Ecosystems, Ecosystem Services, and Biodiversity

Total Page:16

File Type:pdf, Size:1020Kb

Ecosystems, Ecosystem Services, and Biodiversity Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II 7 Ecosystems, Ecosystem Services, and Biodiversity Federal Coordinating Lead Authors Chapter Leads Shawn Carter Douglas Lipton U.S. Geological Survey National Oceanic and Atmospheric Jay Peterson Administration National Oceanic and Atmospheric Administration Madeleine A. Rubenstein U.S. Geological Survey Sarah R. Weiskopf U.S. Geological Survey Chapter Authors Lisa Crozier Roldan Muñoz National Oceanic and Atmospheric Administration National Oceanic and Atmospheric Administration Michael Fogarty Rajendra Poudel National Oceanic and Atmospheric Administration National Oceanic and Atmospheric Administration Sarah Gaichas Michelle D. Staudinger National Oceanic and Atmospheric Administration U.S. Geological Survey Kimberly J. W. Hyde Charles Stock National Oceanic and Atmospheric Administration National Oceanic and Atmospheric Administration Toni Lyn Morelli Laura Thompson U.S. Geological Survey U.S. Geological Survey Jeffrey Morisette Robin Waples U.S. Department of the Interior, National Invasive National Oceanic and Atmospheric Administration Species Council Secretariat Jake F. Weltzin Hassan Moustahfid U.S. Geological Survey National Oceanic and Atmospheric Administration Review Editor Gregg Marland Appalachian State University Recommended Citation for Chapter Lipton, D., M.A. Rubenstein, S.R. Weiskopf, S. Carter, J. Peterson, L. Crozier, M. Fogarty, S. Gaichas, K.J.W. Hyde, T.L. Morelli, J. Morisette, H. Moustahfid, R. Muñoz, R. Poudel, M.D. Staudinger, C. Stock, L. Thompson, R. Waples, and J.F. Weltzin, 2018: Ecosystems, Ecosystem Services, and Biodiversity. In Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II [Reidmiller, D.R., C.W. Avery, D.R. Easterling, K.E. Kunkel, K.L.M. Lewis, T.K. Maycock, and B.C. Stewart (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, pp. 268–321. doi: 10.7930/NCA4.2018.CH7 On the Web: https://nca2018.globalchange.gov/chapter/ecosystems Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II 7 Ecosystems, Ecosystem Services, and Biodiversity Key Message 1 Kodiak National Wildlife Refuge, Alaska Impacts on Species and Populations Climate change continues to impact species and populations in significant and observable ways. Terrestrial, freshwater, and marine organisms are responding to climate change by altering individual characteristics, the timing of biological events, and their geographic ranges. Local and global extinctions may occur when climate change outpaces the capacity of species to adapt. Key Message 2 Impacts on Ecosystems Climate change is altering ecosystem productivity, exacerbating the spread of invasive species, and changing how species interact with each other and with their environment. These changes are reconfiguring ecosystems in unprecedented ways. Key Message 3 Ecosystem Services at Risk The resources and services that people depend on for their livelihoods, sustenance, protection, and well-being are jeopardized by the impacts of climate change on ecosystems. Fundamental changes in agricultural and fisheries production, the supply of clean water, protection from extreme events, and culturally valuable resources are occurring. 7 | Ecosystems, Ecosystem Services, and Biodiversity Key Message 4 Challenges for Natural Resource Management Traditional natural resource management strategies are increasingly challenged by the impacts of climate change. Adaptation strategies that are flexible, consider interacting impacts of climate and other stressors, and are coordinated across landscape scales are progressing from theory to application. Significant challenges remain to comprehensively incorporate climate adaptation planning into mainstream natural resource management, as well as to evaluate the effectiveness of implemented actions. Executive Summary Biodiversity—the variety of life on Earth—pro- economies, and well-being. Both human and vides vital services that support and improve natural systems respond to change, but their human health and well-being. Ecosystems, ability to respond and thrive under new condi- which are composed of living things that tions is determined by their adaptive capacity, interact with the