Backlighting

Total Page:16

File Type:pdf, Size:1020Kb

Backlighting Challenge #1 - Capture Light Bokeh Have you seen those beautiful little circles of colour and light in the background of photos? It’s called Bokeh and it comes from the Japanese word “boke” meaning blur. It’s so pretty and not only does it make a gorgeous backdrop for portraits, but it can be the subject in it’s own right too! It’s also one of the most fun aspects of learning photography, being able to capture your own lovely bokeh! And that’s what our first challenge is all about, Capturing Light Bokeh! And remember - just as I said in this video, the purpose of these challenges is NOT to take perfect photos the first time you try something new… it’s about looking for light, trying new techniques, and exploring your creativity to help you build your skills and motivate and inspire you. So lets have fun & I can’t wait to see your photos! Copyright 2017 - www.clicklovegrow.com How to Achieve Light Bokeh Light Bokeh is created when light reflects off, or through, a background; and is then captured with a wide open aperture of your lens. As light reflects differently off flat surfaces, you’re not likely to see this effect when using a plain wall, for example. Instead, you’ll see it when your background has a little texture, such as light reflecting off leaves in foliage of a garden, or wet grass… or when light is broken up when streaming through trees. Looking for Light One of the key take-aways for this challenge is to start paying attention to light & how you can capture it in photos… both to add interest and feeling to your portraits, but as a creative subject in it’s own right. So spend some time wandering with your camera, shooting up through trees into the light, play with your angles and apertures, and see which effects you enjoy. Copyright 2017 - www.clicklovegrow.com What Settings to Use? For this challenge you’ll want to open up your aperture as wide open as your lens allows, which is the smaller f stop numbers, eg. f/2.8. (Have a kit lens? Read here to get the most out of it for capturing blur.) To get started, you’ll need to be either in manual mode, or aperture priority mode, in order to control your aperture. Then select your aperture for as low as you can, and then balance out your settings (if in manual) to achieve your exposure. Then use your focusing points to focus on your subject and take your shot. Note that the more distance you have between your subject and the background behind it (e.g., foliage, trees in the distance, lights etc) AND the closer you are to the subject, the better the bokeh will be. So if you’re not successful at first, experiment with distances and watch as the bokeh changes. In the example below, she was standing about 10 metres infant of the trees and bushes behind her, and the light was reflecting off the wet leaves. Copyright 2017 - www.clicklovegrow.com Backlit Bokeh Any location where you have a background that breaks up the light (aka, trees that the sun is setting behind) will help create beautiful light bokeh. Like in the shot on the first page… pretty light straight through the trees. In the example below the light is coming through the grasses behind her, and not only lighting her from behind, but adding the lovely effect of the reflected light bokeh which adds additional interest, and a whimsical, light feeling to the photos. f/3.2 SS 1/320s ISO 160 Copyright 2017 - www.clicklovegrow.com Having Fun With Light Bokeh Light bokeh isn’t just from natural light. You can also create beautiful photos with artificial lights. Fairy lights are perfect and fun for capturing twinkle light bokeh… and maybe you could make your Christmas Card super early! (See our Christmas Light Tutorial) The other way to use lights to create light bokeh is street or city lights. If you have a subject that is a good distance away from the lights (which city/street lights usually are) then that will ensure the lights are blurred enough to give the bokeh effect. For the most effective result the more lights in the frame, the better it will look. Just remember you need a the widest aperture setting your lens allows! Copyright 2017 - www.clicklovegrow.com Challenge Summary: Let’s Shoot Light Bokeh • Start out by looking for light that’s filtered through something, or reflected of a textured surface. You don’t just want blur.. you want to capture the light itself. • Set your camera to manual, or aperture priority mode, and set to the lowest aperture you can. If in manual, balance out your remaining settings. • Focus on your subject, and if you’re not getting enough blur/bokeh… increase the distance between your subject and the background, and bring yourself as close as you can to your subject. (Not lenses such as the 50mm have a minimum focusing distance of about 30cm… macro lenses can get really close) • Experiment with angles, and positioning of your subject to find the best bokeh. • Don’t give up if you first don’t succeed… the biggest frustrations lead to the biggest breakthroughs, so keep going. • Come & share in our Loving Photography with Click Love Grow Community & hashtag your photos: #CLGBacklightChallenge #Day1 #LightBokeh Copyright 2017 - www.clicklovegrow.com.
