Elemental Sulfur
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
IR-3 Elements and Groups of Elements (March 04)
1 IR-3 Elements and Groups of Elements (March 04) CONTENTS IR-3.1 Names and symbols of atoms IR-3.1.1 Systematic nomenclature and symbols for new elements IR-3.2 Indication of mass, charge and atomic number using indexes (subscripts and superscripts) IR-3.3 Isotopes IR-3.3.1 Isotopes of an element IR-3.3.2 Isotopes of hydrogen IR-3.4 Elements (or elementary substances) IR-3.4.1 Name of an element of infinite or indefinite molecular formula or structure IR-3.4.2 Name of allotropes of definite molecular formula IR-3.5 Allotropic modifications IR-3.5.1 Allotropes IR-3.5.2 Allotropic modifications constituted of discrete molecules IR-3.5.3 Crystalline allotropic modifications of an element IR-3.5.4 Solid amorphous modifications and commonly recognized allotropes of indefinite structure IR-3.6 Groups of elements IR-3.6.1 Groups of elements in the Periodic Table and their subdivisions IR-3.6.2 Collective names of groups of like elements IR-3.7 References IR-3.1 NAMES AND SYMBOLS OF ATOMS The origins of the names of some chemical elements, for example antimony, are lost in antiquity. Other elements recognised (or discovered) during the past three centuries were named according to various associations of origin, physical or chemical properties, etc., and more recently to commemorate the names of eminent scientists. In the past, some elements were given two names because two groups claimed to have discovered them. To avoid such confusion it was decided in 1947 that after the existence of a new element had been proved beyond reasonable doubt, discoverers had the right to IUPACsuggest a nameProvisional to IUPAC, but that only Recommendations the Commission on Nomenclature of Inorganic Chemistry (CNIC) could make a recommendation to the IUPAC Council to make the final Page 1 of 9 DRAFT 2 April 2004 2 decision. -
Appendix 1: Io's Hot Spots Rosaly M
Appendix 1: Io's hot spots Rosaly M. C. Lopes,Jani Radebaugh,Melissa Meiner,Jason Perry,and Franck Marchis Detections of plumes and hot spots by Galileo, Voyager, HST, and ground-based observations. Notes and sources . (N) NICMOS hot spots detected by Goguen etal . (1998). (D) Hot spots detected by C. Dumas etal . in 1997 and/or 1998 (pers. commun.). Keck are hot spots detected by de Pater etal . (2004) and Marchis etal . (2001) from the Keck telescope using Adaptive Optics. (V, G, C) indicate Voyager, Galileo,orCassini detection. Other ground-based hot spots detected by Spencer etal . (1997a). Galileo PPR detections from Spencer etal . (2000) and Rathbun etal . (2004). Galileo SSIdetections of hot spots, plumes, and surface changes from McEwen etal . (1998, 2000), Geissler etal . (1999, 2004), Kezthelyi etal. (2001), and Turtle etal . (2004). Galileo NIMS detections prior to orbit C30 from Lopes-Gautier etal . (1997, 1999, 2000), Lopes etal . (2001, 2004), and Williams etal . (2004). Locations of surface features are approximate center of caldera or feature. References de Pater, I., F. Marchis, B. A. Macintosh, H. G. Rose, D. Le Mignant, J. R. Graham, and A. G. Davies. 2004. Keck AO observations of Io in and out of eclipse. Icarus, 169, 250±263. 308 Appendix 1: Io's hot spots Goguen, J., A. Lubenow, and A. Storrs. 1998. HST NICMOS images of Io in Jupiter's shadow. Bull. Am. Astron. Assoc., 30, 1120. Geissler, P. E., A. S. McEwen, L. Keszthelyi, R. Lopes-Gautier, J. Granahan, and D. P. Simonelli. 1999. Global color variations on Io. Icarus, 140(2), 265±281. -
Sulfur Oxygenase Reductases - a Structural and Biochemical Perspective
