Mathematical Statistics and the ISI (1885-1939)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
National Academy Elects IMS Fellows Have You Voted Yet?
Volume 38 • Issue 5 IMS Bulletin June 2009 National Academy elects IMS Fellows CONTENTS The United States National Academy of Sciences has elected 72 new members and 1 National Academy elects 18 foreign associates from 15 countries in recognition of their distinguished and Raftery, Wong continuing achievements in original research. Among those elected are two IMS Adrian Raftery 2 Members’ News: Jianqing Fellows: , Blumstein-Jordan Professor of Statistics and Sociology, Center Fan; SIAM Fellows for Statistics and the Social Sciences, University of Washington, Seattle, and Wing Hung Wong, Professor 3 Laha Award recipients of Statistics and Professor of Health Research and Policy, 4 COPSS Fisher Lecturer: Department of Statistics, Stanford University, California. Noel Cressie The election was held April 28, during the business 5 Members’ Discoveries: session of the 146th annual meeting of the Academy. Nicolai Meinshausen Those elected bring the total number of active members 6 Medallion Lecture: Tony Cai to 2,150. Foreign associates are non-voting members of the Academy, with citizenship outside the United States. Meeting report: SSP Above: Adrian Raftery 7 This year’s election brings the total number of foreign 8 New IMS Fellows Below: Wing H. Wong associates to 404. The National Academy of Sciences is a private 10 Obituaries: Keith Worsley; I.J. Good organization of scientists and engineers dedicated to the furtherance of science and its use for general welfare. 12-3 JSM program highlights; It was established in 1863 by a congressional act of IMS sessions at JSM incorporation signed by Abraham Lincoln that calls on 14-5 JSM tours; More things to the Academy to act as an official adviser to the federal do in DC government, upon request, in any matter of science or 16 Accepting rejections technology. -
Memorial to Sir Harold Jeffreys 1891-1989 JOHN A
Memorial to Sir Harold Jeffreys 1891-1989 JOHN A. HUDSON and ALAN G. SMITH University of Cambridge, Cambridge, England Harold Jeffreys was one of this century’s greatest applied mathematicians, using mathematics as a means of under standing the physical world. Principally he was a geo physicist, although statisticians may feel that his greatest contribution was to the theory of probability. However, his interest in the latter subject stemmed from his realization of the need for a clear statistical method of analysis of data— at that time, travel-time readings from seismological stations across the world. He also made contributions to astronomy, fluid dynamics, meteorology, botany, psychol ogy, and photography. Perhaps one can identify Jeffreys’s principal interests from three major books that he wrote. His mathematical skills are displayed in Methods of Mathematical Physics, which he wrote with his wife Bertha Swirles Jeffreys and which was first published in 1946 and went through three editions. His Theory o f Probability, published in 1939 and also running to three editions, espoused Bayesian statistics, which were very unfashionable at the time but which have been taken up since by others and shown to be extremely powerful for the analysis of data and, in particular, image enhancement. However, the book for which he is probably best known is The Earth, Its Origin, History and Physical Consti tution, a broad-ranging account based on observations analyzed with care, using mathematics as a tool. Jeffreys’s scientific method (now known as Inverse Theory) was a logical process, clearly stated in another of his books, Scientific Inference. -
A Parsimonious Tour of Bayesian Model Uncertainty
A Parsimonious Tour of Bayesian Model Uncertainty Pierre-Alexandre Mattei Université Côte d’Azur Inria, Maasai project-team Laboratoire J.A. Dieudonné, UMR CNRS 7351 e-mail: [email protected] Abstract: Modern statistical software and machine learning libraries are enabling semi-automated statistical inference. Within this context, it appears eas- ier and easier to try and fit many models to the data at hand, thereby reversing the Fisherian way of conducting science by collecting data after the scientific hypothesis (and hence the model) has been determined. The renewed goal of the statistician becomes to help the practitioner choose within such large and heterogeneous families of models, a task known as model selection. The Bayesian paradigm offers a systematized way of as- sessing this problem. This approach, launched by Harold Jeffreys in his 1935 book Theory of Probability, has witnessed a remarkable evolution in the last decades, that has brought about several new theoretical and methodological advances. Some of these recent developments are the focus of this survey, which tries to present a unifying perspective on work carried out by different communities. In particular, we focus on non-asymptotic out-of-sample performance of Bayesian model selection and averaging tech- niques, and draw connections with penalized maximum likelihood. We also describe recent extensions to wider classes of probabilistic frameworks in- cluding high-dimensional, unidentifiable, or likelihood-free models. Contents 1 Introduction: collecting data, fitting many models . .2 2 A brief history of Bayesian model uncertainty . .2 3 The foundations of Bayesian model uncertainty . .3 3.1 Handling model uncertainty with Bayes’s theorem . -
