Structure of a Sliding Clamp On
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mutations That Separate the Functions of the Proofreading Subunit of the Escherichia Coli Replicase
G3: Genes|Genomes|Genetics Early Online, published on April 15, 2015 as doi:10.1534/g3.115.017285 Mutations that separate the functions of the proofreading subunit of the Escherichia coli replicase Zakiya Whatley*,1 and Kenneth N Kreuzer*§ *University Program in Genetics & Genomics, Duke University, Durham, NC 27705 §Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 1 © The Author(s) 2013. Published by the Genetics Society of America. Running title: E. coli dnaQ separation of function mutants Keywords: DNA polymerase, epsilon subunit, linker‐scanning mutagenesis, mutation rate, SOS response Corresponding author: Kenneth N Kreuzer, Department of Biochemistry, Box 3711, Nanaline Duke Building, Research Drive, Duke University Medical Center, Durham, NC 27710 Phone: 919 684 6466 FAX: 919 684 6525 Email: [email protected] 1 Present address: Department of Biology, 300 N Washington Street, McCreary Hall, Campus Box 392, Gettysburg College, Gettysburg, PA 17325 Phone: 717 337 6160 Fax: 7171 337 6157 Email: [email protected] 2 ABSTRACT The dnaQ gene of Escherichia coli encodes the ε subunit of DNA polymerase III, which provides the 3’ 5’ exonuclease proofreading activity of the replicative polymerase. Prior studies have shown that loss of ε leads to high mutation frequency, partially constitutive SOS, and poor growth. In addition, a previous study from our lab identified dnaQ knockout mutants in a screen for mutants specifically defective in the SOS response following quinolone (nalidixic acid) treatment. To explain these results, we propose a model whereby in addition to proofreading, ε plays a distinct role in replisome disassembly and/or processing of stalled replication forks. -
1 Mechanistic Studies of DNA Replication, Lesion Bypass, And
Mechanistic Studies of DNA Replication, Lesion Bypass, and Editing Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Austin Tyler Raper, B.S. The Ohio State University Biochemistry Graduate Program The Ohio State University 2018 Dissertation Committee Dr. Zucai Suo, Advisor Dr. Ross Dalbey Dr. Michael Poirier Dr. Richard Swenson 1 Copyrighted by Austin Tyler Raper 2018 2 Abstract DNA acts as a molecular blueprint for life. Adenosine, cytidine, guanosine, and thymidine nucleotides serve as the building blocks of DNA and can be arranged in near- endless combinations. These unique sequences of DNA may encode genes that when expressed produce RNA, proteins, and enzymes responsible for executing diverse tasks necessary for biological existence. Accordingly, careful maintenance of the molecular integrity of DNA is paramount for the growth, development, and functioning of organisms. However, DNA is damaged upon reaction with pervasive chemicals generated by normal cellular metabolism or encountered through the environment. The resulting DNA lesions act as roadblocks to high-fidelity A- and B-family DNA polymerases responsible for replicating DNA in preparation for cell division which may lead to programmed cell death. Additionally, these lesions may fool the polymerase into making errors during DNA replication, leading to genetic mutations and cancer. Fortunately, the cell has evolved DNA damage tolerance as an emergency response to such lesions. During DNA damage tolerance, a damage-stalled high-fidelity polymerase is substituted for a specialized Y-family polymerase, capable of bypassing the offending DNA lesion, for replication to continue. -
Structure of the Human Clamp Loader Reveals an Autoinhibited Conformation of a Substrate-Bound AAA+ Switch
