Partially Hyperbolic Diffeomorphisms with a Compact Center Foliation with Finite Holonomy Doris Bohnet

Total Page:16

File Type:pdf, Size:1020Kb

Partially Hyperbolic Diffeomorphisms with a Compact Center Foliation with Finite Holonomy Doris Bohnet Partially hyperbolic diffeomorphisms with a compact center foliation with finite holonomy Doris Bohnet To cite this version: Doris Bohnet. Partially hyperbolic diffeomorphisms with a compact center foliation with finite holon- omy. Dynamical Systems [math.DS]. Universität Hamburg, 2011. English. tel-00782664 HAL Id: tel-00782664 https://tel.archives-ouvertes.fr/tel-00782664 Submitted on 30 Jan 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Partially hyperbolic systems with a compact center foliation with finite holonomy Dissertation Zur Erlangung des Doktorgrades der Fakult¨at f¨ur Mathematik, Informatik und Naturwissenschaften der Universit¨at Hamburg vorgelegt im Fachbereich Mathematik von DORIS BOHNET aus Konstanz Hamburg 2011 Als Dissertation angenommen vom Fachbereich Mathematik der Universit¨at Hamburg aufgrund der Gutachten von: Dr. Roland Gunesch, Prof. Dr. Christian Bonatti Hamburg, den 12.12.2011. Prof. Dr. Ingenuin Gasser Leiter des Fachbereichs Mathematik Contents Vorwort 6 Introduction 11 1 Preliminaries 16 1.1 Compact foliations and homeomorphism groups . 16 1.2 Partiallyhyperbolicsystems . 26 1.2.1 Definitionsandbasicproperties . 26 1.2.2 Dynamical coherence for partially hyperbolic systems with a compact center foliation with finite holonomy . 30 1.2.3 Furtherremarks. 35 1.3 Dynamicsontheleafspace. 37 1.3.1 Compact center leaves with trivial holonomy . 39 1.3.2 Compact center leaves with finite holonomy . 44 1.3.3 Shadowing Lemma for compact center foliations with finiteholonomy ...................... 46 1.4 Orientabilityandcoveringspaces . 69 2 Compact center foliations with finite holonomy under restric- tions on the codimension 72 2.1 Maintheorems .......................... 72 2.2 Generallemmata ......................... 75 2.2.1 Transitivityontheleafspace . 78 2.3 Codimension-2centerfoliation. 84 2.4 Codimension-3centerfoliation . 88 2.5 Codimension-(1+k)centerFoliation . 93 2.6 Codimension-(2+2)centerFoliation . 113 Outlook 118 Bibliography 122 3 Contents Zusammenfassung 123 Lebenslauf 124 4 List of Figures 1.1 Failureofdynamicalcoherence. 32 2.1 Orientation-reversingholonomy . 77 2.2 Proofofcentraltransitivity(1) . 82 2.3 Proofofcentraltransitivity(2) . 84 2.4 Accumulationofunstableplaques . 90 5 Vorwort Die vorliegende Arbeit ist der Klassifikation partiell hyperbolischer Diffeo- morphismen gewidmet. Die Untersuchung partiell hyperbolischer Diffeomor- phismen ist ein Teil der Theorie der dynamischen Systeme. Unter einem dynamischen System versteht man ein beliebiges System, zum Beispiel ein physikalisches oder ein ¨okonomisches, das sich in Abh¨angigkeit von der Zeit ver¨andert. Wir betrachten nur dynamische Systeme mit diskreter Zeit. Dem- nach l¨asst sich ein dynamisches System durch den Raum M der Zust¨ande des Systems und durch eine Abbildung f : M → M beschreiben, die die Ver¨anderung des Systems in einer Zeiteinheit erfasst. Diese Arbeit beschr¨ankt sich auf differenzierbare dynamische Systeme, bei denen f ein Diffeomorphis- mus und M eine kompakte glatte Mannigfaltigkeit ist. Die Theorie der dynamischen Systeme untersucht das langfristige Verhal- ten eines Systems: Gibt es einen Zustand oder eine Menge von Zust¨anden, denen sich das System unabh¨angig von seinem Anfangszustand ann¨ahert? Ist das System stabil gegen¨uber kleinen St¨orungen von f oder geringf¨ugigen Anderungen¨ des Anfangszustandes? In den 1960er Jahren hat man fest- gestellt, dass strukturstabiles