A Measurement Method for Characterising Micro Lead on Ground Shaft Surfaces Herausgeber: Prof

Total Page:16

File Type:pdf, Size:1020Kb

A Measurement Method for Characterising Micro Lead on Ground Shaft Surfaces Herausgeber: Prof ISBN: 978-3-95974-047-0 Philipp Arnecke ISSN: 2365-9742 Kurzfassung Bei der Herstellung von Wellenoberflächen als Gegenlaufflächen für Radialwellendichtringe in -dy namischen Dichtsystemen können Strukturen auftreten, die Einfluss auf die Funktion des Dicht- systems haben können. Diese Strukturen werden als Drall bezeichnet und können entsprechend ihrer Ausprägung und Entstehung in die Drallarten Makro- und Mikrodrall eingeteilt werden. Im A measurement method for characterising Optimalfall wird Drall bereits während der Herstellung vermieden, zumindest soll er aber erkannt micro lead on ground shaft surfaces und bezüglich seiner Ausprägung an Hand von Parametern quantifiziert werden. Während Messme- thoden und Verfahren zum Nachweis von Makrodrall existieren, wird in dieser Arbeit eine Methode zur Charakterisierung von Mikrodrall, also der Hauptrichtung der Bearbeitungsstruktur bezogen auf die Umfangsrichtung, beschrieben. Aus der Definition von Mikrodrall folgt direkt, dass sowohl die Umfangs- als auch die Bearbeitungs- richtung hochgenau erfasst werden müssen. Zu diesem Zweck werden geeignete Messsysteme und zugehörige Kalibrierverfahren beschrieben, welche neben der Messung der Wellenoberfläche die Kalibrierung der Umfangsrichtung mit hoher Genauigkeit und niedriger Unsicherheit ermöglichen. Auf Basis dieser flächenhaften Messungen wird ein Verfahren zur Ermittlung der Texturrichtung, dem die Radontransformation zu Grunde liegt, vorgestellt und parametrisiert. Mit der Ermittlung der Texturrichtung und der Kalibrierung der Achslage können damit beide Anforderungen an die Messmethode zur Mikrodrallmessung an geschliffenen Wellenoberflächen erfüllt werden. Abstract The detection and characterisation of undesired lead structures on shaft surfaces is a concern in production and quality control of rotary shaft lip-type sealing systems. The potential lead struc- tures are generally divided into macro and micro lead based on their characteristics and formation. Macro lead measurement methods exist and are widely applied. This work describes a method to characterise micro lead on ground shaft surfaces. Micro lead is known as the deviation of main orientation of the ground micro texture from circumferential direction. Assessing the orientation of microscopic structures with arc minute accuracy with regard to cir- cumferential direction requires exact knowledge of both the shaft’s orientation and the direction of surface texture. The shaft’s circumferential direction is found by calibration. Measuring systems and calibration procedures capable of calibrating shaft axis orientation with high accuracy and low un- shaft ground on lead surfaces micro method forA measurement characterising certainty are described. The measuring systems employ areal-topographic measuring instruments suited for evaluating texture orientation. A dedicated evaluation scheme for texture orientation is Berichte aus dem Lehrstuhl für Messtechnik und Sensorik based on the Radon transform of these topographies and parametrised for the application. Com- Band 4 bining the calibration of circumferential direction with the evaluation of texture orientation the Herausgeber: Prof. Dr.-Ing. Jörg Seewig method enables the measurement of micro lead on ground shaft surfaces. P. Arnecke Philipp Arnecke A measurement method for characterising micro lead on ground shaft surfaces Berichte aus dem Lehrstuhl für Messtechnik und Sensorik Band 4 Herausgeber: Prof. Dr.