1210, indicating that the pits were dug during the early Latte Phase. Archaeological evidence and historic literature relat- ing to planting, harvesting, and cooking of roots and tubers on Guam suggest that some of the planting methods used in historic to recent times had been used at Site M201 near the beginning of the Latte Phase, about 1000 years ago. I argue that Site M201 was situated within an inland root/tuber agricultural zone. Introduction The completion of numerous archaeological projects on Guam in recent years has greatly increased our knowledge of the number and types of prehis- toric sites, yet few of these can be considered agricultural. Descriptions of agricultural terraces, planting pits, irrigation canals, or other agricultural earth works are generally absent from archaeological site reports, although it has been proposed that some of the piled rock alignments in northern Guam could be field boundaries (Liston 1996).
    [Show full text]
  • Plant Production--Root Vegetables--Yams Yams
    AU.ENCI FOR INTERNATIONAL DEVILOPME4T FOR AID USE ONLY WASHINGTON. 0 C 20823 A. PRIMARYBIBLIOGRAPHIC INPUT SHEET I. SUBJECT Bbliography Z-AFOO-1587-0000 CL ASSI- 8 SECONDARY FICATIDN Food production and nutrition--Plant production--Root vegetables--Yams 2. TITLE AND SUBTITLE A bibliography of yams and the genus Dioscorea 3. AUTHOR(S) Lawani,S.M.; 0dubanjo,M.0. 4. DOCUMENT DATE IS. NUMBER OF PAGES 6. ARC NUMBER 1976 J 199p. ARC 7. REFERENCE ORGANIZATION NAME AND ADDRESS IITA 8. SUPPLEMENTARY NOTES (Sponaoring Ordanization, Publlahera, Availability) (No annotations) 9. ABSTRACT This bibliography on yams bring together the scattered literature on the genus Dioscorea from the early nineteenth century through 1975. The 1,562 entries in this bibliography are grouped into 36 subject categories, and arranged within each category alphabetically by author. Some entries, particularly those whose titles are not sufficiently informative, are annotated. The major section titles in the book are as follows: general and reference works; history and eography; social and cultural importance; production and economics; botany including taxonomy, genetics, and breeding); yam growing (including fertilizers and plant nutrition); pests and diseases; storage; processing; chemical composition, nutritive value, and utilization; toxic and pharmacologically active constituents; author index; and subject index. Most entries are in English, with a few in French, Spanish, or German. 10. CONTROL NUMBER I1. PRICE OF DOCUMENT PN-AAC-745 IT. DrSCRIPTORS 13. PROJECT NUMBER Sweet potatoes Yams 14. CONTRACT NUMBER AID/ta-G-1251 GTS 15. TYPE OF DOCUMENT AID 590-1 44-741 A BIBLIOGRAPHY OF YAMS AND THE GENUS DIOSCOREA by S.
    [Show full text]
  • Potential of Guggulsterone, a Farnesoid X Receptor Antagonist, In
    Exploration of Targeted Anti-tumor Therapy Open Access Review Potential of guggulsterone, a farnesoid X receptor antagonist, in the prevention and treatment of cancer Sosmitha Girisa , Dey Parama , Choudhary Harsha , Kishore Banik , Ajaikumar B. Kunnumakkara* Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India *Correspondence: Ajaikumar B. Kunnumakkara, Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India. [email protected]; [email protected] Academic Editor: Gautam Sethi, National University of Singapore, Singapore Received: August 8, 2020 Accepted: September 14, 2020 Published: October 30, 2020 Cite this article: Girisa S, Parama D, Harsha C, Banik K, Kunnumakkara AB. Potential of guggulsterone, a farnesoid X receptor antagonist, in the prevention and treatment of cancer. Explor Target Antitumor Ther. 2020;1:313-42. https://doi.org/10.37349/ etat.2020.00019 Abstract Cancer is one of the most dreadful diseases in the world with a mortality of 9.6 million annually. Despite the advances in diagnosis and treatment during the last couple of decades, it still remains a serious concern due to the limitations associated with currently available cancer management strategies. Therefore, alternative strategies are highly required to overcome these glitches. The importance of medicinal plants as primary healthcare has been well-known from time immemorial against various human diseases, including cancer. Commiphora wightii that belongs to Burseraceae family is one such plant which has been used to cure various ailments in traditional systems of medicine.