physical environment, provide which may be inadequate to keep pace with numerous essential benefits to people. These rapid change. Our understanding of climate benefits, termed ecosystem services, encom- change impacts and the responses of biodiver- pass four primary functions: provisioning sity and ecosystems has improved since NCA3. materials, such as food and fiber; regulating The expected consequences of climate change critical parts of the environment, such as water will vary by region, species, and ecosystem quality and erosion control; providing cultural type. Management responses are evolving as services, such as recreational opportunities new tools and approaches are developed and and aesthetic value; and providing supporting implemented; however, they may not be able services, such as nutrient cycling.1 Climate to overcome the negative impacts of climate change poses many threats and potential change. Although efforts have been made disruptions to ecosystems and biodiversity, since NCA3 to incorporate climate adaptation as well as to the ecosystem services on which strategies into natural resource management, people depend. significant work remains to comprehensively implement climate-informed planning. This Building on the findings of the Third National chapter presents additional evidence for Climate Assessment (NCA3),2 this chapter pro- climate change impacts to biodiversity, eco- vides additional evidence that climate change systems, and ecosystem services, reflecting is significantly impacting ecosystems and increased confidence in the findings reported biodiversity in the United States. Mounting evi- in NCA3. The chapter also illustrates the com- dence also demonstrates that climate change plex and interrelated nature of climate change is increasingly compromising the ecosystem impacts to biodiversity, ecosystems, and the services that sustain human communities, services they provide. U.S. Global Change Research Program 270 Fourth National Climate Assessment 7 | Ecosystems, Ecosystem Services, and Biodiversity Climate Change, Ecosystems, and Ecosystem Services Climate and non-climate stressors interact synergistically on biological diversity, ecosystems, and the services they provide for human well-being. The impact of these stressors can be reduced through the ability of organisms to adapt to changes in their environment, as well as through adaptive management of the resources upon which humans depend. Biodiversity, ecosystems, ecosystem services, and human well-being are interconnected: biodiversity underpins ecosystems, which in turn provide ecosystem services; these services contribute to human well-being. Ecosystem structure and function can also influence the biodiversity in a given area. The use of ecosystem services by humans, and therefore the well-being humans derive from these services, can have feedback effects on ecosystem services, ecosystems, and biodiversity. From Figure 7.1 (Sources: NOAA, USGS, and DOI). U.S. Global Change Research Program 271 Fourth National Climate Assessment 7 | Ecosystems, Ecosystem Services, and Biodiversity State of the Sector All life on Earth, including humans, depends on identifying measures to minimize, cope with, the services that ecosystems provide, including or respond to the negative impacts of climate food and materials, protection from extreme change is necessary to reduce biodiversity loss events, improved quality of water and air, and and to sustain ecosystem services.4 a wide range of cultural and aesthetic values. Such services are lost or compromised when This chapter focuses on the impacts of climate the ecosystems that provide them cease to change at multiple scales: the populations and function effectively. Healthy ecosystems have species of living things that form ecosystems; two primary components: the species that the properties and processes that support live within them, and the interactions among ecosystems; and the ecosystem services that species and between species and their environ- underpin human communities, economies, and ment. Biodiversity and ecosystem services are well-being. The key messages from NCA3 (Table intrinsically linked: biodiversity contributes to 7.1) have been strengthened over the last four the processes that underpin ecosystem ser- years by new research and monitoring