The Cryosphere, 9, 123–138, 2015 www.the-cryosphere.net/9/123/2015/ doi:10.5194/tc-9-123-2015 © Author(s) 2015. CC Attribution 3.0 License. Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland C. C. Clason1, D. W. F. Mair2, P. W. Nienow3, I. D. Bartholomew3, A. Sole4, S. Palmer5, and W. Schwanghart6 1Department of Physical Geography and Quaternary Geology, Stockholm University, 106 91 Stockholm, Sweden 2Geography and Environment, University of Aberdeen, Aberdeen, AB24 3UF, UK 3School of Geosciences, University of Edinburgh, Edinburgh, EH8 9XP, UK 4Department of Geography, University of Sheffield, Sheffield, S10 2TN, UK 5Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4RJ, UK 6Institute of Earth and Environmental Science, University of Potsdam, 14476 Potsdam-Golm, Germany Correspondence to: C. C. Clason (
[email protected]) Received: 23 June 2014 – Published in The Cryosphere Discuss.: 29 July 2014 Revised: 12 December 2014 – Accepted: 24 December 2014 – Published: 22 January 2015 Abstract. Meltwater delivered to the bed of the Greenland melt to the bed matches the observed delay between the peak Ice Sheet is a driver of variable ice-motion through changes air temperatures and subsequent velocity speed-ups, while in effective pressure and enhanced basal lubrication. Ice sur- the instantaneous transfer of melt to the bed in a control sim- face velocities have been shown to respond rapidly both ulation does not. Although both moulins and lake drainages to meltwater production at the surface and to drainage of are predicted to increase in number for future warmer climate supraglacial lakes, suggesting efficient transfer of meltwa- scenarios, the lake drainages play an increasingly important ter from the supraglacial to subglacial hydrological systems.