A051p001.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diversity in the Genus Skeletonema (Bacillariophyceae). Ii. an Assessment of the Taxonomy of S. Costatum-Like Species with the Description of Four New Species1
J. Phycol. 41, 151–176 (2005) r 2005 Phycological Society of America DOI: 10.1111/j.1529-8817.2005.04067.x DIVERSITY IN THE GENUS SKELETONEMA (BACILLARIOPHYCEAE). II. AN ASSESSMENT OF THE TAXONOMY OF S. COSTATUM-LIKE SPECIES WITH THE DESCRIPTION OF FOUR NEW SPECIES1 Diana Sarno,2 Wiebe H. C. F. Kooistra Stazione Zoologica ‘‘Anthon Dohrn,’’ Villa Comunale, 80121 Naples, Italy Linda K. Medlin Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany Isabella Percopo and Adriana Zingone Stazione Zoologica ‘‘Anthon Dohrn,’’ Villa Comunale, 80121 Naples, Italy The morphology of strains of Skeletonema Grev- Abbreviations: AIC, Akaike information criterion; ille emend Sarno et Zingone was examined in LM, CCAP, Culture Collection of Algae and Protozoa; TEM, and SEM and compared with sequence data CCMP, The Provasoli-Guillard National Center for from nuclear small subunit rDNA and partial large Cultures of Marine Phytoplankton; FP,fultoportula; subunit rDNA. Eight distinct entities were identi- FPP, fultoportula process; hLRTs, hierarchical like- fied, of which four were known: S. menzelii Guillard, lihood ratio tests; IFPP, intercalary fultoportula Carpenter et Reimann; S. pseudocostatum Medlin process; IRP, intercalary rimoportula; IRPP, inter- emend. Zingone et Sarno; S. subsalsum (Cleve) Bet- calary rimoportula process; LSU, large subunit; hge; and S. tropicum Cleve. The other four species ML, maximum likelihood; MP, maximum parsimo- were new: S. dohrnii Sarno et Kooistra sp. nov., S. ny; RP, rimoportula; RPP, rimoportula process; grethae Zingone et Sarno sp. nov., S. japonicum Zin- SSU, small subunit; SZN, Stazione Zoologica ‘‘A. gone et Sarno sp. nov., and S. marinoi Sarno et Zin- Dohrn’’ of Naples; TFP, terminal fultoportula; gone sp. -
Community Composition of the Morphologically Cryptic Diatom Genus Skeletonema in Narragansett Bay
University of Rhode Island DigitalCommons@URI Open Access Master's Theses 2015 COMMUNITY COMPOSITION OF THE MORPHOLOGICALLY CRYPTIC DIATOM GENUS SKELETONEMA IN NARRAGANSETT BAY Kelly Canesi University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/theses Recommended Citation Canesi, Kelly, "COMMUNITY COMPOSITION OF THE MORPHOLOGICALLY CRYPTIC DIATOM GENUS SKELETONEMA IN NARRAGANSETT BAY" (2015). Open Access Master's Theses. Paper 549. https://digitalcommons.uri.edu/theses/549 This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. COMMUNITY COMPOSITION OF THE MORPHOLOGICALLY CRYPTIC DIATOM GENUS SKELETONEMA IN NARRAGANSETT BAY BY KELLY CANESI A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN OCEANOGRAPHY UNIVERSITY OF RHODE ISLAND 2015 MASTER OF SCIENCE THESIS OF KELLY CANESI APPROVED: Thesis Committee: Major Professor: Tatiana Rynearson Candace Oviatt Christopher Lane Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2015 ABSTRACT It is well known that morphologically cryptic species are routinely present in planktonic communities but their role in important ecological and biogeochemical processes is poorly understood. I investigated the presence of cryptic species in the genus Skeletonema, an important bloom-forming diatom, using high-throughput genetic sequencing and examined the ecological dynamics of communities relative to environmental conditions. Samples were obtained from the Narragansett Bay Long-Term Plankton Time Series, where Skeletonema spp. -
The Plankton Lifeform Extraction Tool: a Digital Tool to Increase The