networks. vices; biodiversity can serve as an ecosystem This chapter builds on the NCA3 findings and service in and of itself (for example, genetic specifically emphasizes how climate impacts resources for drug development); and biodi- interact with non-climate stressors to affect versity constitutes an ecosystem good that is ecosystem services. Furthermore, it describes directly valued by humans (for example, appre- new advances in climate adaptation efforts, as ciation for variety in its own right).3 Significant well as the challenges natural resource managers environmental change, such as climate change, face when seeking to sustain ecosystems or to poses risks to species, ecosystems, and the mitigate climate change (Figure 7.1). services that humans rely on. Consequently, Key Messages from Third National Climate Assessment Climate change impacts on ecosystems reduce their ability to
Recommended publications
  • Wildlife Management in the National Parks
    wildlife management IN THE NATIONAL PARKS wildlife management IN IHE NATIONAL PARKS 1969 REPRINT FROM ADMINISTRATIVE POLICIES FOR NATURAL AREAS OF THE NATIONAL PARK SYSTEM U.S. DEPARTMENT OF THE INTERIOR • NATIONAL PARK SERVICE For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 15 cents WILDLIFE MANAGEMENT IN THE NATIONAL PARKS ADVISORY BOARD ON WILDLIFE MANAGEMENT, APPOINTED BY SECRETARY OF THE INTERIOR UDALL A. S. Leopold (Chairman), S. A. Cain, C. M. Cottam, I. N. Gabrielson, T. L. Kimball March 4, 1963 Historical In the Congressional Act of 1916 which created the National Park Service, preservation of native animal' life was clearly specified as one of the pur­ poses of the parks. A frequently quoted passage of the Act states "... which purpose is to conserve the scenery and the natural and historic objects and the wild life therein and to provide for the enjoyment of the same in such manner and by such means as will leave them unimpaired for the enjoy­ ment of future generations." In implementing this Act, the newly formed Park Service developed a philosophy of wildlife protection, which in that era was indeed the most obvious and immediate need in wildlife conservation. Thus the parks were established as refuges, the animal populations were protected from wildfire. For a time predators were controlled to protect the "good" ani­ mals from the "bad" ones, but this endeavor mercifully ceased in the 1930's. On the whole, there was little major change in the Park Service practice of wildlife management during the first 40 years of its existence.
    [Show full text]
  • Climate Change's Impact on Key Ecosystem Services and the Human
    US CLIMATE-CHANGE IMPACTS Climate change’s impact on key ecosystem 483 services and the human well-being they support in the US Erik J Nelson1*, Peter Kareiva2, Mary Ruckelshaus3,4, Katie Arkema3,4, Gary Geller5, Evan Girvetz2,4, Dave Goodrich6, Virginia Matzek7, Malin Pinsky8, Walt Reid9, Martin Saunders7, Darius Semmens10, and Heather Tallis3† Climate change alters the functions of ecological systems. As a result, the provision of ecosystem services and the well-being of people that rely on these services are being modified. Climate models portend continued warming and more frequent extreme weather events across the US. Such weather-related disturbances will place a premium on the ecosystem services that people rely on. We discuss some of the observed and anticipated impacts of climate change on ecosystem service provision and livelihoods in the US. We also highlight promis- ing adaptive measures. The challenge will be choosing which adaptive strategies to implement, given limited resources and time. We suggest using dynamic balance sheets or accounts of natural capital and natural assets to prioritize and evaluate national and regional adaptation strategies that involve ecosystem services. Front Ecol Environ 2013; 11(9): 483–493, doi:10.1890/120312 limate change has altered and will continue to alter are ecosystem services. Climate change is expected to Cthe provision, timing, and location of ecosystem increasingly impact, both positively and negatively, the functions across landscapes. Ecosystem functions, such as provision and value of welfare-enhancing services in the nutrient recycling in soil and the timing and volume of US and around the world (Staudinger et al.