    [Show full text]
  • Dioscorea Batatas (Dioscorea Polystachya) Chinese Yam
    Dioscorea polystachya Dioscorea batatas (Dioscorea polystachya) Chinese yam Introduction The genus Dioscorea includes more than 600 species worldwide in tropical and temperate regions. According to early publications of Chinese flora, 49 species are distributed in China; however, in the updated versions, there are 53 species (listed in the next section). Dioscorea is a genus of great economic value as an important food plant. Some species are also resources for the pharmaceutical industry[28][29]. Species of Dioscorea in China Leaves of Dioscora batatas. Scientific Name Scientific Name D. alata L. D. kamoonensis Kunth Taxonomy D. althaeoides R. Knuth D. linearicordata Prain et Burkill Family: Dioscoreaceae D. aspersa Prain et Burkill D. martini Prain et Burkill Genus: Dioscorea L. D. banzuana Péi et C. T. Ting D. melanophyma Prain et Burkill There are many scientific synonyms ‡ D. benthamii Prain et Burkill D. menglaensis H. Li and common names for D. batatas. D. bicolor Prain et Burkill D. nipponica Makino Dioscorea batatas is called Chinese yam, D. biformifolia Péi et C. T. Ting D. nitens Prain et Burkil cinnamon yam, wild yam, or common D. birmanica Prain et Burkill† D. panthaica Prain et Burkill yam; it is referred to as Dioscorea D. bulbifera L. D. pentaphylla L. polystachya and Dioscorea opposita. D. chingii Prain et Burkill D. persimilis Prain et Burkill It is also synonymous with Dioscorea D. cirrhosa Loar. D. poilanei Prain et Burkill oppositifolia. Dioscorea batatas is the taxonomic name generally used in the D. collettii Hook. f. D. polystachya Turczaninow‡ United States[29]. D. cumingii Prain et Burkill† D.
    [Show full text]
  • Dioscoreaceae) Descritas O Relacionadas Con Las Colecciones De Martín De Sessé Y José Mariano Mociño
    2137_Sese:calongea.qxd 11/06/2010 09:58 Página 49 Anales del Jardín Botánico de Madrid Vol. 67(1): 49-63 enero-junio 2010 ISSN: 0211-1322 doi: 10.3989/ajbm.2137 Tipificación y actualización nomenclatural en Dioscorea (Dioscoreaceae) descritas o relacionadas con las colecciones de Martín de Sessé y José Mariano Mociño por Oswaldo Téllez Valdés1, Paloma Blanco Fernández de Caleya2 & Lourdes Rico Arce3 1 Laboratorio de Recursos Naturales, Unidad de Biología, Tecnología y Prototipos, Facultad de Estudios Superiores Iztacala UNAM, Av. de Los Barrios 1, C.P. 54090, Tlalnepantla de Baz, Estado de México, México. [email protected]. 2 Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014 Madrid, España. [email protected]. 3 Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, United Kingdom. [email protected] Resumen Abstract Téllez Valdés, O., Blanco Fernández de Caleya, P. & Rico Arce, L. Téllez Valdés, O., Blanco Fernández de Caleya, P. & Rico Arce, L. 2010. Tipificación y actualizaciones nomenclaturales en 2010. Typification and nomenclatural updating in Dioscorea Dioscorea (Dioscoreaceae) descritas o relacionadas con las colec- (Dioscoreaceae) described and/or related to the collections ciones de Martín de Sessé y José Mariano Mociño. Anales Jard. made by Martín de Sessé and José Mariano Mociño. Anales Jard. Bot. Madrid 67(1): 49-63. Bot. Madrid 67(1): 49-63 (in Spanish). Se han estudiado las colecciones de la familia Dioscoreaceae de- The collections of the family Dioscoreaceae filed in the Herbaria of positadas en los herbarios
    [Show full text]
  • Air Potato Leaf Beetle Scientific Name:Lilioceris Cheni Gressitt and Kimoto (Coleoptera: Chrysomelidae)
    Air Potato Leaf Beetle Scientific name: Lilioceris cheni Gressitt and Kimoto (Coleoptera: Chrysomelidae) Introduction Air potato, Dioscorea bulbifera L. (Dioscoreales: Dioscoreaceae), is a fast- growing perennial vine native to Asia and Africa. It has been introduced into the southeastern United States on multiple occasions and has become established in Hawaii, Florida, Georgia, Alabama, Mississippi, Louisiana and Texas. Currently air potato is registered as a noxious weed in Florida and Alabama (USDA 2015). In Louisiana, populations of D. bulbifera have been recorded in 13 parishes (Figure 1). The air potato vine quickly grows to cover large areas and outcompetes native vegetation. It proliferates freely from vegetative bulbils Figure 1. Distribution of air potato (Dioscorea bulbifera) in the United States. Source: EDDMapS.org formed in the leaf axils and is difficult to remove, requiring repeated mechanical and herbicidal treatments. A successful biological control program against D. bulbifera was initiated in Florida in 2011 using the air potato leaf beetle, Lilioceris cheni (Rayamajhi et al., 2014). Extensive laboratory and open field studies showed L. cheni to be extremely host-specific, feeding and developing only on D. bulbifera and not on related species of Dioscorea found in Florida including D. floridana, D. villosa, and D. sansibarensis (Lake et al., 2015). Rearing and release of L. cheni on public and private lands is currently conducted by the United States Department of Agriculture (USDA), the Florida Department of Agriculture and Consumer Services (FDACS) and the University of Florida. Establishment of the beetle has been confirmed across Florida. Based on its success in Florida, there is reason to believe that L.
