Article - Discoveries
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RI Equisetopsida and Lycopodiopsida.Indd
IIntroductionntroduction byby FFrancisrancis UnderwoodUnderwood Rhode Island Equisetopsida, Lycopodiopsida and Isoetopsida Special Th anks to the following for giving permission for the use their images. Robbin Moran New York Botanical Garden George Yatskievych and Ann Larson Missouri Botanical Garden Jan De Laet, plantsystematics.org Th is pdf is a companion publication to Rhode Island Equisetopsida, Lycopodiopsida & Isoetopsida at among-ri-wildfl owers.org Th e Elfi n Press 2016 Introduction Formerly known as fern allies, Horsetails, Club-mosses, Fir-mosses, Spike-mosses and Quillworts are plants that have an alternate generation life-cycle similar to ferns, having both sporophyte and gametophyte stages. Equisetopsida Horsetails date from the Devonian period (416 to 359 million years ago) in earth’s history where they were trees up to 110 feet in height and helped to form the coal deposits of the Carboniferous period. Only one genus has survived to modern times (Equisetum). Horsetails Horsetails (Equisetum) have jointed stems with whorls of thin narrow leaves. In the sporophyte stage, they have a sterile and fertile form. Th ey produce only one type of spore. While the gametophytes produced from the spores appear to be plentiful, the successful reproduction of the sporophyte form is low with most Horsetails reproducing vegetatively. Lycopodiopsida Lycopodiopsida includes the clubmosses (Dendrolycopodium, Diphasiastrum, Lycopodiella, Lycopodium , Spinulum) and Fir-mosses (Huperzia) Clubmosses Clubmosses are evergreen plants that produce only microspores that develop into a gametophyte capable of producing both sperm and egg cells. Club-mosses can produce the spores either in leaf axils or at the top of their stems. Th e spore capsules form in a cone-like structures (strobili) at the top of the plants. -
PDF, Also Known As Version of Record License (If Available): CC by Link to Published Version (If Available): 10.1111/Nph.14553
Coudert, Y., Bell, N., Edelin, C., & Harrison, C. J. (2017). Multiple innovations underpinned branching form diversification in mosses. New Phytologist, 215(2), 840-850. https://doi.org/10.1111/nph.14553 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1111/nph.14553 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Wiley at http://onlinelibrary.wiley.com/doi/10.1111/nph.14553/full. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Multiple innovations underpinned branching form diversification in mosses Yoan Coudert1,2,3, Neil E. Bell4, Claude Edelin5 and C. Jill Harrison1,3 1School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK; 2Institute of Systematics, Evolution and Biodiversity, CNRS, Natural History Museum Paris, UPMC Sorbonne University, EPHE, 57 rue Cuvier, 75005 Paris, France; 3Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK; 4Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR, UK; 5UMR 3330, UMIFRE 21, French Institute of Pondicherry, CNRS, 11 Saint Louis Street, Pondicherry 605001, India Summary Author for correspondence: Broad-scale evolutionary comparisons have shown that branching forms arose by con- C. -
Notes on Some Species of Diphasiastrum