Recommended publications
  • Depth-Aware Blending of Smoothed Images for Bokeh Effect Generation
    1 Depth-aware Blending of Smoothed Images for Bokeh Effect Generation Saikat Duttaa,∗∗ aIndian Institute of Technology Madras, Chennai, PIN-600036, India ABSTRACT Bokeh effect is used in photography to capture images where the closer objects look sharp and every- thing else stays out-of-focus. Bokeh photos are generally captured using Single Lens Reflex cameras using shallow depth-of-field. Most of the modern smartphones can take bokeh images by leveraging dual rear cameras or a good auto-focus hardware. However, for smartphones with single-rear camera without a good auto-focus hardware, we have to rely on software to generate bokeh images. This kind of system is also useful to generate bokeh effect in already captured images. In this paper, an end-to-end deep learning framework is proposed to generate high-quality bokeh effect from images. The original image and different versions of smoothed images are blended to generate Bokeh effect with the help of a monocular depth estimation network. The proposed approach is compared against a saliency detection based baseline and a number of approaches proposed in AIM 2019 Challenge on Bokeh Effect Synthesis. Extensive experiments are shown in order to understand different parts of the proposed algorithm. The network is lightweight and can process an HD image in 0.03 seconds. This approach ranked second in AIM 2019 Bokeh effect challenge-Perceptual Track. 1. Introduction tant problem in Computer Vision and has gained attention re- cently. Most of the existing approaches(Shen et al., 2016; Wad- Depth-of-field effect or Bokeh effect is often used in photog- hwa et al., 2018; Xu et al., 2018) work on human portraits by raphy to generate aesthetic pictures.
    [Show full text]
  • Depth of Field PDF Only
    Depth of Field for Digital Images Robin D. Myers Better Light, Inc. In the days before digital images, before the advent of roll film, photography was accomplished with photosensitive emulsions spread on glass plates. After processing and drying the glass negative, it was contact printed onto photosensitive paper to produce the final print. The size of the final print was the same size as the negative. During this period some of the foundational work into the science of photography was performed. One of the concepts developed was the circle of confusion. Contact prints are usually small enough that they are normally viewed at a distance of approximately 250 millimeters (about 10 inches). At this distance the human eye can resolve a detail that occupies an angle of about 1 arc minute. The eye cannot see a difference between a blurred circle and a sharp edged circle that just fills this small angle at this viewing distance. The diameter of this circle is called the circle of confusion. Converting the diameter of this circle into a size measurement, we get about 0.1 millimeters. If we assume a standard print size of 8 by 10 inches (about 200 mm by 250 mm) and divide this by the circle of confusion then an 8x10 print would represent about 2000x2500 smallest discernible points. If these points are equated to their equivalence in digital pixels, then the resolution of a 8x10 print would be about 2000x2500 pixels or about 250 pixels per inch (100 pixels per centimeter). The circle of confusion used for 4x5 film has traditionally been that of a contact print viewed at the standard 250 mm viewing distance.
    [Show full text]
  • Portraiture, Surveillance, and the Continuity Aesthetic of Blur
    Michigan Technological University Digital Commons @ Michigan Tech Michigan Tech Publications 6-22-2021 Portraiture, Surveillance, and the Continuity Aesthetic of Blur Stefka Hristova Michigan Technological University, [email protected] Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p Part of the Arts and Humanities Commons Recommended Citation Hristova, S. (2021). Portraiture, Surveillance, and the Continuity Aesthetic of Blur. Frames Cinema Journal, 18, 59-98. http://doi.org/10.15664/fcj.v18i1.2249 Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/15062 Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p Part of the Arts and Humanities Commons Portraiture, Surveillance, and the Continuity Aesthetic of Blur Stefka Hristova DOI:10.15664/fcj.v18i1.2249 Frames Cinema Journal ISSN 2053–8812 Issue 18 (Jun 2021) http://www.framescinemajournal.com Frames Cinema Journal, Issue 18 (June 2021) Portraiture, Surveillance, and the Continuity Aesthetic of Blur Stefka Hristova Introduction With the increasing transformation of photography away from a camera-based analogue image-making process into a computerised set of procedures, the ontology of the photographic image has been challenged. Portraits in particular have become reconfigured into what Mark B. Hansen has called “digital facial images” and Mitra Azar has subsequently reworked into “algorithmic facial images.” 1 This transition has amplified the role of portraiture as a representational device, as a node in a network