dynamisches Verhalten eng mit dem Begriff der Hyperbolizit¨at korreliert. In den darauffolgenden Jahren sind deshalb sogenannte hyperbolische dynamische Systeme intensiv studiert worden, und ihr Verhalten ist heute gut verstanden. In der Folge tauchten in den 1970er Jahren Ideen auf, den Begriff der Hyperbolizit¨at abzuschw¨achen, so dass eine gr¨oßere Klasse von Systemen erfasst wird, aber dennoch viele Eigenschaften hyperbolischer Systeme erhalten bleiben. In diesem Zusammenhang sei an den Begriff der partiellen Hyperbolizit¨at erinnert, eingef¨uhrt von Pugh und Shub in [PS72] und unabh¨angig davon von Brin und Pesin in [BP74], sowie an den Begriff der nichtuniformen Hyperbolizit¨at von Pesin in [Pes77], heute auch als Pesin-Theorie bekannt, und an das dominated splitting, entwickelt von Ma˜n´ein [Ma˜n84]. Der Gegenstand dieser Arbeit sind differenzierbare partiell hyperbolische Sys- teme. Ein glattes dynamisches System f : M → M wird partiell hyperbolisch 6 Vorwort genannt, falls sein Tangentialb¨undel in drei nichttriviale, df-invariante Un- terb¨undel zerf¨allt, genannt stabiles, instables und zentrales Unterb¨undel, so dass df Vektoren des stabilen Unterb¨undels st¨arker kontrahiert als Vektoren in zentrale Richtung sowie Vektoren in instabile Richtung st¨arker streckt als Vektoren in zentrale Richtung. Die stabilen und instabilen Unterb¨undel sind eindeutig integrabel zu f-invarianten stabilen und instabilen Bl¨atterungen, w¨ahrend das zentrale Unterb¨undel nicht einmal in einem schwachen Sinne integrabel sein muss. Diese Arbeit beschr¨ankt sich auf Systeme, die eine f-invariante Zentrumsbl¨atterung tangential zum zentralen Unterb¨undel be- sitzen. Die Eigenschaften der Zentrumsbl¨atterung sind eine M¨oglichkeit, um partiell hyperbolische Systeme zu klassifizieren, und dieser Weg soll in dieser Arbeit beschritten werden. Da sich die bekannten Beispielklassen vor allem hinsichtlich der Eigenschaften ihrer Zentrumsbl¨atterung unterscheiden, scheint dies eine sinnvolle Kategorisierung zu sein. Am Anfang dieser Arbeit stand die Idee, partiell hyperbolische Systeme auf hyperbolische Systeme zur¨uckzuf¨uhren, indem man sich der zentralen Richtung, die bei allen Beweisen Probleme bereitet, zu entledigen versucht. Mathematisch formuliert geht man zum Quotientenraum ¨uber, der entsteht, wenn man jeweils alle Punkte auf einer Zentrumsmannigfaltigkeit miteinan- der identifiziert. In diesem Quotientenraum kann man mit gutem Recht ein hyperbolisches Verhalten des induzierten Systems erwarten, auch wenn Glattheitseigenschaften auf dem Weg der Quotientenbildung verloren gehen. Im Allgemeinen, und hier liegt nun das Problem, ist der Quotientenraum einer Bl¨atterung in den meisten F¨allen nicht einmal ein Hausdorffraum. Doch die Hausdorffeigenschaft ist sicherlich ein Minimum dessen, was man von einem Raum verlangen muss, um in ihm sinnvoll die Dynamik eines Sys- tems untersuchen zu k¨onnen. Deshalb ist es notwendig zu fordern, dass alle Zentrumsmannigfaltigkeiten kompakt sind und endliche Holonomie besitzen. Was dies im Einzelnen ist und was es impliziert, wird im folgenden einleiten- den Kapitel ausf¨uhrlich dargelegt. An dieser Stelle soll es zun¨achst gen¨ugen festzuhalten, dass die Zentrumsbl¨atterung weitere zus¨atzliche Eigenschaften besitzen muss. Unter diesen Bedingungen induziert dann f eine Abbildung F auf dem Quotientenraum, die in einem topologischen Sinne viele hyperbo- lische Eigenschaften aufweist. Die Strategie, die den folgenden Beweisen zu- grunde liegt, ist, die hyperbolischen Eigenschaften immer dann auszunutzen, wenn die zentrale Richtung Schwierigkeiten bereitet, gleichzeitig aber auf f und die glatten invarianten Bl¨atterungen