-Ing. Jörg Seewig Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar. Berichte aus dem Lehrstuhl für Messtechnik und Sensorik - Band 4 Herausgeber: Prof. Dr.-Ing. Jörg Seewig Lehrstuhl für Messtechnik und Sensorik Fachbereich Maschinenbau und Verfahrenstechnik Technische Universität Kaiserslautern Gottlieb-Daimler-Straße 67663 Kaiserslautern Verfasser: Philipp Arnecke Verlag: Technische Universität Kaiserslautern Druck: Technische Universität Kaiserslautern Hauptabteilung 5 | Abteilung 5.6 Foto-Repro-Druck D-386 © Philipp Arnecke · Kaiserslautern 2017 Alle Rechte vorbehalten, auch das des auszugsweisen Nachdrucks, der auszugsweisen oder vollständigen Wiedergabe (Photographie, Mikroskopie), der Speicherung in Datenverarbeitungsanlagen und das der Übersetzung. Als Manuskript gedruckt. Printed in Germany. ISSN 2365-9742 ISBN 978-3-95974-047-0 Kurzfassung Bei der Herstellung von Wellenoberflächen als Gegenlaufflächen für Radialwellendicht- ringe in dynamischen Dichtsystemen können Strukturen auftreten, die Einfluss auf die Funktion des Dichtsystems haben können. Diese Strukturen werden als Drall bezeich- net und können entsprechend ihrer Ausprägung und Entstehung in die Drallarten Makro- und Mikrodrall eingeteilt werden. Im Optimalfall wird Drall bereits während der Herstel- lung vermieden, zumindest soll er aber erkannt und bezüglich seiner Ausprägung an Hand von Parametern quantifiziert werden. Während Messmethoden und Verfahren zum Nachweis von Makrodrall existieren, wird in dieser Arbeit eine Methode zur Cha- rakterisierung von Mikrodrall, also der Hauptrichtung der Bearbeitungsstruktur bezo- gen auf die Umfangsrichtung, beschrieben. Aus der Definition von Mikrodrall folgt di- rekt, dass sowohl die Umfangs- als auch die Bearbeitungsrichtung hochgenau erfasst werden müssen. Zu diesem Zweck werden geeignete Messsysteme und zugehörige Kalibrierverfahren beschrieben, welche neben der Messung der Wellenoberfläche die Kalibrierung der Umfangsrichtung mit hoher Genauigkeit und niedriger Unsicherheit ermöglichen. Auf Basis dieser flächenhaften Messungen wird ein Verfahren zur Ermitt- lung der Texturrichtung, dem die Radontransformation zu Grunde liegt, vorgestellt und parametrisiert. Mit der Ermittlung der Texturrichtung und der Kalibrierung der Achsla- ge können damit beide Anforderungen an die Messmethode zur Mikrodrallmessung an geschliffenen Wellenoberflächen erfüllt werden. Abstract The detection and characterisation of undesired lead structures on shaft surfaces is a concern in production and quality control of rotary shaft lip-type sealing systems. The potential lead structures are generally divided into macro and micro lead based on their characteristics and formation. Macro lead measurement methods exist and are widely applied. This work describes a method to characterise micro lead on ground shaft surfaces. Micro lead is known as the deviation of main orientation of the ground micro texture from circumferential direction. Assessing the orientation of microscopic structures with arc minute accuracy with regard to circumferential direction requires exact knowledge of both the shaft’s orientation and the direction of surface texture. The shaft’s circumferential direction is found by calibration. Measuring systems and calibration procedures capable of calibrating shaft axis orientation with high accuracy and low uncertainty are described. The measuring systems employ areal-topographic measuring instruments suited for evaluating texture orientation. A dedicated evaluation scheme for texture orientation is based on the Radon transform of these topographies and parametrised for the application. Combining the calibration of circumferential dir- ection with the evaluation of texture orientation the method enables the measurement of micro lead on ground shaft surfaces. A measurement method for characterising micro lead on ground shaft surfaces Vom Fachbereich Maschinenbau und Verfahrenstechnik der Technischen Universität Kaiserslautern zur Verleihung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) genehmigte Dissertation vorgelegt von Dipl.