    [Show full text]
  • Depth of Focus (DOF)
    Erect Image Depth of Focus (DOF) unit: mm Also known as ‘depth of field’, this is the distance (measured in the An image in which the orientations of left, right, top, bottom and direction of the optical axis) between the two planes which define the moving directions are the same as those of a workpiece on the limits of acceptable image sharpness when the microscope is focused workstage. PG on an object. As the numerical aperture (NA) increases, the depth of 46 focus becomes shallower, as shown by the expression below: λ DOF = λ = 0.55µm is often used as the reference wavelength 2·(NA)2 Field number (FN), real field of view, and monitor display magnification unit: mm Example: For an M Plan Apo 100X lens (NA = 0.7) The depth of focus of this objective is The observation range of the sample surface is determined by the diameter of the eyepiece’s field stop. The value of this diameter in 0.55µm = 0.6µm 2 x 0.72 millimeters is called the field number (FN). In contrast, the real field of view is the range on the workpiece surface when actually magnified and observed with the objective lens. Bright-field Illumination and Dark-field Illumination The real field of view can be calculated with the following formula: In brightfield illumination a full cone of light is focused by the objective on the specimen surface. This is the normal mode of viewing with an (1) The range of the workpiece that can be observed with the optical microscope. With darkfield illumination, the inner area of the microscope (diameter) light cone is blocked so that the surface is only illuminated by light FN of eyepiece Real field of view = from an oblique angle.
    [Show full text]
  • Using Depth Mapping to Realize Bokeh Effect with a Single Camera Android Device EE368 Project Report Authors (SCPD Students): Jie Gong, Ran Liu, Pradeep Vukkadala
    Using Depth Mapping to realize Bokeh effect with a single camera Android device EE368 Project Report Authors (SCPD students): Jie Gong, Ran Liu, Pradeep Vukkadala Abstract- In this paper we seek to produce a bokeh Bokeh effect is usually achieved in high end SLR effect with a single image taken from an Android device cameras using portrait lenses that are relatively large in size by post processing. Depth mapping is the core of Bokeh and have a shallow depth of field. It is extremely difficult effect production. A depth map is an estimate of depth to achieve the same effect (physically) in smart phones at each pixel in the photo which can be used to identify which have miniaturized camera lenses and sensors. portions of the image that are far away and belong to However, the latest iPhone 7 has a portrait mode which can the background and therefore apply a digital blur to the produce Bokeh effect thanks to the dual cameras background. We present algorithms to determine the configuration. To compete with iPhone 7, Google recently defocus map from a single input image. We obtain a also announced that the latest Google Pixel Phone can take sparse defocus map by calculating the ratio of gradients photos with Bokeh effect, which would be achieved by from original image and reblured image. Then, full taking 2 photos at different depths to camera and defocus map is obtained by propagating values from combining then via software. There is a gap that neither of edges to entire image by using nearest neighbor method two biggest players can achieve Bokeh effect only using a and matting Laplacian.
    [Show full text]
  • AG-AF100 28Mm Wide Lens
    Contents 1. What change when you use the different imager size camera? 1. What happens? 2. Focal Length 2. Iris (F Stop) 3. Flange Back Adjustment 2. Why Bokeh occurs? 1. F Stop 2. Circle of confusion diameter limit 3. Airy Disc 4. Bokeh by Diffraction 5. 1/3” lens Response (Example) 6. What does In/Out of Focus mean? 7. Depth of Field 8. How to use Bokeh to shoot impressive pictures. 9. Note for AF100 shooting 3. Crop Factor 1. How to use Crop Factor 2. Foal Length and Depth of Field by Imager Size 3. What is the benefit of large sensor? 4. Appendix 1. Size of Imagers 2. Color Separation Filter 3. Sensitivity Comparison 4. ASA Sensitivity 5. Depth of Field Comparison by Imager Size 6. F Stop to get the same Depth of Field 7. Back Focus and Flange Back (Flange Focal Distance) 8. Distance Error by Flange Back Error 9. View Angle Formula 10. Conceptual Schema – Relationship between Iris and Resolution 11. What’s the difference between Video Camera Lens and Still Camera Lens 12. Depth of Field Formula 1.What changes when you use the different imager size camera? 1. Focal Length changes 58mm + + It becomes 35mm Full Frame Standard Lens (CANON, NIKON, LEICA etc.) AG-AF100 28mm Wide Lens 2. Iris (F Stop) changes *distance to object:2m Depth of Field changes *Iris:F4 2m 0m F4 F2 X X <35mm Still Camera> 0.26m 0.2m 0.4m 0.26m 0.2m F4 <4/3 inch> X 0.9m X F2 0.6m 0.4m 0.26m 0.2m Depth of Field 3.