Structure of the human clamp loader reveals an autoinhibited conformation of a substrate-bound AAA+ switch Christl Gaubitza,1, Xingchen Liua,b,1, Joseph Magrinoa,b, Nicholas P. Stonea, Jacob Landecka,b, Mark Hedglinc, and Brian A. Kelcha,2 aDepartment of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester MA 01605; bGraduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester MA 01605; and cDepartment of Chemistry, The Pennsylvania State University, University Park, PA 16802 Edited by Michael E. O’Donnell, HHMI and Rockefeller University, New York, NY, and approved July 27, 2020 (received for review April 20, 2020) DNA replication requires the sliding clamp, a ring-shaped protein areflexia syndrome (15), Hutchinson–Gilford progeria syn- complex that encircles DNA, where it acts as an essential cofactor drome (16), and in the replication of some viruses (17–19). It for DNA polymerases and other proteins. The sliding clamp needs is unknown whether loading by RFC contributes to PARD to be opened and installed onto DNA by a clamp loader ATPase of disease. the AAA+ family. The human clamp loader replication factor C Clamp loaders are members of the AAA+ family of ATPases (RFC) and sliding clamp proliferating cell nuclear antigen (PCNA) (ATPases associated with various cellular activities), a large are both essential and play critical roles in several diseases. De- protein family that uses the chemical energy of adenosine 5′- spite decades of study, no structure of human RFC has been re- triphosphate (ATP) to generate mechanical force (20). Most solved. Here, we report the structure of human RFC bound to AAA+ proteins form hexameric motors that use an undulating PCNA by cryogenic electron microscopy to an overall resolution ∼ spiral staircase mechanism to processively translocate a substrate of 3.4 Å. -
DNA POLYMERASE III HOLOENZYME: Structure and Function of a Chromosomal Replicating Machine
Annu. Rev. Biochem. 1995.64:171-200 Copyright Ii) 1995 byAnnual Reviews Inc. All rights reserved DNA POLYMERASE III HOLOENZYME: Structure and Function of a Chromosomal Replicating Machine Zvi Kelman and Mike O'Donnell} Microbiology Department and Hearst Research Foundation. Cornell University Medical College. 1300York Avenue. New York. NY }0021 KEY WORDS: DNA replication. multis ubuni t complexes. protein-DNA interaction. DNA-de penden t ATPase . DNA sliding clamps CONTENTS INTRODUCTION........................................................ 172 THE HOLO EN ZYM E PARTICL E. .......................................... 173 THE CORE POLYMERASE ............................................... 175 THE � DNA SLIDING CLAM P............... ... ......... .................. 176 THE yC OMPLEX MATCHMAKER......................................... 179 Role of ATP . .... .............. ...... ......... ..... ............ ... 179 Interaction of y Complex with SSB Protein .................. ............... 181 Meclwnism of the yComplex Clamp Loader ................................ 181 Access provided by Rockefeller University on 08/07/15. For personal use only. THE 't SUBUNIT . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 182 Annu. Rev. Biochem. 1995.64:171-200. Downloaded from www.annualreviews.org AS YMMETRIC STRUC TURE OF HOLO EN ZYM E . 182 DNA PO LYM ER AS E III HOLO ENZ YME AS A REPLIC ATING MACHINE ....... 186 Exclwnge of � from yComplex to Core .................................... 186 Cycling of Holoenzyme on the LaggingStrand -
Glycolytic Pyruvate Kinase Moonlighting Activities in DNA Replication
Glycolytic pyruvate kinase moonlighting activities in DNA replication initiation and elongation Steff Horemans, Matthaios Pitoulias, Alexandria Holland, Panos Soultanas, Laurent Janniere To cite this version: Steff Horemans, Matthaios Pitoulias, Alexandria Holland, Panos Soultanas, Laurent Janniere. Gly- colytic pyruvate kinase moonlighting activities in DNA replication initiation and elongation. 2020. hal-02992157 HAL Id: hal-02992157 https://hal.archives-ouvertes.fr/hal-02992157 Preprint submitted on 10 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Glycolytic pyruvate kinase moonlighting activities in DNA replication initiation and elongation Steff Horemans1, Matthaios Pitoulias2, Alexandria Holland2, Panos Soultanas2¶ and Laurent Janniere1¶ 1 : Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France 2 : Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK Short title: PykA moonlighting activity in DNA replication Key Words: DNA replication; replication control; central carbon metabolism; glycolytic enzymes; replication enzymes; cell cycle; allosteric regulation. ¶ : Corresponding authors Laurent Janniere: [email protected] Panos Soultanas : [email protected] 1 SUMMARY Cells have evolved a metabolic control of DNA replication to respond to a wide range of nutritional conditions. -