-Ing. Philipp Arnecke aus Würzburg Kaiserslautern 2017 D 386 Dekan: Prof. Dr.-Ing. Jörg Seewig Vorsitzender: Prof. Dr.-Ing. Bernd Sauer Berichterstatter: Prof. Dr.-Ing. Jörg Seewig Prof. Dr.-Ing. habil. Peter Lehmann Tag der mündlichen Prüfung: 22. August 2016 Preface and Acknowledgements The presented thesis is the outcome of my time as research assistant at the Institute for Measurement and Sensor Technology at the University of Kaiserslautern. Funding was received from the Stiftung Rheinland-Pfalz für Innovation through research grant 987 ”Anwenderorientierte Charakterisierung von Mikrodrall auf Basis optischer Mess- einrichtungen”. The completion of this thesis would not have been possible without the support from my colleagues, friends and family. First, I would like to cordially thank my doctoral adviser Mr Prof. Dr.-Ing. Jörg Seewig for the trust he placed in me over the years first as student assistant and then as re- search assistant. I benefited from the unconstrained atmosphere at his institute and the scientific freedom to follow own ideas together with his very competent advice and suggestions at the right places. All of this together with his personal straightforward and humane attitude had their share in succeeding the work. I would also like to thank both members of the board of examiners, Mr Prof. Dr.-Ing. habil. Peter Lehmann and Mr Prof. Dr.-Ing. Bernd Sauer, for the interest in my work, the rewarding discussions and the overall smooth procedure. The great colleagues at MTS contributed a lot to the work. Not only as great part- ners in research related discussions with many valuable suggestions drawn from their vast experience in metrology and related subjects but also in off-research activities. I would especially like to highlight the enriching contributions of student
Recommended publications
  • Computer Graphics Lines and Planes Motivations Tekla T´Oth Lines [email protected] Planes
    Introduction Computer Graphics Lines and planes Motivations Tekla T´oth Lines [email protected] Planes E¨otv¨osLor´andTudom´anyegyetem Faculty of Informatics Simple shapes 2019 fall (2019-2020-1) Curves Surfaces Motivation Curves and surfaces I Informally, the curves and surfaces are 'special' subsets of I We can now represent the points of the plane or space by space - i.e. they are sets of points numbers (their coordinates) I How can we define these - usually infinite - sets? I How can we represent 'nice' sets of points, e.g. a line in the I explicit: y = f (x) ! what happens when the curve should plane or a plane in space? 'head back'? x(t) parametric: p(t) = ; t 2 I We seek the answer to this in the Cartesian coordinate system I y(t) R I implicit: x 2 + y 2 − 9 = 0 The 'old school' explicit line Line with a point and normal T I Let p(px ; py ) be a point on the line and n = [nx ; ny ] 6= 0 a vector, a normal perpendicular to the line. I Highschool: y = mx + b I Then all x(x; y) points of the plane that satisfy the following are exactly the points of the line: I Problem: vertical lines! hx − p; ni = 0 (x − px )nx + (y − py )ny = 0 I Two half-planes: hx0 − p; ni < 0 ´es hx0 − p; ni > 0 The homogeneous implicit equation of the line on the plane Homogeneous implicit equation with determinant I Let p(px ; py ) and q(qx ; qy ) be two distinct points on the line.