    [Show full text]
  • A Guide to Smartphone Astrophotography National Aeronautics and Space Administration
    National Aeronautics and Space Administration A Guide to Smartphone Astrophotography National Aeronautics and Space Administration A Guide to Smartphone Astrophotography A Guide to Smartphone Astrophotography Dr. Sten Odenwald NASA Space Science Education Consortium Goddard Space Flight Center Greenbelt, Maryland Cover designs and editing by Abbey Interrante Cover illustrations Front: Aurora (Elizabeth Macdonald), moon (Spencer Collins), star trails (Donald Noor), Orion nebula (Christian Harris), solar eclipse (Christopher Jones), Milky Way (Shun-Chia Yang), satellite streaks (Stanislav Kaniansky),sunspot (Michael Seeboerger-Weichselbaum),sun dogs (Billy Heather). Back: Milky Way (Gabriel Clark) Two front cover designs are provided with this book. To conserve toner, begin document printing with the second cover. This product is supported by NASA under cooperative agreement number NNH15ZDA004C. [1] Table of Contents Introduction.................................................................................................................................................... 5 How to use this book ..................................................................................................................................... 9 1.0 Light Pollution ....................................................................................................................................... 12 2.0 Cameras ................................................................................................................................................
    [Show full text]
  • Intro to Digital Photography.Pdf
    ABSTRACT Learn and master the basic features of your camera to gain better control of your photos. Individualized chapters on each of the cameras basic functions as well as cheat sheets you can download and print for use while shooting. Neuberger, Lawrence INTRO TO DGMA 3303 Digital Photography DIGITAL PHOTOGRAPHY Mastering the Basics Table of Contents Camera Controls ............................................................................................................................. 7 Camera Controls ......................................................................................................................... 7 Image Sensor .............................................................................................................................. 8 Camera Lens .............................................................................................................................. 8 Camera Modes ............................................................................................................................ 9 Built-in Flash ............................................................................................................................. 11 Viewing System ........................................................................................................................ 11 Image File Formats ....................................................................................................................... 13 File Compression ......................................................................................................................
    [Show full text]
  • The Daguerreotype Achromat 2.9/64 Art Lens by Lomography Is a Revival of This Lost Aesthetic
    OFFICIAL PRESS RELEASE The Lomographic Society Proudly Presents: Press Release Date: 6th April 2016 The DAGUERREOTYPE PRESS CONTACT Katherine Phipps [email protected] ACHROMAT 2.9/64 ART LENS Lomographic Society International 41 W 8th St The Great Return of a Lost Aesthetic from 1839 New York, NY 10011 - for Modern Day Cameras LINKS FOR EDITORS Back us on Kickstarter Now: www.lomography.com/kickstarter · The Ethereal Aesthetics of The World’s First Visit the Daguerreotype Achromat Photographic Optic Lens: reviving an optical design 2.9/64 Art Lens Microsite: www.lomography.com/achromat from 1839 by Daguerre and Chevalier · A Highly Versatile Tool for Modern Day Cameras: offering crisp sharpness, silky soft focus, freedom to control depth of field with multiple bokeh effects · Premium Quality Craftsmanship of The Art Lens Family: designed and handcrafted in a small manufactory, available in black and brass finish – reinvented for use with modern digital and analogue cameras · Proud to be Back on Kickstarter: following Lomography’s history of successful campaigns and exciting projects The Ethereal Aesthetics Of The World’s First Optic Lens Practical photography was invented in 1839, with the combination of a Chevalier Achromat Lens attached to a Daguerreotype camera. The signature character of the Chevalier lens bathed images in an alluring veil of light, due to a series of beautiful “aberrations” in its image-forming optical system, which naturally caused a glazy, soft picture at wide apertures. The Daguerreotype Achromat 2.9/64 Art Lens by Lomography is a revival of this lost aesthetic. Today, more photographs are taken every two minutes than humanity took in the entire 19th century.