Restoration of Mir-193A Expression Is Tumor-Suppressive in MYC
Bharambe et al. Acta Neuropathologica Communications (2020) 8:70 https://doi.org/10.1186/s40478-020-00942-5 RESEARCH Open Access Restoration of miR-193a expression is tumor-suppressive in MYC amplified Group 3 medulloblastoma Harish Shrikrishna Bharambe1,2, Annada Joshi1, Kedar Yogi1,2, Sadaf Kazi1 and Neelam Vishwanath Shirsat1,2* Abstract Medulloblastoma, a highly malignant pediatric brain tumor, consists of four molecular subgroups, namely WNT, SHH, Group 3, and Group 4. The expression of miR-193a, a WNT subgroup-specific microRNA, was found to be induced by MYC, an oncogenic target of the canonical WNT signaling. MiR-193a is not expressed in Group 3 medulloblastomas, despite MYC expression, as a result of promoter hypermethylation. Restoration of miR-193a expression in the MYC amplified Group 3 medulloblastoma cells resulted in inhibition of growth, tumorigenicity, and an increase in radiation sensitivity. MAX,STMN1, and DCAF7 were identified as novel targets of miR-193a. MiR- 193a mediated downregulation of MAX could suppress MYC activity since it is an obligate hetero-dimerization partner of MYC. MYC induced expression of miR-193a, therefore, seems to act as a feedback inhibitor of MYC signaling. The expression of miR-193a resulted in widespread repression of gene expression that included not only several cell cycle regulators, WNT, NOTCH signaling genes, and those encoding DNA replication machinery, but also several chromatin modifiers like SWI/SNF family genes and histone-encoding genes. MiR-193a expression brought about a reduction in the global levels of H3K4me3, H3K27ac, the histone marks of active chromatin, and an increase in the levels of H3K27me3, a repressive chromatin mark. -
Rnase-H-Based Assays Utilizing Modified Rna
(19) TZZ ¥_T (11) EP 2 279 263 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12Q 1/68 (2006.01) 04.09.2013 Bulletin 2013/36 (86) International application number: (21) Application number: 09739895.2 PCT/US2009/042454 (22) Date of filing: 30.04.2009 (87) International publication number: WO 2009/135093 (05.11.2009 Gazette 2009/45) (54) RNASE-H-BASED ASSAYS UTILIZING MODIFIED RNA MONOMERS TESTS AUF RNASE-H-BASIS MIT MODIFIZIERTEN RNA-MONOMEREN DOSAGES À BASE DE RNASE-H UTILISANT DES MONOMÈRES D’ARN MODIFIÉS (84) Designated Contracting States: • ROSE, Scott AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Coralville, IA 52241 (US) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • DOBOSY, Joseph PT RO SE SI SK TR Coralville, IA 52241 (US) (30) Priority: 30.04.2008 US 49204 P (74) Representative: Grünecker, Kinkeldey, Stockmair & Schwanhäusser (43) Date of publication of application: Leopoldstrasse 4 02.02.2011 Bulletin 2011/05 80802 München (DE) (60) Divisional application: (56) References cited: 13173388.3 EP-A- 1 367 136 WO-A-01/21813 13173389.1 WO-A-03/074724 WO-A-2004/059012 13173390.9 WO-A-2007/062495 WO-A2-2005/021776 13173391.7 WO-A2-2007/141580 US-A- 5 744 308 US-A- 5 830 664 (73) Proprietor: Integrated Dna Technologies, Inc. Coralville, IA 52241 (US) • ITAYA M ET AL: "Molecular cloning of a ribonuclease H (RNase HI) gene from an extreme (72) Inventors: thermophile Thermus thermophilus HB8: a • WALDER, Joseph, Alan thermostable RNase H can functionally replace Chicago, IL 60645 (US) the Escherichia coli enzyme in vivo." NUCLEIC • BEHLKE, Mark, Aaron ACIDS RESEARCH 25 AUG 1991, vol. -
DNA REPLICATION, REPAIR, and RECOMBINATION Figure 5–1 Different Proteins Evolve at Very Different Rates
5 THE MAINTENANCE OF DNA DNA REPLICATION, SEQUENCES DNA REPLICATION MECHANISMS REPAIR, AND THE INITIATION AND COMPLETION OF DNA REPLICATION IN RECOMBINATION CHROMOSOMES DNA REPAIR GENERAL RECOMBINATION SITE-SPECIFIC RECOMBINATION The ability of cells to maintain a high degree of order in a chaotic universe depends upon the accurate duplication of vast quantities of genetic information carried in chemical form as DNA. This process, called DNA replication, must occur before a cell can produce two genetically identical daughter cells. Main- taining order also requires the continued surveillance and repair of this genetic information because DNA inside cells is