in M zur¨uckzugreifen, sobald der Beweis Glattheitseigenschaften erfordert. Die Annahme kompakter Zentrumsmannigfaltigkeiten scheint sehr restriktiv, 7 Vorwort ist aber, obwohl theoretisch motiviert, auch von praktischer Bedeutung, da eine wichtige Beispielklasse partiell hyperbolischer Systeme, die sogenannten Schiefprodukte, kompakte Zentrumsmannigfaltigkeiten besitzt. Die Schief- produkte sind in den letzten Jahren aus vielen Gr¨unden, wie z.B. Existenz von SRB-Maßen, intensiv studiert worden. Diese Arbeit ist nun ein Schritt hin zu einem besseren Verst¨andisses des Zusammenhanges zwischen partiell hyperbolischen Systemen mit kompakter Zentrumsbl¨atterung und Schiefpro- dukten bzw. endlichen Uberlagerungen¨ von Schiefprodukten. Im Falle einer dreidimensionalen Mannigfaltigkeit hat Pujals auf einer Konferenz im Jahr 2001 die Vermutung ge¨außert, dass beide identisch sind, die auch durch Ar- beiten von Bonatti und Wilkinson in [BW05a] in leicht abge¨anderter Form best¨arkt wird. Die folgenden drei Ergebnisse sind die wichtigsten, die in dieser Arbeit erzielt werden konnten: Ergebnisse: 1. Ein partiell hyperbolisches System f : M → M mit einer kompakten Zentrumsbl¨atterung mit endlicher Holonomie ist dynamisch koh¨arent, d.h. es existieren Bl¨atterungen zum zentralinstabilen und zum zentral- stabilen Unterb¨undel. Dieses Ergebnis findet sich als Theorem 1.24 im Kapitel 1. 2. Weiter zeigen wir das Beschattungslemma in Theorem 1.65 in Kapi- tel 1 f¨ur ein partiell hyperbolisches System f : M → M mit einer kompakten Zentrumsbl¨atterung mit endlicher Holonomie. 3. Es werde weiter angenommen, dass das instabile Unterb¨undel eindi- mensional ist. Dann kann ein partiell hyperbolisches System f : M → M mit einer kompakten Zentrumsbl¨atterung mit endlicher Holonomie auf einer zweifachen Uberlagerung¨ zu einem partiell hyperbolischen System f˜ hochgehoben werden, so dass die hochgehobene Zentrumsbl¨atterung nur triviale Holonomie
Recommended publications
  • TRANSVERSE STRUCTURE of LIE FOLIATIONS 0. Introduction This
    TRANSVERSE STRUCTURE OF LIE FOLIATIONS BLAS HERRERA, MIQUEL LLABRES´ AND A. REVENTOS´ Abstract. We study if two non isomorphic Lie algebras can appear as trans- verse algebras to the same Lie foliation. In particular we prove a quite sur- prising result: every Lie G-flow of codimension 3 on a compact manifold, with basic dimension 1, is transversely modeled on one, two or countable many Lie algebras. We also solve an open question stated in [GR91] about the realiza- tion of the three dimensional Lie algebras as transverse algebras to Lie flows on a compact manifold. 0. Introduction This paper deals with the problem of the realization of a given Lie algebra as transverse algebra to a Lie foliation on a compact manifold. Lie foliations have been studied by several authors (cf. [KAH86], [KAN91], [Fed71], [Mas], [Ton88]). The importance of this study was increased by the fact that they arise naturally in Molino’s classification of Riemannian foliations (cf. [Mol82]). To each Lie foliation are associated two Lie algebras, the Lie algebra G of the Lie group on which the foliation is modeled and the structural Lie algebra H. The latter algebra is the Lie algebra of the Lie foliation F restricted to the clousure of any one of its leaves. In particular, it is a subalgebra of G. We remark that although H is canonically associated to F, G is not. Thus two interesting problems are naturally posed: the realization problem and the change problem. The realization problem is to know which pairs of Lie algebras (G, H), with H subalgebra of G, can arise as transverse and structural Lie algebras, respectively, of a Lie foliation F on a compact manifold M.