    [Show full text]
  • Ecosystem Services and Natural Resources
    ECOSYSTEM SERVICES AND NATURAL RESOURCES Porter Hoagland1*, Hauke Kite-Powell1, Di Jin1, and Charlie Colgan2 1Marine Policy Center Woods Hole Oceanographic Institution Woods Hole, MA 02543 2Center for the Blue Economy Middlebury Institute of International Studies at Monterey Monterey, CA 93940 *Corresponding author. This working paper is a preliminary draft for discussion by participants at the Mid-Atlantic Blue Ocean Economy 2030 meeting. Comments and suggestions are wel- come. Please do not quote or cite without the permission of the authors. 1. Introduction All natural resources, wherever they are found, comprise physical features of the Earth that have economic value when they are in short supply. The supply status of natural resources can be the result of natural occurrences or affected by human degradation or restoration, new scientific in- sights or technological advances, or regulation. The economic value of natural resources can ex- pand or contract with varying environmental conditions, shifting human uses and preferences, and purposeful investments, depletions, or depreciation. It has now become common to characterize flows of goods and services from natural resources, referred to as “ecosystem” (or sometimes “environmental”) services (ESs). The values of ES flows can arise through direct, indirect, or passive uses of natural resources, in markets or as public goods, and a variety of methodologies have been developed to measure and estimate these values. Often the values of ES flows are underestimated or even ignored, and the resulting im- plicit subsidies may lead to the overuse or degradation of the relevant resources or even the broader environment (Fenichel et al. 2016). Where competing uses of resources are potentially mutually exclusive in specific locations or over time, it is helpful to be able to assess—through explicit tradeoffs—the values of ES flows that may be gained or lost when one or more uses are assigned or gain preferential treatment over others.
    [Show full text]
  • Ecosystem Services of Collectively Managed Urban Gardens : Exploring Factors Affecting Synergies and Tradeoffs
    Ecosystem services of collectively managed urban gardens : exploring factors affecting synergies and trade-offs at the site level Dennis, M and James, P http://dx.doi.org/10.1016/j.ecoser.2017.05.009 Title Ecosystem services of collectively managed urban gardens : exploring factors affecting synergies and trade-offs at the site level Authors Dennis, M and James, P Type Article URL This version is available at: http://usir.salford.ac.uk/id/eprint/42449/ Published Date 2017 USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. 1 Ecosystem services of collectively managed urban gardens: exploring factors affecting synergies 2 and trade-offs at the site level 3 4 Abstract 5 Collective management of urban green space is being acknowledged and promoted. The need to 6 understand productivity and potential trade-offs between co-occurring ecosystem services arising 7 from collectively managed pockets of green space is pivotal to the design and promotion of both 8 productive urban areas and effective stakeholder participation in their management. Quantitative 9 assessments of ecosystem service production were obtained from detailed site surveys at ten 10 examples of collectively managed urban gardens in Greater Manchester, UK. Correlation analyses 11 demonstrated high levels of synergy between ecological (biodiversity) and social (learning and well- 12 being) benefits related to such spaces.
    [Show full text]
  • Thermophilic Lithotrophy and Phototrophy in an Intertidal, Iron-Rich, Geothermal Spring 2 3 Lewis M
    bioRxiv preprint doi: https://doi.org/10.1101/428698; this version posted September 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Thermophilic Lithotrophy and Phototrophy in an Intertidal, Iron-rich, Geothermal Spring 2 3 Lewis M. Ward1,2,3*, Airi Idei4, Mayuko Nakagawa2,5, Yuichiro Ueno2,5,6, Woodward W. 4 Fischer3, Shawn E. McGlynn2* 5 6 1. Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138 USA 7 2. Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan 8 3. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 9 91125 USA 10 4. Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, 11 Japan 12 5. Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo, 13 152-8551, Japan 14 6. Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth 15 Science and Technology, Natsushima-cho, Yokosuka 237-0061, Japan 16 Correspondence: [email protected] or [email protected] 17 18 Abstract 19 Hydrothermal systems, including terrestrial hot springs, contain diverse and systematic 20 arrays of geochemical conditions that vary over short spatial scales due to progressive interaction 21 between the reducing hydrothermal fluids, the oxygenated atmosphere, and in some cases 22 seawater. At Jinata Onsen, on Shikinejima Island, Japan, an intertidal, anoxic, iron- and 23 hydrogen-rich hot spring mixes with the oxygenated atmosphere and sulfate-rich seawater over 24 short spatial scales, creating an enormous range of redox environments over a distance ~10 m.