School of Social Sciences Economics Division University of Southampton Southampton SO17 1BJ, UK
School of Social Sciences Economics Division University of Southampton Southampton SO17 1BJ, UK Discussion Papers in Economics and Econometrics Professor A L Bowley’s Theory of the Representative Method John Aldrich No. 0801 This paper is available on our website http://www.socsci.soton.ac.uk/economics/Research/Discussion_Papers ISSN 0966-4246 Key names: Arthur L. Bowley, F. Y. Edgeworth, , R. A. Fisher, Adolph Jensen, J. M. Keynes, Jerzy Neyman, Karl Pearson, G. U. Yule. Keywords: History of Statistics, Sampling theory, Bayesian inference. Professor A. L. Bowley’s Theory of the Representative Method * John Aldrich Economics Division School of Social Sciences University of Southampton Southampton SO17 1BJ UK e-mail: [email protected] Abstract Arthur. L. Bowley (1869-1957) first advocated the use of surveys–the “representative method”–in 1906 and started to conduct surveys of economic and social conditions in 1912. Bowley’s 1926 memorandum for the International Statistical Institute on the “Measurement of the precision attained in sampling” was the first large-scale theoretical treatment of sample surveys as he conducted them. This paper examines Bowley’s arguments in the context of the statistical inference theory of the time. The great influence on Bowley’s conception of statistical inference was F. Y. Edgeworth but by 1926 R. A. Fisher was on the scene and was attacking Bayesian methods and promoting a replacement of his own. Bowley defended his Bayesian method against Fisher and against Jerzy Neyman when the latter put forward his concept of a confidence interval and applied it to the representative method. * Based on a talk given at the Sample Surveys and Bayesian Statistics Conference, Southampton, August 2008. -
The Enigma of Karl Pearson and Bayesian Inference
The Enigma of Karl Pearson and Bayesian Inference John Aldrich 1 Introduction “An enigmatic position in the history of the theory of probability is occupied by Karl Pearson” wrote Harold Jeffreys (1939, p. 313). The enigma was that Pearson based his philosophy of science on Bayesian principles but violated them when he used the method of moments and probability-values in statistics. It is not uncommon to see a divorce of practice from principles but Pearson also used Bayesian methods in some of his statistical work. The more one looks at his writings the more puzzling they seem. In 1939 Jeffreys was probably alone in regretting that Pearson had not been a bottom to top Bayesian. Bayesian methods had been in retreat in English statistics since Fisher began attacking them in the 1920s and only Jeffreys ever looked for a synthesis of logic, statistical methods and everything in between. In the 1890s, when Pearson started, everything was looser: statisticians used inverse arguments based on Bayesian principles and direct arguments based on sampling theory and a philosopher-physicist-statistician did not have to tie everything together. Pearson did less than his early guide Edgeworth or his students Yule and Gosset (Student) to tie up inverse and direct arguments and I will be look- ing to their work for clues to his position and for points of comparison. Of Pearson’s first course on the theory of statistics Yule (1938, p. 199) wrote, “A straightforward, organized, logically developed course could hardly then [in 1894] exist when the very elements of the subject were being developed.” But Pearson never produced such a course or published an exposition as integrated as Yule’s Introduction, not to mention the nonpareil Probability of Jeffreys. -
Women Mathematicians in France in the Mid-Twentieth Century Introduction
* Women mathematicians in France in the mid-twentieth century Yvette Kosmann-Schwarzbach * To appear in the BSHM Bulletin: Journal of the British Society for the History of Mathematics (2015) DOI 10.1080/17498430.2014.976804 A short outline of the French system of “Écoles normales supérieures” and “agrégations” serves as the introduction to our account of the careers of the five women who completed a doctorate in mathematics in France before 1960 and became internationally known scientists: Marie-Louise Dubreil-Jacotin (1905-1972), Marie-Hélène Schwartz (1913-2013), Jacqueline Ferrand (1918-2014), Paulette Libermann (1919-2007) and Yvonne Choquet-Bruhat (b. 1923). This is followed by a more general description of the place of women on the mathematical scene in France between 1930 and 1960, together with a brief sketch of the accomplishments of some other women and the identification of all those who were active in research before 1960 and became professors in the French university system. Introduction The intersection of the fields of history of mathematics and history of women is notoriously small. From Hypatia of Alexandria to Emmy Noether, very few women are known to have contributed to the development of mathematics, and the number of those born in France is even smaller. Were there any before Gabrielle-Émilie Le Tonnelier de Breteuil, marquise Du Châtelet-Lomond (1706-1749), the little-known Nicole-Reine Étable de Labrière Lepaute (1723-1788) and the even lesser known Marie Anne Victoire Pigeon d’Osangis (1724-1767)?Were there any between Sophie Germain (1776-1831) and those whose names and accomplishments will appear in this article? There were two French lady scientists working with the astronomer Jérôme de Lalande, Louise du Pierry (1746-1806) and Jeanne Lefrançais de Lalande (1769-1832). -