Sulfur Oxygenase Reductases - A Structural and Biochemical Perspective vom Fachbereich Biologie der Technischen Universität Darmstadt zur Erlangung des akademischen Grades eines Doctor rerum naturalium genehmigte Dissertation vorgelegt von Dipl. Biol. Andreas Veith aus Seeheim-Jugenheim 1. Referent: Dr. habil. Arnulf Kletzin 2. Referent: Prof. Dr. Felicitas Pfeifer Eingereicht am 21.07.2011 Tag der mündlichen Prüfung: 16.09.2011 Darmstadt 2011 D 17 "Trying to determine the structure of a protein by UV spectroscopy was like trying to determine the structure of a piano by listening to the sound it made while being dropped down a flight of stairs." -- Francis Crick Die vorliegende Arbeit wurde als Promotionsarbeit am Institut für Mikrobiologie und Genetik des Fachbereichs Biologie der Technischen Universität Darmstadt unter Leitung von Herrn Dr. Arnulf Kletzin in der Abteilung von Frau Prof. Felicitas Pfeifer im Zeitraum von Mai 2007 bis Juli 2011 angefertigt. Ein Teil der vorliegenden Arbeit wurde in Portugal am Instituto de Tecnologia Químicia e Biológica, Universidade Nova de Lisboa (ITQB/UNL), Oeiras, Portugal in der Arbeitsgruppe von Dr. Carlos Frazão, Dr. Cláudio M. Gomes und Prof. Miguel Teixeira im Rahmen einer Kooperation durchgeführt. Ehrenwörtliche Erklärung Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit selbstständig angefertigt habe. Sämtliche aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit wurde bisher keiner anderen Prüfungsbehörde vorgelegt und noch nicht veröffentlicht. Darmstadt, den 21.07.2011 Andreas Veith Acknowledgements First and foremost I would like to thank my supervisor Dr. Arnulf Kletzin for giving me the opportunity to step into the fascinating world of proteins. -
Some Basic Concepts
Topics SI units Protons, electrons and neutrons Elements and allotropes States of matter Atomic number 1 Isotopes Relative atomic mass The mole Some basic Gas laws The periodic table concepts Radicals and ions Molecules and compounds Solution concentration Stoichiometry Oxidation and reduction Basic nomenclature 1.1 What is chemistry and why is it important? Matter, be it animal, vegetable or mineral, is composed of chemical elements or combinations thereof. Over a hundred elements are known, although not all are abundant by any means. The vast majority of these elements occur naturally, but some, such as technetium and curium, are artificial. Chemistry is involved with the understanding of the properties of the elements, how they interact with one another, and how the combination of these elements gives compounds that may undergo chemical changes to generate new compounds. Life has evolved systems that depend on carbon as a fundamental element; carbon, hydrogen, nitrogen and oxygen are particularly important in biological systems. A true understanding of biology and molecular biology must be based upon a full knowledge of the structures, properties and reactivities of the molecular components of life. This basic knowledge comes from the study of chemistry. The line between physical and chemical sciences is also a narrow one. Take, for example, the rapidly expanding field of superconducting materials – compounds that possess negligible resistance to the flow of electrons. Typically, this property persists only at very low temperatures but if the super- " conducting materials are to find general application, they must operate at Superconductors: ambient temperatures. Although a physicist may make the conductivity meas- see Box 9.4 urements, it is the preparation and study of the chemical composition of the materials that drive the basic research area. -
Polymorphism of Sulfur: Structural and Dynamical Aspects Laura Crapanzano
Polymorphism of sulfur: Structural and Dynamical Aspects Laura Crapanzano To cite this version: Laura Crapanzano. Polymorphism of sulfur: Structural and Dynamical Aspects. Physics [physics]. Université Joseph-Fourier - Grenoble I, 2006. English. tel-00204149 HAL Id: tel-00204149 https://tel.archives-ouvertes.fr/tel-00204149 Submitted on 14 Jan 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Th`ese pr´esent´eepar Laura Crapanzano Pour obtenir le titre de Docteur de l’Universit´eJoseph Fourier - Grenoble I Polymorphism of Sulfur: Structural and Dynamical Aspects Date de Soutenance: 20 Juin 2005 Composition du jury: Dr. Joel Chevrier President du jury Dr. Paul Loubeyre Rapporteur Prof. Ralf Steudel Rapporteur Prof. Daniele Fioretto Examinateur Prof. Alfredo Segura Examinateur Prof. Robert Bellissent Directeur de th`ese Dr. Giulio Monaco Co-Directeur de th`ese Dr. Wilson Crichton Co-Directeurs de th`ese: Dr. Mohamed Mezouar Th`esepr´epar´eeau sein du laboratoire European Synchrotron Radiation Facility BP 220 - 38043 Grenoble Cedex - France Dedicated to my parents iv Abstract This thesis deals with an investigation of polymorphism in both solid and liquid state of sulphur. Emphasis has been put on the polymer transition of liquid sulphur. -