    [Show full text]
  • Ruled Laguerre Minimal Surfaces
    Ruled Laguerre minimal surfaces Item Type Article Authors Skopenkov, Mikhail; Pottmann, Helmut; Grohs, Philipp Citation Skopenkov, M., Pottmann, H., & Grohs, P. (2011). Ruled Laguerre minimal surfaces. Mathematische Zeitschrift, 272(1-2), 645–674. doi:10.1007/s00209-011-0953-0 Eprint version Pre-print DOI 10.1007/s00209-011-0953-0 Publisher Springer Science and Business Media LLC Journal Mathematische Zeitschrift Rights Archived with thanks to Springer Science and Business Media LLC; This file is an open access version redistributed from: http:// arxiv.org/pdf/1011.0272 Download date 03/10/2021 22:36:53 Link to Item http://hdl.handle.net/10754/561903 This is an updated version of the paper published in Math. Z. 272:1{2 (2012) 645{674. manuscript No. (will be inserted by the editor) Ruled Laguerre minimal surfaces Mikhail Skopenkov · Helmut Pottmann · Philipp Grohs Abstract A Laguerre minimal surface is an immersed surface in R3 being an extremal of the functional R (H2=K − 1)dA. In the present paper, we prove that the only ruled Laguerre minimal surfaces are up to isometry the surfaces R('; λ) = (A'; B'; C' + D cos 2' ) + λ (sin '; cos '; 0 ), where A; B; C; D 2 R are fixed. To achieve invariance under Laguerre transformations, we also derive all Laguerre minimal surfaces that are enveloped by a family of cones. The methodology is based on the isotropic model of Laguerre geometry. In this model a Laguerre minimal surface enveloped by a family of cones corresponds to a graph of a biharmonic function carrying a family of isotropic circles.
    [Show full text]
  • Projective Geometry at Chalmers in the Fall of 1989
    Table of Contents Introduction ........................ 1 The Projective Plane ........................ 1 The Topology of RP 2 ........................ 3 Projective Spaces in General ........................ 4 The Riemannsphere and Complex Projective Spaces ........................ 4 Axiomatics and Finite Geometries ........................ 6 Duality and Conics ........................ 7 Exercises 1-34 ........................ 10 Crossratio ........................ 15 The -invariant ........................ 16 Harmonic Division ........................ 17 Involutions ........................ 17 Exercises 35-56 ........................ 19 Non-Singular Quadrics ........................ 22 Involutions and Non-Singular Quadrics ........................ 26 Exercises 57-76 ........................ 28 Ellipses,Hyperbolas,Parabolas and circular points at ........................ 31 The Space of Conics ∞ ........................ 32 Exercises 77-105 ........................ 37 Pencils of Conics ........................ 40 Exercises 106-134 ........................ 43 Quadric Surfaces ........................ 46 Quadrics as Double Coverings ........................ 49 Hyperplane sections and M¨obius Transformations ........................ 50 Line Correspondences ........................ 50 Conic Correspondences ........................ 51 Exercises 135-165 ........................ 53 Birational Geometry of Quadric Surfaces ........................ 56 Blowing Ups and Down ........................ 57 Cremona Transformations .......................
    [Show full text]
  • Geometric Modelling Summer 2018
    Geometric Modelling Summer 2018 Prof. Dr. Hans Hagen http://hci.uni-kl.de/teaching/geometric-modelling-ss2018 Prof. Dr. Hans Hagen Geometric Modelling Summer 20181 Foundations from Analytic Geometry Foundations from Analytic Geometry Prof. Dr. Hans Hagen Geometric Modelling Summer 20182 Foundations from Analytic Geometry What is Analytic Geometry? Analytic Geometry The main task of analytic geometry is to provide methods and techniques to solve geometric problems "by calculation". A suitable tool is the (coordinate independent) notion of a vector. Prof. Dr. Hans Hagen Geometric Modelling Summer 20183 Foundations from Analytic Geometry Vectors, Scalar Product and Vector Product a vector is given by an ordered pair of points (start and end) two vectors are equal i. they can be constructed from one another by a parallel translation ! A vector is the class of all equally directed line segments of identical length vectors form a group with respect to vector addition vectors from a vector space with respect to vector addition and scalar multiplication This intuitive concept will now be explained formally: Prof. Dr. Hans Hagen Geometric Modelling Summer 20184 Foundations from Analytic Geometry Vectors, Scalar Product and Vector Product Denition: Vector Space A set V , on which an addition and a scalar multiplication are dened, is called a Vector Space on the scalar eld of the real numbers, if for ~a; ~b; ~c 2 V ; α; β 2 R: 1 addition: 1 (~a + ~b) + ~c = ~a + (~b + ~c) 2 ~a + ~b = ~b + ~a 3 9~0; s.t. ~a + ~0 = ~a 8~a 2 V 4 8~a 2 V : ∃−~a; s.t.