Bayesian Data-Analysis Toolbox User Manual
Bayesian Data-Analysis Toolbox Release 4.23, Manual Version 3 G. Larry Bretthorst Biomedical MR Laboratory Washington University School Of Medicine, Campus Box 8227 Room 2313, East Bldg., 4525 Scott Ave. St. Louis MO 63110 http://bayes.wustl.edu Email: [email protected] September 18, 2018 Appendix C Thermodynamic Integration Thermodynamic Integration is a technique used in Bayesian probability theory to compute the posterior probability for a model. As a reminder, if a set of m models is designated as M 2 f1; 2; : : : ; mg, then one can compute the posterior probability for the models by an application of Bayes' Theorem [1] P (MjDI) / P (MjI)P (DjMI) (C.1) where we have dropped a normalization constant, M = 1 means we are computing the posterior probability for model 1, M = 2 the probability for model 2, etc. The three terms in this equation, going from left to right, are the posterior probability for the model indicator given the data and the prior information, P (MjDI), the prior probability for the model given only the prior information, P (MjI), and the marginal direct probability for the data given the model and the prior information, P (DjMI). The marginal direct probability for the data given a model can be computed from the joint posterior probability for the data and the model parameters, which we will call Ω, given the Model and the prior information Z P (DjMI) = dΩP (ΩjMI)P (DjΩMI): (C.2) Unfortunately, the integrals on the right-hand side of this equation can be very high dimensional. Consequently, although we know exactly what calculation must be done to compute the marginal direct probability, in most applications the integrals are not tractable. -
The Emergence of French Statistics. How Mathematics Entered the World of Statistics in France During the 1920S
The emergence of French statistics. How mathematics entered the world of statistics in France during the 1920s. Rémi Catellier, Laurent Mazliak To cite this version: Rémi Catellier, Laurent Mazliak. The emergence of French statistics. How mathematics entered the world of statistics in France during the 1920s.. 2009. hal-00397750v1 HAL Id: hal-00397750 https://hal.archives-ouvertes.fr/hal-00397750v1 Preprint submitted on 23 Jun 2009 (v1), last revised 21 Feb 2011 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The emergence of French statistics How mathematics entered the world of statistics in France during the 1920s Remi´ CATELLIER1 and Laurent MAZLIAK2 Abstract This paper concerns the emergence of modern mathematical statistics in France after First World War. Emile Borel’s achievements are presented, and especially his creation of two institutions where mathematical statistics were developed, the Statistical Institute of Paris University, (ISUP) in 1922 and above all the Henri Poincar´eInstitute (IHP) in 1928. At the IHP, a new journal Annales de l’Institut Henri Poincar was created in 1931. We present the first papers dealing with mathematical statistics. INTRODUCTION The important transformations in the field of the mathematics of randomness between around 1910 and 1930 are now rather well listed. -
“I Didn't Want to Be a Statistician”
“I didn’t want to be a statistician” Making mathematical statisticians in the Second World War John Aldrich University of Southampton Seminar Durham January 2018 1 The individual before the event “I was interested in mathematics. I wanted to be either an analyst or possibly a mathematical physicist—I didn't want to be a statistician.” David Cox Interview 1994 A generation after the event “There was a large increase in the number of people who knew that statistics was an interesting subject. They had been given an excellent training free of charge.” George Barnard & Robin Plackett (1985) Statistics in the United Kingdom,1939-45 Cox, Barnard and Plackett were among the people who became mathematical statisticians 2 The people, born around 1920 and with a ‘name’ by the 60s : the 20/60s Robin Plackett was typical Born in 1920 Cambridge mathematics undergraduate 1940 Off the conveyor belt from Cambridge mathematics to statistics war-work at SR17 1942 Lecturer in Statistics at Liverpool in 1946 Professor of Statistics King’s College, Durham 1962 3 Some 20/60s (in 1968) 4 “It is interesting to note that a number of these men now hold statistical chairs in this country”* Egon Pearson on SR17 in 1973 In 1939 he was the UK’s only professor of statistics * Including Dennis Lindley Aberystwyth 1960 Peter Armitage School of Hygiene 1961 Robin Plackett Durham/Newcastle 1962 H. J. Godwin Royal Holloway 1968 Maurice Walker Sheffield 1972 5 SR 17 women in statistical chairs? None Few women in SR17: small skills pool—in 30s Cambridge graduated 5 times more men than women Post-war careers—not in statistics or universities Christine Stockman (1923-2015) Maths at Cambridge. -