Discussions https://doi.org/10.5194/essd-2021-171 Earth System Preprint. Discussion started: 21 July 2021 Science c Author(s) 2021. CC BY 4.0 License. Open Access Open Data The Plankton Lifeform Extraction Tool: A digital tool to increase the discoverability and usability of plankton time-series data Clare Ostle1*, Kevin Paxman1, Carolyn A. Graves2, Mathew Arnold1, Felipe Artigas3, Angus Atkinson4, Anaïs Aubert5, Malcolm Baptie6, Beth Bear7, Jacob Bedford8, Michael Best9, Eileen 5 Bresnan10, Rachel Brittain1, Derek Broughton1, Alexandre Budria5,11, Kathryn Cook12, Michelle Devlin7, George Graham1, Nick Halliday1, Pierre Hélaouët1, Marie Johansen13, David G. Johns1, Dan Lear1, Margarita Machairopoulou10, April McKinney14, Adam Mellor14, Alex Milligan7, Sophie Pitois7, Isabelle Rombouts5, Cordula Scherer15, Paul Tett16, Claire Widdicombe4, and Abigail McQuatters-Gollop8 1 10 The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK. 2 Centre for Environment Fisheries and Aquacu∑lture Science (Cefas), Weymouth, UK. 3 Université du Littoral Côte d’Opale, Université de Lille, CNRS UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France. 4 Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. 5 15 Muséum National d’Histoire Naturelle (MNHN), CRESCO, 38 UMS Patrinat, Dinard, France. 6 Scottish Environment Protection Agency, Angus Smith Building, Maxim 6, Parklands Avenue, Eurocentral, Holytown, North Lanarkshire ML1 4WQ, UK. 7 Centre for Environment Fisheries and Aquaculture Science (Cefas), Lowestoft, UK. 8 Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK. 9 20 The Environment Agency, Kingfisher House, Goldhay Way, Peterborough, PE4 6HL, UK. 10 Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK. -
Insights Into Global Planktonic Diatom Diversity: Comparisons Between Phylogenetically Meaningful Units That Account for Time
bioRxiv preprint doi: https://doi.org/10.1101/167809; this version posted July 24, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Insights into global planktonic diatom diversity: Comparisons between phylogenetically meaningful units that account for time Teofil Nakov, Jeremy M. Beaulieu, and Andrew J. Alverson Department of Biological Sciences University of Arkansas 1 University of Arkansas, SCEN 601 Fayetteville, AR 72701 Abstract Metabarcoding has offered unprecedented insights into microbial diversity. In many studies, short DNA sequences are binned into consecutively higher Linnaean ranks, and ranked groups (e.g., genera) are the units of biodiver- sity analyses. These analyses assume that Linnaean ranks are biologically meaningful and that identically ranked groups are comparable. We used a meta-barcode dataset for marine planktonic diatoms to illustrate the limits of this approach. We found that the 20 most abundant marine planktonic diatom genera ranged in age from 4 to 134 million years, indicating the non- equivalence of genera because some had more time to diversify than others. Still, species richness was only weakly correlated with genus age, highlighting variation in rates of speciation and/or extinction. Taxonomic classifications often do not reflect phylogeny, so genus-level analyses can include phylogenet- ically nested genera, further confounding rank-based analyses. These results underscore the indispensable role of phylogeny in understanding patterns of microbial diversity. Keywords: diversification, metabarcoding, microbes, phylogeny Preprint submitted to Bioarxiv July 24, 2017 bioRxiv preprint doi: https://doi.org/10.1101/167809; this version posted July 24, 2017. -
Impacts of Microbial Chemical Interactions on Marine Plankton Physiology