    [Show full text]
  • Ruled Laguerre Minimal Surfaces
    This is an updated version of the paper published in Math. Z. 272:1{2 (2012) 645{674. manuscript No. (will be inserted by the editor) Ruled Laguerre minimal surfaces Mikhail Skopenkov · Helmut Pottmann · Philipp Grohs Abstract A Laguerre minimal surface is an immersed surface in R3 being an extremal of the functional R (H2=K − 1)dA. In the present paper, we prove that the only ruled Laguerre minimal surfaces are up to isometry the surfaces R('; λ) = (A'; B'; C' + D cos 2' ) + λ (sin '; cos '; 0 ), where A; B; C; D 2 R are fixed. To achieve invariance under Laguerre transformations, we also derive all Laguerre minimal surfaces that are enveloped by a family of cones. The methodology is based on the isotropic model of Laguerre geometry. In this model a Laguerre minimal surface enveloped by a family of cones corresponds to a graph of a biharmonic function carrying a family of isotropic circles. We classify such functions by showing that the top view of the family of circles is a pencil. Keywords Laguerre geometry · Laguerre minimal surface · ruled surface · biharmonic function Mathematics Subject Classification (2000) 53A40 · 49Q10 · 31A30 Contents 1 Introduction . .2 1.1 Previous work . .3 1.2 Contributions . .3 1.3 Organization of the paper . .4 2 Isotropic model of Laguerre geometry . .4 2.1 Isotropic geometry . .4 2.2 Laguerre Geometry . .4 2.3 Isotropic model of Laguerre geometry . .6 3 Biharmonic functions carrying a family of i-circles . .8 3.1 Statement of the Pencil theorem . .8 3.2 Three typical cases .
    [Show full text]
  • Group Actions, Divisors, and Plane Curves
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 57, Number 2, April 2020, Pages 171–267 https://doi.org/10.1090/bull/1681 Article electronically published on February 7, 2020 GROUP ACTIONS, DIVISORS, AND PLANE CURVES ARACELI BONIFANT AND JOHN MILNOR Abstract. After a general discussion of group actions, orbifolds, and weak orbifolds, this note will provide elementary introductions to two basic moduli spaces over the real or complex numbers: first the moduli space of effective divisors with finite stabilizer on the projective space P1, modulo the group of projective transformations of P1; and then the moduli space of curves (or more generally effective algebraic 1-cycles) with finite stabilizer in P2, modulo the group of projective transformations of P2. It also discusses automorphisms of curves and the topological classification of smooth real curves in P2. Contents 1. Introduction 171 2. Group actions and orbifolds 174 1 3. Divisors on P and the moduli space Mn 191 4. Curves (or 1-cycles) in P2 and their moduli space 208 5. Cubic curves 212 6. Degree at least four 221 7. Singularity genus and proper action 230 8. Infinite automorphism groups 239 9. Finite automorphism groups 247 10. Real curves: The Harnack-Hilbert problem 257 Appendix A. Remarks on the literature 262 Acknowledgments 263 About the authors 263 References 263 1. Introduction A basic objective of this paper is to provide an elementary introduction to the moduli space of curves of degree n in the real or complex projective plane, modulo the action of the group of projective transformations. However, in order to prepare Received by the editors March 11, 2019.