    [Show full text]
  • Ecosystem Services and Australian Natural Resource Management (NRM) Futures
    ECOSYSTEM SERVICES AND AUSTRALIAN NRM FUTURES Ecosystem Services and Australian Natural Resource Management (NRM) Futures Paper to the Natural Resource Policies and Programs Committee (NRPPC) and the Natural Resource Management Standing Committee (NRMSC) Prepared by the Ecosystem Services Working Group: Steven Cork (DEWHA, Canberra) Gary Stoneham (DSE, Victoria) Kim Lowe (DSE, Victoria) Drawing on input from: Kate Gainer (DEWHA, Canberra) Richard Thackway (DAFF, Canberra) August 2007 ECOSYSTEM SERVICES AND AUSTRALIAN NRM FUTURES © Commonwealth of Australia 2008 ISBN 9780642553874 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Australian Government, available from the Department of the Environment, Water, Heritage and the Arts. Requests and inquiries concerning reproduction and rights should be addressed to: Assistant Secretary Biodiversity Conservation Branch Department of the Environment, Water, Heritage and the Arts GPO Box 787 Canberra ACT 2601 Acknowledgements The Australian Government Department of the Environment, Water, Heritage and the Arts has collated and edited this paper for the Natural Resource Management Standing Committee. While reasonable efforts have been made to ensure that the contents of this paper are factually correct, the Australian Government and members of the Natural Resource Management Standing Committee (or the governments that the committee members represent) do not accept responsibility
    [Show full text]
  • Natural Resources and Wildlife Management Statistics
    Natural Resources and Wildlife Management 2018-19 State Results Statistics data includes students taking exams in the original testing period and includes students retaking exams. The Score Distribution and Standards performance tables show results for original testing period only for accurate evaluation of live testing performance. Statistics Categories Performance Participants 3 Pass Rate 3 Pass Percentage 100.0% Average Score 73.0 Cut Score 65 Score Distribution % Range # Scores in Range 0-15 0 15-25 0 25-35 0 35-45 0 45-55 0 55-65 1 65-75 1 75-85 1 85-95 0 95-100 0 Natural Resources and Wildlife Management 1) CONTENT STANDARD 1.0: EXPLORE NATURAL RESOURCE SCIENCE AND MANAGEMENT 75.93% 1) Performance Standard 1.1 : Investigate the Relationship Between Natural Resources and Society, Including Conflict Management 72.22% 1) 1.1.1 Define natural resource management 77.78% 3) 1.1.3 Describe human dependency and demands on natural resources 88.89% 4) 1.1.4 Explain natural resource conservation 66.67% 5) 1.1.5 Investigate the effects of multiple uses of natural resources (e.g., recreation, mining, agriculture, forestry, public lands grazing, etc.) 66.67% 6) 1.1.6 Analyze societal issues related to natural resource management 50% 2) Performance Standard 1.2 : Explain Interrelationships Between Natural Resources and Humans in Managing Natural Environments 86.67% 1) 1.2.1 Explain the effects and/or trade-off of population growth, greater energy consumption, and increased technology and development on natural resources and the environment 83.33%
    [Show full text]
  • Analysis of Habitat Fragmentation and Ecosystem Connectivity Within the Castle Parks, Alberta, Canada by Breanna Beaver Submit
    Analysis of Habitat Fragmentation and Ecosystem Connectivity within The Castle Parks, Alberta, Canada by Breanna Beaver Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Environmental Science Program YOUNGSTOWN STATE UNIVERSITY December, 2017 Analysis of Habitat Fragmentation and Ecosystem Connectivity within The Castle Parks, Alberta, Canada Breanna Beaver I hereby release this thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research. Signature: Breanna Beaver, Student Date Approvals: Dawna Cerney, Thesis Advisor Date Peter Kimosop, Committee Member Date Felicia Armstrong, Committee Member Date Clayton Whitesides, Committee Member Date Dr. Salvatore A. Sanders, Dean of Graduate Studies Date Abstract Habitat fragmentation is an important subject of research needed by park management planners, particularly for conservation management. The Castle Parks, in southwest Alberta, Canada, exhibit extensive habitat fragmentation from recreational and resource use activities. Umbrella and keystone species within The Castle Parks include grizzly bears, wolverines, cougars, and elk which are important animals used for conservation agendas to help protect the matrix of the ecosystem. This study identified and analyzed the nature of habitat fragmentation within The Castle Parks for these species, and has identified geographic areas of habitat fragmentation concern. This was accomplished using remote sensing, ArcGIS, and statistical analyses, to develop models of fragmentation for ecosystem cover type and Digital Elevation Models of slope, which acted as proxies for species habitat suitability.