AN ABSTRACT OF THE DISSERTATION OF Eric R. Moore for the degree of Doctor of Philosophy in Microbiology presented on December 12, 2019. Title: Impacts of Microbial Chemical Interactions on Marine Plankton Physiology Abstract approved: ______________________________________________________ Kimberly H. Halsey The bioavailability of chemical compounds in the marine environment fundamentally influences the growth and physiology of microorganisms. Organic and inorganic chemicals that are produced by some marine plankton can be consumed by other plankton for energy production, growth, or to initiate essential physiological processes. Cultures of the diatom Thalassiosira pseudonana, a model phytoplankton species, and Pelagibacter ubique, the most abundant heterotrophic bacteria in the ocean, were used to study how microbial chemical interactions influence the physiology of these two groups of co-occurring marine plankton that have substantial roles in the carbon cycle. Specifically, the production and consumption of volatile organic compounds (VOCs) were studied in monocultures and co-cultures of these plankton. In co-culture, Pelagibacter benefited from a wide variety of VOCs produced by T. pseudonana, and heterotrophic consumption of VOCs taxed carbon fixation in the diatom by promoting the loss of diffusible VOCs from the primary producer. In this interaction, VOCs were shown to be a large fraction (ca. 20%) of fixed carbon that is transferred to heterotrophic bacteria, suggesting that VOC cycling by phytoplankton and bacteria is a significant component of the global carbon cycle. Acetone and isoprene, VOCs with important roles in atmospheric processes, were two of the VOCs utilized by Pelagibacter in co-culture. Pelagibacter metabolized acetone and isoprene at rates sufficient to explain discrepancies in measured fluxes of these compounds between the ocean and atmosphere, demonstrating that heterotrophic bacteria have significant control over the emission of VOCs from the ocean. -
Diversity in the Genus Skeletonema (Bacillariophyceae): Iii
/. Phycol. 43, 156-170 (2007) © 2007 by the Phycological Society of America DOI: 10.111 l/j.l529-8817.2006.00305.x DIVERSITY IN THE GENUS SKELETONEMA (BACILLARIOPHYCEAE): III. PHYLOGENETIC POSITION AND MORPHOLOGICAL VARIABILITY OF SKELETONEMA COSTATUM AND SKELETONEMA GREVILLEI, WITH THE DESCRIPTION OF SKELETONEMA ARDENS SP NOV.1 Diana Sarno2, Wiebe H. C. F. Kooistra, Sergio Balzano Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy Paul E. Hargraves Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island 02882-1197, USA Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy Skeletonema costatum (Grev.) Cleve emend. tional Center for Cultures of Marine Phytoplankton; Zingone et Sarno and S. grevillei Sarno et Zingone CSIRO, Commonwealth Scientific and Industrial were known only from the type material collected Research Organisation; FPP, fultoportula process; from Hong Kong waters more than a century ago. GTR, general time reversible; I FPP, intercalary ful- Both species have now been collected as live mate- toportula process; IRP, intercalary rimoportula; rial, and their morphology and phylogenetic posi- IRPP, intercalary rimoportula process; ML, maxi- tion are investigated in this study. Eight Skeletonema mum likelihood; MP, maximum parsimony; NJ, strains isolated from Florida, USA; Uruguay; and neighbor joining; RELL, resampling of estimated Brazil are attributed to S. costatum, while one In likelihood; SZN, Stazione Zoologica A. Dohrn of strain from Oman is ascribed to S. grevillei based Naples; TFPP, terminal fultoportula process; TRP, on morphological similarity to the type material of terminal rimoportula; TRPP, terminal rimoportula these species. In addition, a new Skeletonema spe- process cies, S. ardens Sarno et Zingone, is described for a strain from Singapore and two from northern Aus- tralian waters. -
Identification of Calcification Transcripts of Emiliania Huxleyi And