Preslia, Praha, 47: 232 - 240, 1975 Notes on some species of Diphasiastrum Poznamky k n~kterym druhum rodu Dipha11iaatrum Josef Holub HOLUB J. (1975): Notes on some species of Diphasiastrum. - Preslia, Praha, 47: 232- 240. Taxonomic and nomenclatural problems of some species of Diphasiastrum HOLUB are discussed. A special attention is pa.id to the interspecies D. / X / issleri and D. / x / zei leri. Original plants of D. / x / issleri correspond to the combination D. alpinum - D. complanatum. Plants corresponding to the combination D. alpinum - D. tristachyum have been collected in the ~umava Mts. Some taxa described from the subarctic regions of Europe and North America are shown to belong most probably to the neglected interspecies D. / x / zeileri. Botanical I nstitute, Czechoslovak Academy of Sciences, 25~ 43 Prithonice, Czecho.,lovakia. INTRODUCTION This is a second part of my study of the new genus Diphasiastrum (HOLUB 1975), which could not be published in this journal in its entirety. Notes on taxonomy and nomenclature are selected from materials gathered originally for my "Catalogue of Czechoslovak vascular plants". With regard to the character of that work the present observations summarize the results of my own studies and suggests problems to be studied in the future. OBSERVATIONS f!.iphasiastrum alpinum (L.) HOLUB Two varieties have been described in this species (both under the name Lycopodium alpi nttm L.): var. thellungii HERTER from Switzerland and var. planiramulosum TAKEDA from Japan. Both these taxa, especially the first one, require a taxonomic revision; the possibility cannot be exclu<led that they are conspecific with D. / x / issleri. -
Flora of New Zealand Mosses
FLORA OF NEW ZEALAND MOSSES BRACHYTHECIACEAE A.J. FIFE Fascicle 46 – JUNE 2020 © Landcare Research New Zealand Limited 2020. Unless indicated otherwise for specific items, this copyright work is licensed under the Creative Commons Attribution 4.0 International licence Attribution if redistributing to the public without adaptation: "Source: Manaaki Whenua – Landcare Research" Attribution if making an adaptation or derivative work: "Sourced from Manaaki Whenua – Landcare Research" See Image Information for copyright and licence details for images. CATALOGUING IN PUBLICATION Fife, Allan J. (Allan James), 1951- Flora of New Zealand : mosses. Fascicle 46, Brachytheciaceae / Allan J. Fife. -- Lincoln, N.Z. : Manaaki Whenua Press, 2020. 1 online resource ISBN 978-0-947525-65-1 (pdf) ISBN 978-0-478-34747-0 (set) 1. Mosses -- New Zealand -- Identification. I. Title. II. Manaaki Whenua-Landcare Research New Zealand Ltd. UDC 582.345.16(931) DC 588.20993 DOI: 10.7931/w15y-gz43 This work should be cited as: Fife, A.J. 2020: Brachytheciaceae. In: Smissen, R.; Wilton, A.D. Flora of New Zealand – Mosses. Fascicle 46. Manaaki Whenua Press, Lincoln. http://dx.doi.org/10.7931/w15y-gz43 Date submitted: 9 May 2019 ; Date accepted: 15 Aug 2019 Cover image: Eurhynchium asperipes, habit with capsule, moist. Drawn by Rebecca Wagstaff from A.J. Fife 6828, CHR 449024. Contents Introduction..............................................................................................................................................1 Typification...............................................................................................................................................1 -
Bibliography of Publications 1974 – 2019
W. SZAFER INSTITUTE OF BOTANY POLISH ACADEMY OF SCIENCES Ryszard Ochyra BIBLIOGRAPHY OF PUBLICATIONS 1974 – 2019 KRAKÓW 2019 Ochyraea tatrensis Váňa Part I. Monographs, Books and Scientific Papers Part I. Monographs, Books and Scientific Papers 5 1974 001. Ochyra, R. (1974): Notatki florystyczne z południowo‑wschodniej części Kotliny Sandomierskiej [Floristic notes from southeastern part of Kotlina Sandomierska]. Zeszyty Naukowe Uniwersytetu Jagiellońskiego 360 Prace Botaniczne 2: 161–173 [in Polish with English summary]. 002. Karczmarz, K., J. Mickiewicz & R. Ochyra (1974): Musci Europaei Orientalis Exsiccati. Fasciculus III, Nr 101–150. 12 pp. Privately published, Lublini. 1975 003. Karczmarz, K., J. Mickiewicz & R. Ochyra (1975): Musci Europaei Orientalis Exsiccati. Fasciculus IV, Nr 151–200. 13 pp. Privately published, Lublini. 004. Karczmarz, K., K. Jędrzejko & R. Ochyra (1975): Musci Europaei Orientalis Exs‑ iccati. Fasciculus V, Nr 201–250. 