ACS Style Guide
➤ ➤ ➤ ➤ ➤ The ACS Style Guide ➤ ➤ ➤ ➤ ➤ THIRD EDITION The ACS Style Guide Effective Communication of Scientific Information Anne M. Coghill Lorrin R. Garson Editors AMERICAN CHEMICAL SOCIETY Washington, DC OXFORD UNIVERSITY PRESS New York Oxford 2006 Oxford University Press Oxford New York Athens Auckland Bangkok Bogotá Buenos Aires Calcutta Cape Town Chennai Dar es Salaam Delhi Florence Hong Kong Istanbul Karachi Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi Paris São Paulo Singapore Taipei Tokyo Toronto Warsaw and associated companies in Berlin Idaban Copyright © 2006 by the American Chemical Society, Washington, DC Developed and distributed in partnership by the American Chemical Society and Oxford University Press Published by Oxford University Press, Inc. 198 Madison Avenue, New York, NY 10016 Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the American Chemical Society. Library of Congress Cataloging-in-Publication Data The ACS style guide : effective communication of scientific information.—3rd ed. / Anne M. Coghill [and] Lorrin R. Garson, editors. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-8412-3999-9 (cloth : alk. paper) 1. Chemical literature—Authorship—Handbooks, manuals, etc. 2. Scientific literature— Authorship—Handbooks, manuals, etc. 3. English language—Style—Handbooks, manuals, etc. 4. Authorship—Style manuals. I. Coghill, Anne M. II. Garson, Lorrin R. III. American Chemical Society QD8.5.A25 2006 808'.06654—dc22 2006040668 1 3 5 7 9 8 6 4 2 Printed in the United States of America on acid-free paper ➤ ➤ ➤ ➤ ➤ Contents Foreword. -
On the Reactivity of Nanoparticulate Elemental Sulfur
ON THE REACTIVITY OF NANOPARTICULATE ELEMENTAL SULFUR: EXPERIMENTATION AND FIELD OBSERVATIONS Fotios Christos Kafantaris Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Earth Sciences, Indiana University December 2017 ii Accepted by the Graduate Faculty of Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Doctoral Committee ___________________________ Gregory K. Druschel, PhD, Chair ___________________________ Kevin Mandernack, PhD ___________________________ William P. Gilhooly III, PhD ___________________________ Gabriel Filippelli, PhD ___________________________ Steven E. Lacey, PhD October 2, 2017 ___________________________ Brandy M. Toner, PhD iii © 2017 Fotios Christos Kafantaris iv DEDICATION I would like to dedicate this work to three women. The first one is the Most Holy Theotokos and Ever-Virgin Mary, the most precious individual the human race has and will ever have, the Bridge from earth to Heaven and the Gate to Paradise. Through Her intercessions to the Holy Trinity I am still alive and safe. The second woman is my mother, Eleni, who is the angel-on-earth that protects, nourishes, teaches, provides, inspires and guides me in life. Words would be poor to attempt to describe her and her virtues in an accurate manner. My mother is the main contributor of what I have become so far in life. The third woman is my σύζυγος (spouse) Diana, who has given me life, as well as meaning for life. Diana is the main contributor of what I will hopefully do in life from this point onward, and through her help I will hopefully manage to be with the other two forever. -
Chemistry of Sulfur (Z=16) Learning Objectives Describe the Chemistry of the Oxygen Group