repeatedly damaged by chemicals and radiation from the environment, as well as by thermal accidents and reactive molecules. In this chapter we describe the protein machines that replicate and repair the cell’s DNA. These machines catalyze some of the most rapid and accu- rate processes that take place within cells, and their mechanisms clearly demon- strate the elegance and efficiency of cellular chemistry. While the short-term survival of a cell can depend on preventing changes in its DNA, the long-term survival of a species requires that DNA sequences be changeable over many generations. Despite the great efforts that cells make to protect their DNA, occasional changes in DNA sequences do occur. Over time, these changes provide the genetic variation upon which selection pressures act during the evolution of organisms. We begin this chapter with a brief discussion of the changes that occur in DNA as it is passed down from generation to generation. Next, we discuss the cellular mechanisms—DNA replication and DNA repair—that are responsible for keeping these changes to a minimum. -
DNA Replication
Predicted by Watson & Crick model CONSERVATIVE (one totally new, one totally old) Other possibilities DISPERSIVE (each have mixed bits) Grow E-Coli in 15N for several generation [15NH4Cl as sole N-source) Transfer to medium containing only 14N Extract DNA after each replication Semi-conservative ISOPYCNIC density gradient centrifugation Components stop at the point in the Measure density using CsCl gradient gradient equal to their buoyant density Experiment In the second generation, ALL DNA has a density halfway in between 15N DNA and 14N DNA In subsequent generations, the proportion of fully 14N DNA increases, but some hybrids remain DNA polymerases synthesise DNA in the 5' > 3' direction [because the 3' OH attacks the incoming nucleotide] DNA is antiparallel Both new strands are synthesized simultaneously at the replication fork If DNA replication is semi-conservative, this poses a problem Bacterial chromosomes contain a SINGLE Therefore, one of the strands needs to grow ORIGIN, bound to the cell membrane, in the 3' > 5' direction within the oriC locus Enter Sub-topic Contains four 9 bp binding sites for the Synthesis of this protein is coupled to growth rate initiator protein DnaA Add a pulse of 3H-thymidine to cells Quench and harvest DNA Once it has attained a critical level, DnaA forms a complex of 30-40 molecules, each Requires DNA to be NEGATIVELY bound to ATP, around which oriC DNA Experiment 1 SUPERCOILED becomes wrapped Initiation Facilitates the MELTING of three 13 bp Separate by size AT-rich repeat sequences, which open toallow binding of DnaB (DNA helicase) Add a pulse of 3H-thymidine to cells DNA primase then binds and synthesizes a "Chase" with unlabelled thymidine short RNA primer on the LEADING DNA polymerases and STRAND. -
Telomerase Reverse Transcriptase Expression Elevated by Avian Leukosis Virus Integration in B Cell Lymphomas
Telomerase reverse transcriptase expression elevated by avian leukosis virus integration in B cell lymphomas Feng Yang, Rena R. Xian*, Yingying Li, Tatjana S. Polony, and Karen L. Beemon† Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 Communicated by Saul Roseman, The Johns Hopkins University, Baltimore, MD, September 26, 2007 (received for review May 11, 2007) Simple retroviruses induce tumors by integrating into the host integration sites are believed to result from strong biological genome, activating cellular oncogenes and microRNAs, or inacti- selection (7). vating tumor suppressor genes. The identification of these genes Avian leukosis virus (ALV) is a simple retrovirus that does not elucidates molecular mechanisms of tumorigenesis. In this study, encode an oncogene but that can induce tumors by integrating we identified avian leukosis virus (ALV) proviral integration sites in near oncogenes, introducing a strong promoter or enhancer rapid-onset B cell lymphomas arising <12 weeks after infection of sequence (8–12). Typically, ALV induces B cell lymphomas to chicken embryos. By using inverse PCR, 28 unique viral integration develop in Ϸ6 months and frequently involves proviral integra- sites were identified in rapid-onset tumors. Integrations in the