Signifying Nothing: Reply to Hoover and Siegler
forthcoming, Journal of Economic Methodology, March 2008 Signifying Nothing: Reply to Hoover and Siegler by Deirdre N. McCloskey and Stephen T. Ziliak University of Illinois at Chicago and Roosevelt University, April 2007 [email protected], [email protected] We invite distribution of the paper in this form, and especially any correspondence, and most especially any quarrels with it. Abstract After William Gosset (1876-1937), the “Student” of Student’s t, the best statisticians have distinguished economic (or agronomic or psychological or medical) significance from merely statistical “significance” at conventional levels. A singular exception among the best was Ronald A. Fisher, who argued in the 1920s that statistical significance at the .05 level is a necessary and sufficient condition for establishing a scientific result. After Fisher many economists and some others—but rarely physicists, chemists, and geologists, who seldom use Fisher-significance— have mixed up the two kinds of significance. We have been writing on the matter for some decades, with other critics in medicine, sociology, psychology, and the like. Hoover and Siegler, despite a disdainful rhetoric, agree with the logic of our case. Fisherian “significance,” they agree, is neither necessary nor sufficient for scientific significance. But they claim that economists already know this and that Fisherian tests can still be used for specification searches. Neither claim seems to be true. Our massive evidence that economists get it wrong appears to hold up. And if rhetorical standards are needed to decide the importance of a coefficient in the scientific conversation, so are they needed when searching for an equation to fit. -
In Pursuit of a Science of Agriculture: the Role of Statistics in Field Experiments
Giuditta Parolini In pursuit of a science of agriculture: the role of statistics in field experiments Article, Postprint version This version is available at http://dx.doi.org/10.14279/depositonce-6754. Suggested Citation Parolini, Giuditta: In pursuit of a science of agriculture: the role of statistics in field experiments. - In: History and philosophy of the life sciences. - ISSN: 1742-6316 (online), 0391-9714 (print). - 37 (2015), 3. - pp. 261–281. - DOI: 10.1007/s40656-015-0075-9. (Postprint is cited, page numbers differ.) This is a post-peer-review, pre-copyedit version of an article published in History and philosophy of the life sciences. The final authenticated version is available online at: http://dx.doi.org/10.1007/s40656-015-0075-9. Terms of Use Copyright applies. A non-exclusive, non-transferable and limited right to use is granted. This document is intended solely for personal, non-commercial use. Powered by TCPDF (www.tcpdf.org) In Pursuit of a Science of Agriculture: The Role of Statistics in Field Experiments In Pursuit of a Science of Agriculture: The Role of Statistics in Field Experiments Giuditta Parolini Postdoctoral fellow, Technische Universität Berlin and Berliner Zentrum für Wissensgeschichte Introduction “I do not always agree with Sir Ronald Fisher, but it is due to him that the standard of presentation of results in agriculture is better than in any of the so-called exact sciences; and this is a state of affairs that physicists should cease to tolerate” (Jeffreys 1953: 119). In this way, Harold Jeffreys, geophysicist and statistician, concluded his address to Section A (Physics and Mathematics) of the British Association for the Advancement of Science. -
Interpreting Probability Controversies and Developments in the Early Twentieth Century
Interpreting Probability Controversies and Developments in the Early Twentieth Century DAVID HOWIE PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarc´on 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http://www.cambridge.org C David Howie 2002 This book is in copyright.Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2002 Printed in the United Kingdom at the University Press, Cambridge Typeface Times Roman 10.25/13 pt. System LATEX2ε [TB] A catalog record for this book is available from the British Library. Library of Congress Cataloging in Publication Data Howie, David, 1970– Interpreting probability : controversies and developments in the early twentieth century / David Howie. p.cm.–(Cambridge studies in probability, induction, and decision theory) Includes bibliographical references and index. ISBN 0-521-81251-8 1.Probabilities. 2.Bayesian statistical decision theory. 3.Jeffreys, Harold, Sir, 1891–1989 4.Fisher, Ronald Aylmer, Sir, 1890–1962. I.Title. II.Series. QA273.A4 H69 2002 2001052430 ISBN 0 521 81251 8 hardback Contents Acknowledgments page xi 1 Introduction