    [Show full text]
  • Foliations Transverse to Fibers of a Bundle
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 42, Number 2, February 1974 FOLIATIONS TRANSVERSE TO FIBERS OF A BUNDLE J. F. PLANTE Abstract. Consider a fiber bundle where the base space and total space are compact, connected, oriented smooth manifolds and the projection map is smooth. It is shown that if the fiber is null-homologous in the total space, then the existence of a foliation of the total space which is transverse to each fiber and such that each leaf has the same dimension as the base implies that the fundamental group of the base space has exponential growth. Introduction. Let (E, p, B) be a locally trivial fiber bundle where /»:£-*-/? is the projection, E and B are compact, connected, oriented smooth manifolds and p is a smooth map. (By smooth we mean C for some r^l and, henceforth, all maps are assumed smooth.) Let b denote the dimension of B and k denote the dimension of the fiber (thus, dim E= b+k). By a section of the fibration we mean a smooth map a:B-+E such that p o a=idB. It is well known that if a section exists then the fiber over any point in B represents a nontrivial element in Hk(E; Z) since the image of a section is a compact orientable manifold which has intersection number one with the fiber over any point in B. The notion of a section may be generalized as follows. Definition. A polysection of (E,p,B) is a covering projection tr:B-*B together with a map Ç:B-*E such that the following diagram commutes.
    [Show full text]
  • FOLIATIONS Introduction. the Study of Foliations on Manifolds Has a Long
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 80, Number 3, May 1974 FOLIATIONS BY H. BLAINE LAWSON, JR.1 TABLE OF CONTENTS 1. Definitions and general examples. 2. Foliations of dimension-one. 3. Higher dimensional foliations; integrability criteria. 4. Foliations of codimension-one; existence theorems. 5. Notions of equivalence; foliated cobordism groups. 6. The general theory; classifying spaces and characteristic classes for foliations. 7. Results on open manifolds; the classification theory of Gromov-Haefliger-Phillips. 8. Results on closed manifolds; questions of compact leaves and stability. Introduction. The study of foliations on manifolds has a long history in mathematics, even though it did not emerge as a distinct field until the appearance in the 1940's of the work of Ehresmann and Reeb. Since that time, the subject has enjoyed a rapid development, and, at the moment, it is the focus of a great deal of research activity. The purpose of this article is to provide an introduction to the subject and present a picture of the field as it is currently evolving. The treatment will by no means be exhaustive. My original objective was merely to summarize some recent developments in the specialized study of codimension-one foliations on compact manifolds. However, somewhere in the writing I succumbed to the temptation to continue on to interesting, related topics. The end product is essentially a general survey of new results in the field with, of course, the customary bias for areas of personal interest to the author. Since such articles are not written for the specialist, I have spent some time in introducing and motivating the subject.
    [Show full text]
  • Lecture Notes on Foliation Theory
    INDIAN INSTITUTE OF TECHNOLOGY BOMBAY Department of Mathematics Seminar Lectures on Foliation Theory 1 : FALL 2008 Lecture 1 Basic requirements for this Seminar Series: Familiarity with the notion of differential manifold, submersion, vector bundles. 1 Some Examples Let us begin with some examples: m d m−d (1) Write R = R × R . As we know this is one of the several cartesian product m decomposition of R . Via the second projection, this can also be thought of as a ‘trivial m−d vector bundle’ of rank d over R . This also gives the trivial example of a codim. d- n d foliation of R , as a decomposition into d-dimensional leaves R × {y} as y varies over m−d R . (2) A little more generally, we may consider any two manifolds M, N and a submersion f : M → N. Here M can be written as a disjoint union of fibres of f each one is a submanifold of dimension equal to dim M − dim N = d. We say f is a submersion of M of codimension d. The manifold structure for the fibres comes from an atlas for M via the surjective form of implicit function theorem since dfp : TpM → Tf(p)N is surjective at every point of M. We would like to consider this description also as a codim d foliation. However, this is also too simple minded one and hence we would call them simple foliations. If the fibres of the submersion are connected as well, then we call it strictly simple. (3) Kronecker Foliation of a Torus Let us now consider something non trivial.