    [Show full text]
  • Redalyc.Tipificación Y Actualización Nomenclatural En Dioscorea
    Anales del Jardín Botánico de Madrid ISSN: 0211-1322 [email protected] Consejo Superior de Investigaciones Científicas España Téllez Valdés, Oswaldo; Blanco Fernández de Caleya, Paloma; Rico Arce, Lourdes Tipificación y actualización nomenclatural en Dioscorea (Dioscoreaceae) descritas o relacionadas con las colecciones de Martín de Sessé y José Mariano Mociño Anales del Jardín Botánico de Madrid, vol. 67, núm. 1, enero-junio, 2010, pp. 49-63 Consejo Superior de Investigaciones Científicas Madrid, España Disponible en: http://www.redalyc.org/articulo.oa?id=55613492006 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto 2137_Sese:calongea.qxd 11/06/2010 09:58 Página 49 Anales del Jardín Botánico de Madrid Vol. 67(1): 49-63 enero-junio 2010 ISSN: 0211-1322 doi: 10.3989/ajbm.2137 Tipificación y actualización nomenclatural en Dioscorea (Dioscoreaceae) descritas o relacionadas con las colecciones de Martín de Sessé y José Mariano Mociño por Oswaldo Téllez Valdés1, Paloma Blanco Fernández de Caleya2 & Lourdes Rico Arce3 1 Laboratorio de Recursos Naturales, Unidad de Biología, Tecnología y Prototipos, Facultad de Estudios Superiores Iztacala UNAM, Av. de Los Barrios 1, C.P. 54090, Tlalnepantla de Baz, Estado de México, México. [email protected]. 2 Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014 Madrid, España. [email protected]. 3 Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, United Kingdom.
    [Show full text]
  • The Environmental Reference Handbook
    THE ENVIRONMENTAL REFERENCE HANDBOOK for SANIBEL, A BARRIER ISLAND SANCTUARY HOW AND WHY TO JOIN IN THE CONTINUING STEWARDSHIP OF OUR SANCTUARY ISLAND T HE ENV IRONMENT AL REF ERENCE HANDB OOK for SANIBEL, A BARRIER ISLAND SANCTUARY 2009 Second Edition COMPILED BY THE VEGETATION COMMITTEE OF THE CITY OF SANIBEL PUBLISHED BY THE CITY OF SANIBEL We would like to acknowledge and thank the following people who were so generous with their time, enthusiasm, and expertise during the compilation of this handbook. Some contributed information, others answered questions, offered advice, proof-read sections, supplied photographs, and helped with formatting. Kristie Anders Chris Andrews Dr. P.J. Deitschel Holly Downing Jenny Evans Richard Finkle Chris Lechowicz Erick Lindblad Patrick Martin Neil Payne Cheryl Parrott Cathy Paus Dee Serage Century Brad Smith Pamela Smith Melissa Upton Thank you from The City of Sanibel and The Vegetation Committee The City of Sanibel and the Vegetation Committee gratefully acknowledge financial support from the J.N.”Ding” Darling National Wildlife Refuge towards the publication of this handbook. TABLE OF CONTENTS INTRODUCTION ……………………………………………………. 1 CITY OF SANIBEL VISION STATEMENT ………………………. 3 VEGETATION Native Plants ………………………………………………………. 6 Native Species of Special Interest: Cabbage Palm (Sabal palmetto) Mangroves Landscaping for Wildlife Vegetation Standards for Native Plants Exotic (Non-Native) Plants ...................................................……. 10 Invasive Exotic Plants Photos of Eight Prohibited Invasive Exotic Plants Vegetation Standards for Invasive Exotic Plants Brazilian Pepper Eradication Program Australian Pines Other Exotic Vegetation Coastal Construction Control Line (CCCL) Gulf Beach Zone ..........................................................…………….. 14 Importance of Native Vegetation and Beach Erosion Control Vegetation Standards to Protect Native Plants in the Gulf Beach Zone Australian Pines in the Gulf Beach Zone Soil, Compost, Mulch, and Sod ......................................................
    [Show full text]