    [Show full text]
  • Ecological Systems of the United States a Working Classification of U.S
    ECOLOGICAL SYSTEMS OF THE UNITED STATES A WORKING CLASSIFICATION OF U.S. TERRESTRIAL SYSTEMS NatureServe is a non-profit organization dedicated to providing the scientific knowledge that forms the basis for effective conservation action. Citation: Comer, P., D. Faber-Langendoen, R. Evans, S. Gawler, C. Josse, G. Kittel, S. Menard, M. Pyne, M. Reid, K. Schulz, K. Snow, and J. Teague. 2003. Ecological Systems of the United States: A Working Classification of U.S. Terrestrial Systems. NatureServe, Arlington, Virginia. © NatureServe 2003 Ecological Systems of the United States is a component of NatureServe’s International Terrestrial Ecological Systems Classification. Á Funding for this report was provided by a grant from The Nature Conservancy. Front cover: Maroon Bells Wilderness, Colorado. Photo © Patrick Comer NatureServe 1101 Wilson Boulevard, 15th Floor Arlington, VA 22209 (703) 908-1800 www.natureserve.org ECOLOGICAL SYSTEMS OF THE UNITED STATES A WORKING CLASSIFICATION OF U.S. TERRESTRIAL SYSTEMS Á Á Á Á Á Patrick Comer Don Faber-Langendoen Rob Evans Sue Gawler Carmen Josse Gwen Kittel Shannon Menard Milo Pyne Marion Reid Keith Schulz Kristin Snow Judy Teague June 2003 Acknowledgements We wish to acknowledge the generous support provided by The Nature Conservancy for this effort to classify and characterize the ecological systems of the United States. We are particularly grateful to the late John Sawhill, past President of The Nature Conservancy, who was an early supporter of this concept, and who made this funding possible through an allocation from the President’s Discretionary Fund. Many of the concepts and approaches for defining and applying ecological systems have greatly benefited from collaborations with Conservancy staff, and the classification has been refined during its application in Conservancy-sponsored conservation assessments.
    [Show full text]
  • Sustainable Insight
    CLIMATE CHANGE & SUSTAINABILITY SERVICES Sustainable Insight The Nature of Ecosystem Service Risks for Business SPECIAL EDitiON IN COLLABOratiON With Fauna & FLORA InternatiONAL AND UNEP FI May 2011 2 | The Nature of Ecosystem Service Risks for Business About KPMG, UNEP FI and FFI KPMG, UNEP FI and FFI have produced this paper together drawing from research and projects they have done individually and together. KPMG Fauna & Flora International United Nations Environment KPMG is a global network of FFI is the world’s first established Programme Finance Initiative professional firms providing high-quality international conservation body, (UNEP FI) services in the field op audit, tax and founded in 1903. FFI acts to conserve The United Nations Environment advisory. We work for a wide range of threatened species and ecosystems Programme Finance Initiative (UNEP FI) clients, both national and international worldwide, choosing solutions that is a unique global partnership between organisations. In the complexity of are sustainable, are based on sound the United Nations Environment today’s global landscape our clients science and take account of human Programme (UNEP) and the global are demanding more help in solving needs. Through its Global Business & financial sector. UNEP FI works closely complex issues, better integration and Biodiversity Programme, FFI aspires to with nearly 200 financial institutions collaboration across disciplines and create an environment where business that are Signatories to the UNEP FI faster returns on their investments has a long-term positive impact on Statements, and a range of partner through value-added partnerships. biodiversity conservation. organizations to develop and promote linkages between sustainability and KPMG’s Climate Change & www.fauna-flora.org financial performance.