2 Identification of Potential Biomineralization Linked Genes in Emiliania huxleyi via High-Throughput Sequencing with RT-PCR Verification By Chrystal Grace Schroepfer Research Thesis Submitted for the Masters Degree in Biological Sciences Department of Biological Science, College of Science and Mathematics California State University San Marcos November 2011 3 Table of Contents Table of Contents . 2 Acknowledgements . .. 3 Abstract . 4 Introduction . 5 Coccolithophorids . 5 Biomineralization and Coccolithogenesis . 7 Sequence Profiling . 10 Methods and Materials . 14 Strains and Growth Conditions . 14 Scanning Electron Microscopy . 15 2+ - Ca Titration Estimates of CaCO3 . 16 Measuring Photosynthesis Rates . 17 RNA Extraction . 18 RNA Gel Electrophoresis . 20 Experion RNA Electrophoresis . 20 RNA Sequencing . 21 Primer Design . 23 Real Time RT-PCR . 23 Annotation . 26 Results . 27 Cell Growth . 27 Scanning Electron Microscopy . 29 Calcium Titration . 31 Photosynthesis Rates . 34 Solexa Profiles . 35 RNA Extraction & Gel Electrophoresis . 38 Comparative Reverse Transcriptase Real-Time PCR . 43 Annotation . 52 Discussion . 61 References . 77 Appendices. 86 4 Acknowledgements I would like to thank my committee members Dr. Betsy Read, Dr. Matthew Escobar and Dr. Jose Mendoza for their guidance and support throughout the thesis completion process. I would like to thank my parents, John and Mary Schroepfer, my closest friends, Steve and Jeanne Bâby, Gearald Denny, Tom Bento and my Church Family at Bostonia Church of Christ for their love, encouragement and support over the years. To my brothers, David and Jason Schroepfer, thanks for all the laughs. Lastly, I would like to thank all my friends that I made from the laboratory: Estela Carrasco, James Fuller, Jessica Garza, Karina Gonzalez, Latha Kannan, Ray Liang, Tien Nguyen, Alyse Prichard, Analisa Sarno, Andrew Segina, Christina Vanderwerken and William Whalen for their help and all the fun times we shared together. -
Phd Thesis the Taxa Are Listed Alphabetically Within the Bacteriastrum Genera and Each of the Chaetoceros Generic Subdivision (Subgenera)
FACULTY OF SCIENCE DEPARTMENT OF GEOLOGY INTERDISCIPLINARY DOCTORAL STUDY IN OCEANOLOGY Sunčica Bosak TAXONOMY AND ECOLOGY OF THE PLANKTONIC DIATOM FAMILY CHAETOCEROTACEAE (BACILLARIOPHYTA) FROM THE ADRIATIC SEA DOCTORAL THESIS Zagreb, 2013 PRIRODOSLOVNO-MATEMATIČKI FAKULTET GEOLOŠKI ODSJEK INTERDISCIPLINARNI DOKTORSKI STUDIJ IZ OCEANOLOGIJE Sunčica Bosak TAKSONOMIJA I EKOLOGIJA PLANKTONSKIH DIJATOMEJA IZ PORODICE CHAETOCEROTACEAE (BACILLARIOPHYTA) U JADRANSKOM MORU DOKTORSKI RAD Zagreb, 2013 FACULTY OF SCIENCE DEPARTMENT OF GEOLOGY INTERDISCIPLINARY DOCTORAL STUDY IN OCEANOLOGY Sunčica Bosak TAXONOMY AND ECOLOGY OF THE PLANKTONIC DIATOM FAMILY CHAETOCEROTACEAE (BACILLARIOPHYTA) FROM THE ADRIATIC SEA DOCTORAL THESIS Supervisors: Dr. Diana Sarno Prof. Damir Viličić Zagreb, 2013 PRIRODOSLOVNO-MATEMATIČKI FAKULTET GEOLOŠKI ODSJEK INTERDISCIPLINARNI DOKTORSKI STUDIJ IZ OCEANOLOGIJE Sunčica Bosak TAKSONOMIJA I EKOLOGIJA PLANKTONSKIH DIJATOMEJA IZ PORODICE CHAETOCEROTACEAE (BACILLARIOPHYTA) U JADRANSKOM MORU DOKTORSKI RAD Mentori: Dr. Diana Sarno Prof. dr. sc. Damir Viličić Zagreb, 2013 This doctoral thesis was made in the Division of Biology, Faculty of Science, University of Zagreb under the supervision of Prof. Damir Viličić and in one part in Stazione Zoologica Anton Dohrn in Naples, Italy under the supervision of Diana Sarno. The doctoral thesis was made within the University interdisciplinary doctoral study in Oceanology at the Department of Geology, Faculty of Science, University of Zagreb. The presented research was mainly funded by the Ministry of Science, Education and Sport of the Republic of Croatia Project No. 119-1191189-1228 and partially by the two transnational access projects (BIOMARDI and NOTCH) funded by the European Community – Research Infrastructure Action under the FP7 ‘‘Capacities’’ Specific Programme (Ref. ASSEMBLE grant agreement no. 227799). ACKNOWLEDGEMENTS ... to my Croatian supervisor and my boss, Prof. -