13 pp. Privately published, Lublini. 005. Karczmarz, K., H. Mamczarz & R. Ochyra (1975): Hepaticae Europae Orientalis Exsiccatae. Fasciculus III, Nr 61–90. 8 pp. Privately published, Lublini. 1976 006. Ochyra, R. (1976): Materiały do brioflory południowej Polski [Materials to the bry‑ oflora of southern Poland]. Zeszyty Naukowe Uniwersytetu Jagiellońskiego 432 Prace Botaniczne 4: 107–125 [in Polish with English summary]. 007. Ochyra, R. (1976): Taxonomic position and geographical distribution of Isoptery‑ giopsis muelleriana (Schimp.) Iwats. Fragmenta Floristica et Geobotanica 22: 129–135 + 1 map as insertion [with Polish summary]. 008. Karczmarz, K., A. Łuczycka & R. Ochyra (1976): Materiały do flory ramienic środkowej i południowej Polski. 2 [A contribution to the flora of Charophyta of central and southern Poland. 2]. Acta Hydrobiologica 18: 193–200 [in Polish with English summary]. -
Flora Mediterranea 26
FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M. -
The Ferns and Their Relatives (Lycophytes)
N M D R maidenhair fern Adiantum pedatum sensitive fern Onoclea sensibilis N D N N D D Christmas fern Polystichum acrostichoides bracken fern Pteridium aquilinum N D P P rattlesnake fern (top) Botrychium virginianum ebony spleenwort Asplenium platyneuron walking fern Asplenium rhizophyllum bronze grapefern (bottom) B. dissectum v. obliquum N N D D N N N R D D broad beech fern Phegopteris hexagonoptera royal fern Osmunda regalis N D N D common woodsia Woodsia obtusa scouring rush Equisetum hyemale adder’s tongue fern Ophioglossum vulgatum P P P P N D M R spinulose wood fern (left & inset) Dryopteris carthusiana marginal shield fern (right & inset) Dryopteris marginalis narrow-leaved glade fern Diplazium pycnocarpon M R N N D D purple cliff brake Pellaea atropurpurea shining fir moss Huperzia lucidula cinnamon fern Osmunda cinnamomea M R N M D R Appalachian filmy fern Trichomanes boschianum rock polypody Polypodium virginianum T N J D eastern marsh fern Thelypteris palustris silvery glade fern Deparia acrostichoides southern running pine Diphasiastrum digitatum T N J D T T black-footed quillwort Isoëtes melanopoda J Mexican mosquito fern Azolla mexicana J M R N N P P D D northern lady fern Athyrium felix-femina slender lip fern Cheilanthes feei net-veined chain fern Woodwardia areolata meadow spike moss Selaginella apoda water clover Marsilea quadrifolia Polypodiaceae Polypodium virginanum Dryopteris carthusiana he ferns and their relatives (lycophytes) living today give us a is tree shows a current concept of the Dryopteridaceae Dryopteris marginalis is poster made possible by: { Polystichum acrostichoides T evolutionary relationships among Onocleaceae Onoclea sensibilis glimpse of what the earth’s vegetation looked like hundreds of Blechnaceae Woodwardia areolata Illinois fern ( green ) and lycophyte Thelypteridaceae Phegopteris hexagonoptera millions of years ago when they were the dominant plants. -
Lycopodiaceae Clubmoss Family
Lycopodiaceae Page | 46 clubmoss family Upwards of 15 genera comprise this ancient family. Perennial herbs, they somewhat resemble coarse mosses. The solitary sporangia are borne either in a terminal strobilus or are axillary with leaves. Spores are of equal size. In Nova Scotia we have four genera. A. Rhizomes absent; upright stems clustered; axillary sporangia; spores pitted. Huperzia aa. Rhizomes present; upright shoots alternate; sporangia aggregated into B terminal strobili, spores with netlike pattern. B. Strobili on leafy peduncles; mainly of wetland habitats. Lycopodiella bb. Strobili sessile or on peduncles with remote scant leaves; mainly of C dry upland places. C. Tips of stems 5–12mm in diameter; leaves in 6 ranks or Lycopodium more; leaves bristly, free for most of their length, not scalelike. cc. Distal shoots 2–6mm in diameter; leaves in 4–6 ranks, Diphasiastrum strongly overlapping (scalelike) and appressed along the stem with only tips free. Diphasiastrum Holub There are 15–20 species worldwide; numerous hybrids are possible. Generally these clubmosses are northern or subarctic in distribution. Nova Scotia has four species. Rhizomes bear sparse leaves that are reduced to scales, rooting from the lower surfaces. Upright stems are flattened or angled, with 2–5 branches. Leaves are arranged in four ranks and of two sizes. Sporophylls are smaller than unspecialized leaves. 