    [Show full text]
  • Samyang T-S 24Mm F/3.5 ED AS
    GEAR GEAR ON TEST: Samyang T-S 24mm f/3.5 ED AS UMC As the appeal of tilt-shift lenses continues to broaden, Samyang has unveiled a 24mm perspective-control optic in a range of popular fittings – and at a price that’s considerably lower than rivals from Nikon and Canon WORDS TERRY HOPE raditionally, tilt-shift lenses have been seen as specialist products, aimed at architectural T photographers wanting to correct converging verticals and product photographers seeking to maximise depth-of-field. The high price of such lenses reflects the low numbers sold, as well as the precision nature of their design and construction. But despite this, the tilt-shift lens seems to be undergoing something of a resurgence in popularity. This increasing appeal isn’t because photographers are shooting more architecture or box shots. It’s more down to the popularity of miniaturisation effects in landscapes, where such a tiny part of the frame is in focus that it appears as though you are looking at a scale model, rather than the real thing. It’s an effect that many hobbyist DSLRs, CSCs and compacts can generate digitally, and it’s straightforward to create in Photoshop too, but these digital recreations are just approximations. To get the real thing you’ll need to shoot with a tilt-shift lens. Up until now that would cost you over £1500, and when you consider the number of assignments you might shoot in a year using a tilt-shift lens, that’s not great value for money. Things are set to change, though, because there’s The optical quality of the lens is very good, and is a new kid on the block in the shape of the Samyang T-S testament to the reputation that Samyang is rapidly 24mm f/3.5 ED AS UMC, which has a street price of less gaining in the optics market.
    [Show full text]
  • Three Techniques for Rendering Generalized Depth of Field Effects
    Three Techniques for Rendering Generalized Depth of Field Effects Todd J. Kosloff∗ Computer Science Division, University of California, Berkeley, CA 94720 Brian A. Barskyy Computer Science Division and School of Optometry, University of California, Berkeley, CA 94720 Abstract Post-process methods are fast, sometimes to the point Depth of field refers to the swath that is imaged in sufficient of real-time [13, 17, 9], but generally do not share the focus through an optics system, such as a camera lens. same image quality as distributed ray tracing. Control over depth of field is an important artistic tool that can be used to emphasize the subject of a photograph. In a A full literature review of depth of field methods real camera, the control over depth of field is limited by the is beyond the scope of this paper, but the interested laws of physics and by physical constraints. Depth of field reader should consult the following surveys: [1, 2, 5]. has been rendered in computer graphics, but usually with the same limited control as found in real camera lenses. In Kosara [8] introduced the notion of semantic depth this paper, we generalize depth of field in computer graphics of field, a somewhat similar notion to generalized depth by allowing the user to specify the distribution of blur of field. Semantic depth of field is non-photorealistic throughout a scene in a more flexible manner. Generalized depth of field provides a novel tool to emphasize an area of depth of field used for visualization purposes. Semantic interest within a 3D scene, to select objects from a crowd, depth of field operates at a per-object granularity, and to render a busy, complex picture more understandable allowing each object to have a different amount of blur.
    [Show full text]
  • Photography Techniques Intermediate Skills
    Photography Techniques Intermediate Skills PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Wed, 21 Aug 2013 16:20:56 UTC Contents Articles Bokeh 1 Macro photography 5 Fill flash 12 Light painting 12 Panning (camera) 15 Star trail 17 Time-lapse photography 19 Panoramic photography 27 Cross processing 33 Tilted plane focus 34 Harris shutter 37 References Article Sources and Contributors 38 Image Sources, Licenses and Contributors 39 Article Licenses License 41 Bokeh 1 Bokeh In photography, bokeh (Originally /ˈboʊkɛ/,[1] /ˈboʊkeɪ/ BOH-kay — [] also sometimes heard as /ˈboʊkə/ BOH-kə, Japanese: [boke]) is the blur,[2][3] or the aesthetic quality of the blur,[][4][5] in out-of-focus areas of an image. Bokeh has been defined as "the way the lens renders out-of-focus points of light".[6] However, differences in lens aberrations and aperture shape cause some lens designs to blur the image in a way that is pleasing to the eye, while others produce blurring that is unpleasant or distracting—"good" and "bad" bokeh, respectively.[2] Bokeh occurs for parts of the scene that lie outside the Coarse bokeh on a photo shot with an 85 mm lens and 70 mm entrance pupil diameter, which depth of field. Photographers sometimes deliberately use a shallow corresponds to f/1.2 focus technique to create images with prominent out-of-focus regions. Bokeh is often most visible around small background highlights, such as specular reflections and light sources, which is why it is often associated with such areas.[2] However, bokeh is not limited to highlights; blur occurs in all out-of-focus regions of the image.
    [Show full text]