    [Show full text]
  • Commentary on Thurston's Work on Foliations
    COMMENTARY ON FOLIATIONS* Quoting Thurston's definition of foliation [F11]. \Given a large supply of some sort of fabric, what kinds of manifolds can be made from it, in a way that the patterns match up along the seams? This is a very general question, which has been studied by diverse means in differential topology and differential geometry. ... A foliation is a manifold made out of striped fabric - with infintely thin stripes, having no space between them. The complete stripes, or leaves, of the foliation are submanifolds; if the leaves have codimension k, the foliation is called a codimension k foliation. In order that a manifold admit a codimension- k foliation, it must have a plane field of dimension (n − k)." Such a foliation is called an (n − k)-dimensional foliation. The first definitive result in the subject, the so called Frobenius integrability theorem [Fr], concerns a necessary and sufficient condition for a plane field to be the tangent field of a foliation. See [Spi] Chapter 6 for a modern treatment. As Frobenius himself notes [Sa], a first proof was given by Deahna [De]. While this work was published in 1840, it took another hundred years before a geometric/topological theory of foliations was introduced. This was pioneered by Ehresmann and Reeb in a series of Comptes Rendus papers starting with [ER] that was quickly followed by Reeb's foundational 1948 thesis [Re1]. See Haefliger [Ha4] for a detailed account of developments in this period. Reeb [Re1] himself notes that the 1-dimensional theory had already undergone considerable development through the work of Poincare [P], Bendixson [Be], Kaplan [Ka] and others.
    [Show full text]
  • Hyperbolic Metrics, Measured Foliations and Pants Decompositions for Non-Orientable Surfaces Athanase Papadopoulos, Robert C
    Hyperbolic metrics, measured foliations and pants decompositions for non-orientable surfaces Athanase Papadopoulos, Robert C. Penner To cite this version: Athanase Papadopoulos, Robert C. Penner. Hyperbolic metrics, measured foliations and pants de- compositions for non-orientable surfaces. Asian Journal of Mathematics, International Press, 2016, 20 (1), p. 157-182. 10.4310/AJM.2016.v20.n1.a7. hal-00856638v3 HAL Id: hal-00856638 https://hal.archives-ouvertes.fr/hal-00856638v3 Submitted on 1 Oct 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HYPERBOLIC METRICS, MEASURED FOLIATIONS AND PANTS DECOMPOSITIONS FOR NON-ORIENTABLE SURFACES A. PAPADOPOULOS AND R. C. PENNER Abstract. We provide analogues for non-orientable surfaces with or without boundary or punctures of several basic theorems in the setting of the Thurston theory of surfaces which were developed so far only in the case of orientable surfaces. Namely, we pro- vide natural analogues for non-orientable surfaces of the Fenchel- Nielsen theorem on the parametrization of the Teichm¨uller space of the surface, the Dehn-Thurston theorem on the parametrization of measured foliations in the surface, and the Hatcher-Thurston theorem, which gives a complete minimal set of moves between pair of pants decompositions of the surface.
    [Show full text]
  • Sculpting with Fiber Bundle and Foliation
    Sculpting with Fiber Bundle and Foliation Hang Li, Zhipei Yan May, 2016 1 Theory Definition 1.1. For space E(total space), B(base), F (fiber) and surjection π : E ! B (1) if there is an open neighborhood U of π(x) (x 2 E) such that π−1(U) and U × F are homeomorphic, (E; B; F; π) is a fiber bundle. And E has the form of product space B × F . Figure 1: Base and Fiber Here are two kinds of fiber bundle on a torus. Figure 2: Trivial Fibers Figure 3: Nontrivial Fibers 1 Definition 1.2. fUig is an atlas of an n-dimensional manifold U. For each chart Ui, define n φi : Ui ! R (2) If Ui \ Uj 6= ;, define −1 'ij = φj ◦ φi (3) And if 'ij has the form of 1 2 'ij = ('ij(x);'ij(x; y)) (4) 1 n−p n−p 'ij : R ! R (5) 2 n p 'ij : R ! R (6) then for any stripe si : x = ci in Ui there must be a stripe in Uj sj : x = cj such that si and sj are the same curve in Ui \ Uj and can be connected. The maximal connection is a leaf. This structure is called a p-dimensional foliation F of an n-dimensional manifold U. Property 1.1. All the fiber bundles compose a group GF = (fFig; ◦). If we regard the fiber bundle(1-manifold) as a parameterization on a surface(2-manifold), we can prove it easily. As an example, we use the parameterization on a torus.