Microalgae, a Potential Natural Functional Food Source – a Review
Pol. J. Food Nutr. Sci., 2017, Vol. 67, No. 4, pp. 251–263 DOI: 10.1515/pjfns-2017-0017 http://journal.pan.olsztyn.pl Review article Section: Food Quality and Functionality Microalgae, a Potential Natural Functional Food Source – a Review Angélica Villarruel-López1, Felipe Ascencio2, Karla Nuño3* 1Laboratorio de Microbiología Sanitaria, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Marcelino García Barragán No. 1421, Guadalajara, Jalisco 44430, México 2Unidad de Patología Marina, Centro de Investigaciones Biológicas del Noroeste, Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, México 3División de Ciencias de la Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Av. Periférico Norte No. 555, Tonalá, Jalisco 48525, México Key words: microalgae, polysaccharides, fatty acids, pigments, vitamins Microalgae are a group of microorganisms used in aquaculture. The number of studies regarding their use as a functional food has recently in- creased due to their nutritional and bioactive compounds such as polysaccharides, fatty acids, bioactive peptides, and pigments. Specifi c microalgal glucans (polysaccharides) can activate the immune system or exert antioxidant and hypocholesterolemic effects. The importance of algal lipids is based on their polyunsaturated fatty acids, their anti-infl ammatory effects, their modulation of lipid pathways, and their neuroprotective action. Microalgae peptides can bind or inhibit specifi c receptors in cardiovascular diseases and cancer, while carotenoids can act as potent antioxidants. The benefi cial biological activity will depend on the specifi c microalga and its chemical constituents. Therefore, knowledge of the composition of microalgae would aid in identifying, selecting, and studying their functional effects. -
Thalassiosira Community Composition and Diversity in Narragansett Bay
University of Rhode Island DigitalCommons@URI Open Access Master's Theses 2016 Thalassiosira Community Composition and Diversity in Narragansett Bay Sarah Flickinger University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/theses Recommended Citation Flickinger, Sarah, "Thalassiosira Community Composition and Diversity in Narragansett Bay" (2016). Open Access Master's Theses. Paper 880. https://digitalcommons.uri.edu/theses/880 This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. THALASSIOSIRA COMMUNITY COMPOSITION AND DIVERSITY IN NARRAGANSETT BAY BY SARAH FLICKINGER A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN OCEANOGRAPHY UNIVERSITY OF RHODE ISLAND 2016 MASTER OF SCIENCE THESIS OF SARAH FLICKINGER APPROVED: Thesis Committee: Major Professor Tatiana Rynearson Candace Oviatt Bethany Jenkins Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2016 ABSTRACT Diatoms contribute 40-45% of marine primary production. Understanding the contributions of individual species to diatom communities is important in light of warming ocean waters and changing food webs. Here, the diatom genus Thalassiosira, which exhibits irregular pulses in abundance in Narragansett Bay, is examined using data from the Narragansett Bay Long Term Phytoplankton Time Series. High-throughput sequencing (HTS) at the highly-variable V4 region of the 18S ribosomal gene identified fourteen Thalassiosira taxa in monthly samples over a six- year time period (December 2008-December 2014), seven of which had not previously been identified in this time series. -
Temporal Variation of Skeletonema Community Composition from a Long-Term Time Series in Narragansett Bay Identified Using High-Throughput DNA Sequencing