1-7 Lycopodiaceae Key to species A. Plants < 12 cm tall; strobili sessile. Diphasiastrum sitchense Page | 47 aa. Stems 8–50cm; strobili on peduncles. B B. Branches square or angled, bluish. D. tristachyum bb. Branches flat; green. C C. Lateral branches irregular, annual winter bud constrictions D. -
Exploring Lycopodiaceae Endophytes, Dendrolycopodium
EXPLORING LYCOPODIACEAE ENDOPHYTES, DENDROLYCOPODIUM SYSTEMATICS, AND THE FUTURE OF FERN MODEL SYSTEMS A Thesis Presented to the Faculty of the Graduate School Of Cornell University In Partial Fulfillment of the Requirements for the Degree of Master of Science By Alaina Rousseau Petlewski May 2020 ©2020 Alaina Rousseau Petlewski i ABSTRACT This thesis consists of three chapters addressing disparate topics in seed-free plant biology. Firstly, I begin to describe the endophyte communities of lycophytes by identifying the culturable endophytes of five Lycopodiaceae species. Microbial endophytes are integral factors in plant evolution, ecology, and physiology. However, the endophyte communities of all major groups of land plants have yet to be characterized. Secondly, I begin to re-evaluate the systematics of a historically perplexing genus, Dendrolycopodium (Lycopodiaceae). Lastly, I assess the status of developing fern model systems and discuss possible future directions for this work. ii BIOGRAPHICAL SKETCH Alaina was born in 1995 near Dallas, TX, but was largely raised in central California. In high school, she developed a love of plants and chemistry. She graduated summa cum laude from Humboldt State University in 2017 with a B.S. in botany and minor in chemistry. After graduating from Cornell, she plans to move back to the West Coast. She aspires to find a way to combine her love of plants and admiration for the arts, have a garden, be kind, share her knowledge, and raise poodles with her partner. iii ACKNOWLEDGEMENTS I would like to thank my advisor Fay-Wei Li and committee members Chelsea Specht and Robert Raguso, for their advisement on this work and for supporting me beyond my research pursuits by helping me to discover and act on what is right for me. -
Lycopodiaceae) Weston Testo University of Vermont
University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2018 Devonian origin and Cenozoic radiation in the clubmosses (Lycopodiaceae) Weston Testo University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Systems Biology Commons Recommended Citation Testo, Weston, "Devonian origin and Cenozoic radiation in the clubmosses (Lycopodiaceae)" (2018). Graduate College Dissertations and Theses. 838. https://scholarworks.uvm.edu/graddis/838 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. DEVONIAN ORIGIN AND CENOZOIC RADIATION IN THE CLUBMOSSES (LYCOPODIACEAE) A Dissertation Presented by Weston Testo to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Plant Biology January, 2018 Defense Date: November 13, 2017 Dissertation Examination Committee: David S. Barrington, Ph.D., Advisor Ingi Agnarsson, Ph.D., Chairperson Jill Preston, Ph.D. Cathy Paris, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Together with the heterosporous lycophytes, the clubmoss family (Lycopodiaceae) is the sister lineage to all other vascular land plants. Given the family’s important position in the land-plant phylogeny, studying the evolutionary history of this group is an important step towards a better understanding of plant evolution. Despite this, little is known about the Lycopodiaceae, and a well-sampled, robust phylogeny of the group is lacking. -