    [Show full text]
  • On the First Homology of the Groups of Foliation Preserving Diffeomorphisms for Foliations with Singularities of Morse Type
    Publ. RIMS, Kyoto Univ. 44 (2008), 1057–1068 On the First Homology of the Groups of Foliation Preserving Diffeomorphisms for Foliations with Singularities of Morse Type By Kazuhiko Fukui∗ Abstract n Let R be an n-dimensional Euclidean space and Fϕ be the foliation defined by levels of a Morse function ϕ : Rn → R. We determine the first homology of n the identity component of the foliation preserving diffeomorphism group of (R , Fϕ). Then we can apply it to the calculation of the first homology of the foliation preserving diffeomorphism groups for codimension one compact foliations with singularities of Morse type. §1. Introduction and Statement of Results Let F be a C∞-foliation (with or without singularities) on a C∞-manifold M.LetD∞(M,F) denote the group of all foliation preserving C∞- diffeomorphisms of (M,F) which are isotopic to the identity through folia- tion preserving C∞-diffeomorphisms with compact support. In [2], we have studied the structure of the first homology of D∞(M,F) for compact Haus- dorff foliations F, and we have that it describes the holonomy structures of isolated singular leaves of F. Here the first homology group H1(G) of a group G is defined as the quotient of G by its commutator subgroup. In this paper we treat the foliation preserving C∞-diffeomorphism groups for codimension one foliations with singularities. Communicated by K. Saito. Received February 7, 2007. Revised October 22, 2007. This research was partially supported by Grant-in-Aid for Scientific Research (No. 17540098), Japan Society for the Promotion of Science.
    [Show full text]
  • A Global Weinstein Splitting Theorem for Holomorphic Poisson Manifolds
    A global Weinstein splitting theorem for holomorphic Poisson manifolds St´ephane Druel∗ Jorge Vit´orio Pereira† Brent Pym‡ Fr´ed´eric Touzet§ February 26, 2021 Abstract We prove that if a compact K¨ahler Poisson manifold has a symplectic leaf with finite fundamental group, then after passing to a finite ´etale cover, it decomposes as the product of the universal cover of the leaf and some other Poisson manifold. As a step in the proof, we establish a special case of Beauville’s conjecture on the structure of compact K¨ahler manifolds with split tangent bundle. 1 Introduction In 1983, Weinstein [14] proved a fundamental fact about Poisson brackets, nowa- days known as his “splitting theorem”: if p is a point in a Poisson manifold X at which the matrix of the Poisson bracket has rank 2k, then p has a neigh- bourhood that decomposes as a product of a symplectic manifold of dimension 2k, and a Poisson manifold for which the Poisson bracket vanishes at p. An important consequence of this splitting is that X admits a canonical (and pos- sibly singular) foliation by symplectic leaves, which is locally induced by the aforementioned product decomposition. It is natural to ask under which conditions this splitting is global, so that X decomposes as a product of Poisson manifolds, having a symplectic leaf as a factor (perhaps after passing to a suitable covering space). If X is compact, an obvious necessary condition is that the symplectic leaf is also compact. However, this condition is not sufficient; it is easy to construct examples in the C∞ context where both X and its leaf are simply connected, but X does not decompose as a product.