Vol. 556: 1–16, 2016 MARINE ECOLOGY PROGRESS SERIES Published September 8 doi: 10.3354/meps11843 Mar Ecol Prog Ser OPENPEN FEATURE ARTICLE ACCESSCCESS Temporal variation of Skeletonema community composition from a long-term time series in Narragansett Bay identified using high-throughput DNA sequencing Kelly L. Canesi1,2, Tatiana A. Rynearson1,* 1Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA 2Present Address: Gordon and Betty Moore Foundation, Palo Alto, CA 94304, USA ABSTRACT: Phytoplankton species cannot always be identified by their morphology using light microscopy, which makes inferring the ecological and biogeochem- ical importance of individual species a difficult task. Here, a combination of microscopy and high-through- put DNA sequencing was used to examine morphologi- cally cryptic and pseudo-cryptic species in the diatom genus Skeletonema from the Long-Term Plankton Time Series in Narragansett Bay (NBay), where Skele- tonema is ecologically important, comprising up to 99% of microplankton cells in surface waters. The 28S rDNA from mock phytoplankton communities compris- ing known species was amplified and sequenced using newly developed Skeletonema-specific primers. The relative abundances of species in the sequence data did not match expected abundances, suggesting that 28S copy number can vary greatly, even among closely related diatom species. The 28S rDNA was also ampli- fied from 75 field samples collected from 2008 to 2013. High-throughout DNA sequencing revealed seasonal varia- A total of 7 Skeletonema species were identified, in- tion (2008–2013) in morphologically cryptic species diversity cluding 5 newly detected species from NBay. Skele- (line, 4-point moving average) in the ecologically important diatom genus (percent composition among tonema species composition was highly seasonal and Skeletonema species shown in different colors). -
Variability Approaching the Thermal Limits Can Drive Diatom Community Dynamics
University of Rhode Island DigitalCommons@URI Graduate School of Oceanography Faculty Publications Graduate School of Oceanography 3-2-2020 Variability approaching the thermal limits can drive diatom community dynamics Stephanie Anderson Tatiana A. Rynearson Follow this and additional works at: https://digitalcommons.uri.edu/gsofacpubs Limnol. Oceanogr. 9999, 2020, 1–13 © 2020 The Authors. Limnology and Oceanography published by Wiley Periodicals, Inc. on behalf of Association for the Sciences of Limnology and Oceanography. doi: 10.1002/lno.11430 Variability approaching the thermal limits can drive diatom community dynamics Stephanie I. Anderson , Tatiana A. Rynearson * Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island Abstract Organismal distributions are largely mediated by temperature, suggesting thermal trait variability plays a key role in defining species’ niches. We employed a trait-based approach to better understand how inter- and intra- specific thermal trait variability could explain diatom community dynamics using 24 strains from 5 species in the diatom genus Skeletonema, isolated from Narragansett Bay (NBay), where this genus can comprise up to 99% of the microplankton. Strain-specific thermal reaction norms were generated using growth rates obtained at temperatures ranging from −2Cto36C. Comparison of thermal reaction norms revealed inter- and intraspe- cific similarities in the thermal optima, but significant differences approaching the thermal limits. Cellular ele- mental composition was determined for two thermally differentiated species and again, the most variation occurred approaching the thermal limits. To determine the potential impact of interspecific variability on com- munity composition, a species succession model was formulated utilizing each species’ empirically determined thermal reaction norm and historical temperature data from NBay.