    [Show full text]
  • Arxiv:1809.05191V1 [Math.AG] 13 Sep 2018 [email protected] Key Words and Phrases
    Group Actions, Divisors, and Plane Curves Araceli Bonifant 1 and John Milnor 2 Abstract. After a general discussion of group actions, orbifolds, and \weak orbifolds" this note will provide elementary introductions to two basic moduli spaces over the real or complex numbers: First the moduli space of effective 1 divisors with finite stabilizer on the projective space P modulo the group PGL2 1 of projective transformations of P ; and then the moduli space of effective 1-cycles 2 with finite stabilizer on P modulo the group PGL3 of projective transformations 2 of P . Contents 1. Introduction.2 2. Proper and Improper Group Actions: The Quotient Space.3 3. Moduli Space for Effective Divisors of Degree n . 20 4. Moduli Space for Real or Complex Plane Curves. 38 5. Curves of Degree Three. 42 6. Degree n ≥ 4 : the Complex Case. 51 7. Singularity Genus and Proper Action. 60 8. Automorphisms and W-curves. 72 9. Real Curves: The Harnack-Hilbert Problem. 87 Appendix A. Remarks on the Literature. 91 References 92 1Mathematics Department, University of Rhode Island; e-mail: [email protected] 2Institute for Mathematical Sciences, Stony Brook University; e-mail: arXiv:1809.05191v1 [math.AG] 13 Sep 2018 [email protected] Key words and phrases. effective 1-cycles, moduli space of curves, smooth complex curves, stabilizer of curves, algebraic set, group actions, proper action, improper action, orbifolds, weakly locally proper, effective action, rational homology manifold, tree-of-spheres, W-curves, moduli space of divisors, Deligne-Mumford compactification. 1 2 ARACELI BONIFANT AND JOHN MILNOR 1. Introduction. Section2 of this paper will be a general discussion of group actions, and the associated quotient spaces.
    [Show full text]
  • Realtime Mapping and Scene Reconstruction Based on Mid-Level Geometric Features
    REALTIME MAPPING AND SCENE RECONSTRUCTION BASED ON MID-LEVEL GEOMETRIC FEATURES A Dissertation Submitted to the Temple University Graduate Board In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY by Kristiyan Georgiev August 2014 Examining committee members: Dr Rolf Lakaemper, Advisory Chair, Dept. of Computer and Information Sciences Dr Alexander Yates, Department of Computer and Information Sciences Dr Longin Jan Latecki, Department of Computer and Information Sciences Dr M. Ani Hsieh, External Member, Drexel University Copyright c 2014 by Kristiyan Georgiev ABSTRACT Robot mapping is a major field of research in robotics. Its basic task is to combine (register) spatial data, usually gained from range devices, to a single data set. This data set is called global map and represents the environment, observed from different locations, usually without knowledge of their positions. Various approaches can be classified into groups based on the type of sensor, e.g. Lasers, Microsoft Kinect, Stereo Image Pair. A major disadvantage of current methods is the fact, that they are derived from hardly scalable 2D approaches that use a small amount of data. However, 3D sensing yields a large amount of data in each 3D scan. Autonomous mobile robots have limited computational power, which makes it harder to run 3D robot mapping algorithms in real-time. To remedy this limitation, the proposed research uses mid-level geometric features (lines and ellipses) to construct 3D geometric primitives (planar patches, cylinders, spheres and cones) from 3D point data. Such 3D primitives can serve as distinct features for faster registration, allowing real-time performance on a mobile robot.
    [Show full text]
  • Ruled Laguerre Minimal Surfaces
    Ruled Laguerre minimal surfaces Mikhail Skopenkov∗ Helmut Pottmanny Philipp Grohsz Received: date / Accepted: date Abstract 3 A Laguerre minimal surface is an immersed surface in R being an extremal of the functional R (H2=K − 1)dA. In the present paper, we prove that the only ruled Laguerre minimal surfaces are the surfaces R('; λ) = (A'; B'; C' + D cos 2' ) + λ (sin '; cos '; 0 ), where A; B; C; D 2 R are fixed. To achieve invariance under Laguerre transformations, we also derive all Laguerre minimal surfaces that are enveloped by a family of cones. The methodology is based on the isotropic model of Laguerre geometry. In this model a Laguerre minimal surface enveloped by a family of cones corresponds to a graph of a biharmonic function carrying a family of isotropic circles. We classify such functions by showing that the top view of the family of circles is a pencil. Contents 1 Introduction 1 1.1 Previous work............................................3 1.2 Contributions............................................3 1.3 Organization of the paper.....................................4 2 Isotropic model of Laguerre geometry4 2.1 Isotropic geometry.........................................4 2.2 Laguerre Geometry.........................................6 2.3 Isotropic model of Laguerre geometry..............................7 3 Biharmonic functions carrying a family of i-circles8 3.1 Statement of the Pencil theorem.................................8 3.2 Three typical cases.........................................9 3.3 Biharmonic continuation...................................... 10 3.4 Proof and corollaries of the Pencil Theorem........................... 13 4 Classification of L-minimal surfaces enveloped by a family of cones 14 4.1 Elliptic families of cones...................................... 14 4.2 Hyperbolic families of cones.................................... 20 4.3 Parabolic families of cones....................................