    [Show full text]
  • Types of Integrability on a Submanifold and Generalizations of Gordon’S Theorem
    Trudy Moskov. Matem. Obw. Trans. Moscow Math. Soc. Tom 66 (2005) 2005, Pages 169–241 S 0077-1554(05)00149-4 Article electronically published on November 9, 2005 TYPES OF INTEGRABILITY ON A SUBMANIFOLD AND GENERALIZATIONS OF GORDON’S THEOREM N. N. NEKHOROSHEV Abstract. At the beginning of the paper the concept of Liouville integrability is analysed for systems of general form, that is, ones that are not necessarily Hamil- tonian. On this simple basis Hamiltonian systems are studied that are integrable only on submanifolds N of the phase space, which is the main subject of the paper. The study is carried out in terms of k-dimensional foliations and fibrations defined on N by the Hamiltonian vector fields corresponding to k integrals in involution. These integrals are said to be central and may include the Hamiltonian function of the system. The parallel language of sets of functions is also used, in particular, sets of functions whose common level surfaces are the fibres of fibrations. Relations between different types of integrability on submanifolds of the phase space are established. The main result of the paper is a generalization of Gordon’s theorem stating that in a Hamiltonian system all of whose trajectories are closed the period of the solutions depends only on the value of the Hamiltonian. Our generalization asserts that in the case of the strongest “Hamiltonian” integrability the frequencies of a conditionally periodic motion on the invariant isotropic tori that form a fibration of an integrability submanifold depend only on the values of the central integrals. Under essentially weaker assumptions on the fibration of the submanifold into such tori it is proved that the circular action functions also have the same property.
    [Show full text]
  • On Deformations of Compact Foliations
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 147, Number 10, October 2019, Pages 4555–4561 https://doi.org/10.1090/proc/14567 Article electronically published on July 1, 2019 ON DEFORMATIONS OF COMPACT FOLIATIONS MATIAS DEL HOYO AND RUI LOJA FERNANDES (Communicated by Jiaping Wang) Abstract. We combine classic stability results for foliations with recent re- sults on deformations of Lie groupoids and Lie algebroids to provide a cohomo- logical characterization for rigidity of compact Hausdorff foliations on compact manifolds. 1. Introduction A foliation F on a manifold M is compact Hausdorff if its leaves are compact and its orbit space is Hausdorff. If F is compact Hausdorf, then its holonomy groups are finite and, by Reeb stability [8], a small saturated neighborhood of any leaf L is equivalent to its linearization.IfM is connected, then the leaves without holonomy are all diffeomorphic to a generic leaf L0, and they comprise a dense open set. We say that a foliation F is rigid if any 1-parameter deformation F˜ of it is obtained from the trivial deformation by conjugating with an isotopy of M.In this note we use Lie groupoids and Lie algebroids [13] to give a simple proof of the following fundamental result, illustrating the power of this formalism in classic problems of differential geometry and topology. Theorem 1.1. Let M be a compact connected manifold, and let F be a compact Hausdorff foliation of M.ThenF is rigid if and only if its generic leaf L0 satisfies 1 H (L0)=0. A foliation is the same as a Lie algebroid with injective anchor map.
    [Show full text]
  • Foliations and Spinnable Structures on Manifolds Annales De L’Institut Fourier, Tome 23, No 2 (1973), P
    ANNALES DE L’INSTITUT FOURIER ITIRO TAMURA Foliations and spinnable structures on manifolds Annales de l’institut Fourier, tome 23, no 2 (1973), p. 197-214 <http://www.numdam.org/item?id=AIF_1973__23_2_197_0> © Annales de l’institut Fourier, 1973, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 23, 2 (1973), 197-214. FOLIATIONS AND SPINNABLE STRUCTURES ON MANIFOLDS by Itiro TAMURA Introduction. In a previous paper, it was shown by using the methods of differential topology that every odd dimensional sphere has a codimension-one foliatiojn (Tamura [12]). This result and the techniques used there, are powerful tools in carrying out the construction of codimension-one foliations for compact odd dimensional differentiable manifolds. In this paper the concept of a spinnable structure on a differentiable manifold is introduced in order to clarify the implication of the differential topological arguments mentioned above (see Definition 1). Roughly speaking, a differentiable manifold is spinnable if it can spin around an axis as if the top spins. The choice of axes of spinnable structures is essential for constructing a codimension-one foliation. For example, the existence of a codimension-one foliation follows from the existence of a spinnable structure having an odd dimensional sphere a.s axis (see Theorem 5).
    [Show full text]