New and Noteworthy Additions to the Arkansas Fern Flora
Peck, J.H. 2011. New and noteworthy additions to the Arkansas fern flora. Phytoneuron 2011-30: 1–33. NEW AND NOTEWORTHY ADDITIONS TO THE ARKANSAS FERN FLORA JAMES H. PECK Department Biology University of Arkansas at Little Rock 2801 S. University Ave. Little Rock, AR 72204 [email protected] ABSTRACT Since 1995, 11 fern taxa have been added to the Arkansas flora as new and native, including Asplenium montanum , A. ruta-muraria , A. septentrianale , A. ×trudellii , Athyrium angustum , Azolla caroliniana , Dryopteris goldiana , D. celsa × goldiana , Marsilea macropoda , Palhinhaea cernua , and Trichomanes intracatum . Of the reported Arkansas native ferns, one was deleted (Azolla caroliniana ), being subsumed by Azolla mexicana and now correctly known as Azolla microphylla . Since 1995, 20 fern taxa have been added to the Arkansas fern flora as new and naturalized, including Arachnioides simplicior , Athyrium nipponicum ‘Pictum’, Cyrtomium falcatum , C. fortunei , Dryopteris erythrospora , Hypolepis tenuifolia , Marsilea mutica , M. quadrifolia , Matteuccia struthiopteris , Nephrolepis exaltata , Polystichum tsus-sinense , Phegopteris decursive-pinnata , Salvinia minima , S. molesta , Selaginella braunii , S. kraussiana , S. k. ‘Aurea’, S. k. ‘Brownii’, S. k. ‘Goldtips’, and S. uncinata . Of the reported Arkansas naturalized ferns, one was deleted (C. fortunei ), being without a known voucher. There are now 97 native and 24 naturalized fern taxa known and documented in the Arkansas fern flora. The total Arkansas fern flora is now 121 taxa documented with 3019 county-level occurrence records. Noteworthy update records and comments are reported for 79 of 97 Arkansas native species and 25 Arkansas naturalized species. KEY WORDS : Arkansas, ferns, county distribution Over the last 30 years, studies have been conducted to document the diversity and abundance of the Arkansas fern [pteridophyte] flora. -
Arctic Biodiversity Assessment
310 Arctic Biodiversity Assessment Purple saxifrage Saxifraga oppositifolia is a very common plant in poorly vegetated areas all over the high Arctic. It even grows on Kaffeklubben Island in N Greenland, at 83°40’ N, the most northerly plant locality in the world. It is one of the first plants to flower in spring and serves as the territorial flower of Nunavut in Canada. Zackenberg 2003. Photo: Erik Thomsen. 311 Chapter 9 Plants Lead Authors Fred J.A. Daniëls, Lynn J. Gillespie and Michel Poulin Contributing Authors Olga M. Afonina, Inger Greve Alsos, Mora Aronsson, Helga Bültmann, Stefanie Ickert-Bond, Nadya A. Konstantinova, Connie Lovejoy, Henry Väre and Kristine Bakke Westergaard Contents Summary ..............................................................312 9.4. Algae ..............................................................339 9.1. Introduction ......................................................313 9.4.1. Major algal groups ..........................................341 9.4.2. Arctic algal taxonomic diversity and regionality ..............342 9.2. Vascular plants ....................................................314 9.4.2.1. Russia ...............................................343 9.2.1. Taxonomic categories and species groups ....................314 9.4.2.2. Svalbard ............................................344 9.2.2. The Arctic territory and its subdivision .......................315 9.4.2.3. Greenland ...........................................344 9.2.3. The flora of the Arctic ........................................316