    [Show full text]
  • Soil Ecosystem Services and Intensified Cropping Systems Kenneth R
    doi:10.2489/jswc.72.3.64A FEATURE Soil ecosystem services and intensified cropping systems Kenneth R. Olson, Mahdi Al-Kaisi, Rattan Lal, and Lois Wright Morton fforts to meet the food and energy needs of an expanding world pop- Figure 1 ulation have led to a large-scale Agroecosystem services provided by soil organic carbon (SOC) in corn-based crop- E ping systems of agriculture (adapted from Adhikari and Hartemink [2016], table 2). expansion and intensification of crop production systems. A major challenge Provisioning services of the twenty-first century is ensuring an • Food and fuel adequate and reliable flow of essential eco- • Raw materials system services (Biggs et al. 2012; Hatfield • Fresh water/water retention, purification and Walthall 2015) as cropping systems Regulating services are intensified. Ecosystem services are the • Climate and greenhouse gas regulation provisioning, regulating, supporting, and • Water regulation cultural functions that soil, water, vegeta- • Erosion and flood control tion, and other natural resources provide • Pest and disease regulation • Carbon sequestration Copyright © 2017 Soil and Water Conservation Society. All rights reserved. (MEA 2005). The conversion of natu- Journal of Soil and Water Conservation • Water purification by denaturing of pollutants ral ecosystems to cultivated cropland has eroded the capacity to efficiently retain Cultural services and sequester soil organic carbon (SOC) • Recreational/ecotourism • Aesthetic/sense of place (Olson et al. 2012), an essential ecosystem • Knowledge/education/inspiration
    [Show full text]
  • For-74: a Guide to Urban Habitat Conservation Planning
    FOR-74 A Guide to Urban Habitat Conservation Planning Thomas G. Barnes, Extension Wildlife Specialist Lowell Adams, National Institute for Urban Wildlife entuckians value their forests and Kother natural resources for aes- Guidelines for Considering Wildlife in the Urban Development thetic, recreational, and economic Process significance, so over the past several Promote habitats that will have the food, cover, water, and living space that decades they have become increasingly all wildlife require by following these guidelines: concerned about the loss of wildlife • Before development, maximize open space and make an effort to protect the habitat and greenspace. Urban and most valuable wildlife habitat by placing buildings on less important portions suburban development is one of the of the site. Choosing cluster development, which is flexible, can help. leading causes of this loss: A recent • Provide water, and design stormwater control impoundments to benefit wildlife. study indicated that every day in • Use native plants that have value for wildlife as well as aesthetic appeal. Kentucky more than 100 acres of rural • Provide bird-feeding stations and nest boxes for cavity-nesting birds like land is being converted to urban house wrens and wood ducks. development. • Educate residents about wildlife conservation, using, for example, informa- Because concern for loss of tion packets or a nature trail through open space. greenspace is not new, we have for • Ensure a commitment to managing urban wildlife habitats. some time created attractive urban greenspace environments with our parks and backyards. These The publication can also be useful to A landscape is a large area com- greenspaces have been created not so the average homeowner in understand- posed of ecosystems (the plants, much for wildlife habitats as for people ing the complex issues involved in animals, other living organisms, and to enjoy, but the potential for wildlife landscape planning and wildlife their physical surroundings).
    [Show full text]