    [Show full text]
  • Threshold Free Detection of Elliptical Landmarks Using Machine Learning Lifan Zhang University of Wisconsin-Milwaukee
    University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations December 2017 Threshold Free Detection of Elliptical Landmarks Using Machine Learning Lifan Zhang University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Computer Sciences Commons, and the Electrical and Electronics Commons Recommended Citation Zhang, Lifan, "Threshold Free Detection of Elliptical Landmarks Using Machine Learning" (2017). Theses and Dissertations. 1729. https://dc.uwm.edu/etd/1729 This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. THRESHOLD FREE DETECTION OF ELLIPTICAL LANDMARKS USING MACHINE LEARNING by Lifan Zhang A Thesis Submitted in Partial Fulllment of the Requirements for the Degree of Master of Science in Engineering at The University of Wisconsin-Milwaukee December 2017 i ABSTRACT THRESHOLD FREE DETECTION OF ELLIPTICAL LANDMARKS USING MACHINE LEARNING by Lifan Zhang The University of Wisconsin-Milwaukee, 2017 Under the Supervision of Professor Brian Armstrong Elliptical shape detection is widely used in practical applications. Nearly all classical ellipse detection algorithms require some form of threshold, which can be a major cause of detection failure, especially in the challenging case of Moire Phase Tracking (MPT) target images. To meet the challenge, a threshold free detection algorithm for elliptical landmarks is proposed in this thesis. The proposed Aligned Gradient and Unaligned Gradient (AGUG) al- gorithm is a Support Vector Machine (SVM)-based classication algorithm, original features are extracted from the gradient information corresponding to the sampled pixels.
    [Show full text]
  • An Algebraic Foundation for Object-Oriented Euclidean Geometry
    数理解析研究所講究録 1378 巻 2004 年 138-153 138 An Algebraic Foundation for Object-Oriented Euclidean Geometry Leo Dorst and Daniel Fontijne Informatics Institute, University of Amsterdam, The Netherlands Abstract The conformal model of Euclidean geometry in Geometric Algebra pro vides a compact way to characterize Euclidean objects such as spheres, planes, circles, lines, etc. as blades. The algebraic structure of the model provides a ‘grammar’ for these objects and their relationships. In this rather informal paper we explore this grammar, developing a new geO- metric intuition to use it effectively. This results in the identification of two important construction products, the known meet and the new plunge. These provide compact specification techniques to parametrize operators and objects directly in terms of other objects. 1Introduction 1.1 Euclidean Primitives as Subspaces An elegant model for Euclidean geometry was introduced recently [8], called the ‘conformal model’ (since it can support conformal transformations as well, al- though we do not use those in this paper). The idea behind the conformal model is to embed the Euclidean space $E^{n}$ into the Minkowski space $\mathrm{m}^{n+1,1}$ , and the Euclidean metric into the inner product of that Minkowski space. Subspaces of $\mathrm{m}^{n+1,1}$ are blades in its geometric algebra, and easily interpretable as primitive objects in En. The operators of geometric algebra then organize the Euclidean geometry algebraically, and this results in useful ‘data types’ for elementary ge- ometry with well-understood relationships. This technique is metric, and consid- erably extends the common, non-metric, homogeneous coordinate methods for modeling Euclidean geometry.
    [Show full text]