tions, resulting in deregulation of the cellular transcription telomerase reverse transcriptase (TERT) promoter/enhancer region factor, myc, as well as bic (precursor to microRNA 155) (10–12). were observed in four different tumors, suggesting that this is a In addition, B cell lymphomas with a more rapid onset (lethal in common integration site. These provirus integrations ranged from Ͻ3 months) have been observed with clonal proviral insertions 217 to 2,584 bp upstream of the TERT transcription initiation site into the myb gene locus, resulting in overexpression of a trun- and were all in the opposite transcriptional orientation to TERT. -
The Role of Metabolites in the Link Between DNA Replication and Central Carbon Metabolism in Escherichia Coli
G C A T T A C G G C A T genes Article The Role of Metabolites in the Link between DNA Replication and Central Carbon Metabolism in Escherichia coli Klaudyna Krause 1, Monika Maci ˛ag-Dorszy´nska 2 , Anna Wosinski 3, Lidia Gaffke 3 , Joanna Morcinek-Orłowska 1,3, Estera Rintz 3, Patrycja Biela´nska 3, Agnieszka Szalewska-Pałasz 1, Georgi Muskhelishvili 4 and Grzegorz W˛egrzyn 3,* 1 Department of Bacterial Molecular Genetics, University of Gdansk, 80-308 Gdansk, Poland; [email protected] (K.K.); [email protected] (J.M.-O.); [email protected] (A.S.-P.) 2 Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 80-822 Gdansk, Poland; [email protected] 3 Department of Molecular Biology, University of Gdansk, 80-308 Gdansk, Poland; [email protected] (A.W.); lidia.gaff[email protected] (L.G.); [email protected] (E.R.); [email protected] (P.B.) 4 School of Natural Sciences, Agricultural University of Georgia, 0131 Tbilisi, Georgia; [email protected] * Correspondence: [email protected]; Tel.: +48-58-5236024 Received: 31 March 2020; Accepted: 16 April 2020; Published: 19 April 2020 Abstract: A direct link between DNA replication regulation and central carbon metabolism (CCM) has been previously demonstrated in Bacillus subtilis and Escherichia coli, as effects of certain mutations in genes coding for replication proteins could be specifically suppressed by particular mutations in genes encoding CCM enzymes. However, specific molecular mechanism(s) of this link remained unknown. -
Coordination Between Nucleotide Excision Repair And
RESEARCH ARTICLE Coordination between nucleotide excision repair and specialized polymerase DnaE2 action enables DNA damage survival in non-replicating bacteria Asha Mary Joseph1, Saheli Daw1, Ismath Sadhir1,2, Anjana Badrinarayanan1* 1National Centre for Biological Sciences - Tata Institute of Fundamental Research, Bangalore, India; 2Max Planck Institute for Terrestrial Microbiology, LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Marburg, Germany Abstract Translesion synthesis (TLS) is a highly conserved mutagenic DNA lesion tolerance pathway, which employs specialized, low-fidelity DNA polymerases to synthesize across lesions. Current models suggest that activity of these polymerases is predominantly associated with ongoing replication, functioning either at or behind the replication fork. Here we provide evidence for DNA damage-dependent function of a specialized polymerase, DnaE2, in replication- independent conditions. We develop an assay to follow lesion repair in non-replicating Caulobacter and observe that components of the replication machinery localize on DNA in response to damage. These localizations persist in the absence of DnaE2 or if catalytic activity of this polymerase is mutated. Single-stranded DNA gaps for SSB binding and low-fidelity polymerase-mediated synthesis are generated by nucleotide excision repair (NER), as replisome components fail to localize in the absence of NER. This mechanism of gap-filling facilitates cell cycle restoration when cells are released into replication-permissive conditions. Thus, such cross-talk (between activity of NER and specialized polymerases in subsequent gap-filling) helps preserve genome integrity and enhances survival in a replication-independent manner. *For correspondence: [email protected] Introduction Competing interests: The DNA damage is a threat to genome integrity and can lead to perturbations to processes of replica- authors declare that no tion and transcription.