Chemistry of Sulfur (Z=16) Learning Objectives Describe the chemistry of the oxygen group. Give the trend of various properties. Remember the names of Group 16 elements. Explain the Frasch process. Describe properties and applications of H2SO4 . Explain properties and applications of H2S. Sulfur is a chemical element that is represented with the chemical symbol "S" and the atomic number 16 on the periodic table. Because it is 0.0384% of the Earth's crust, sulfur is the seventeenth most abundant element following strontium. Sulfur also takes on many forms, which include elemental sulfur, organo-sulfur compounds in oil and coal, H2S(g) in natural gas, and mineral sulfides and sulfates. This element is extracted by using the Frasch process (discussed below), a method where superheated water and compressed air is used to draw liquid sulfur to the surface. Offshore sites, Texas, and Louisiana are the primary sites that yield extensive amounts of elemental sulfur. However, elemental sulfur can also be produced by reducing H2S, commonly found in oil and natural gas. For the most part though, sulfur is used to produce SO2(g) and H2SO4. Known from ancient times (mentioned in the Hebrew scriptures as brimstone) sulfur was classified as an element in 1777 by Lavoisier. Pure sulfur is tasteless and odorless with a light yellow color. Samples of sulfur often encountered in the lab have a noticeable odor. Sulfur is the tenth most abundant element in the known universe. Sulfur at a Glance Atomic Number 16 Atomic Symbol S Atomic Weight 32.07 grams per mole Structure orthorhombic Phase at room temperature solid Classification nonmetal Physical Properties of Sulfur Sulfur has an atomic weight of 32.066 grams per mole and is part of group 16, the oxygen family. -
Principles of Chemical Nomenclature a GUIDE to IUPAC RECOMMENDATIONS Principles of Chemical Nomenclature a GUIDE to IUPAC RECOMMENDATIONS
Principles of Chemical Nomenclature A GUIDE TO IUPAC RECOMMENDATIONS Principles of Chemical Nomenclature A GUIDE TO IUPAC RECOMMENDATIONS G.J. LEIGH OBE TheSchool of Chemistry, Physics and Environmental Science, University of Sussex, Brighton, UK H.A. FAVRE Université de Montréal Montréal, Canada W.V. METANOMSKI Chemical Abstracts Service Columbus, Ohio, USA Edited by G.J. Leigh b Blackwell Science © 1998 by DISTRIBUTORS BlackweilScience Ltd Marston Book Services Ltd Editorial Offices: P0 Box 269 Osney Mead, Oxford 0X2 0EL Abingdon 25 John Street, London WC1N 2BL Oxon 0X14 4YN 23 Ainslie Place, Edinburgh EH3 6AJ (Orders:Tel:01235 465500 350 Main Street, Maiden Fax: MA 02 148-5018, USA 01235 465555) 54 University Street, Carlton USA Victoria 3053, Australia BlackwellScience, Inc. 10, Rue Casmir Delavigne Commerce Place 75006 Paris, France 350 Main Street Malden, MA 02 148-5018 Other Editorial Offices: (Orders:Tel:800 759 6102 Blackwell Wissenschafts-Verlag GmbH 781 388 8250 KurfUrstendamm 57 Fax:781 388 8255) 10707 Berlin, Germany Canada Blackwell Science KK Copp Clark Professional MG Kodenmacho Building 200Adelaide St West, 3rd Floor 7—10 Kodenmacho Nihombashi Toronto, Ontario M5H 1W7 Chuo-ku, Tokyo 104, Japan (Orders:Tel:416 597-1616 800 815-9417 All rights reserved. No part of Fax:416 597-1617) this publication may be reproduced, stored in a retrieval system, or Australia BlackwellScience Pty Ltd transmitted, in any form or by any 54 University Street means, electronic, mechanical, Carlton, Victoria 3053 photocopying, recording or otherwise, (Orders:Tel:39347 0300 except as permitted by the UK Fax:3 9347 5001) Copyright, Designs and Patents Act 1988, without the prior permission of the copyright owner. -
Nomenclature of Inorganic Chemistry (IUPAC Recommendations 2005)
NOMENCLATURE OF INORGANIC CHEMISTRY IUPAC Recommendations 2005 IUPAC Periodic Table of the Elements 118 1 2 21314151617 H He 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 11 12 13 14 15 16 17 18 3456 78910 11 12 Na Mg Al Si P S Cl Ar 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 55 56 * 57− 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba lanthanoids Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 87 88 ‡ 89− 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 Fr Ra actinoids Rf Db Sg Bh Hs Mt Ds Rg Uub Uut Uuq Uup Uuh Uus Uuo * 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ‡ 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr International Union of Pure and Applied Chemistry Nomenclature of Inorganic Chemistry IUPAC RECOMMENDATIONS 2005 Issued by the Division of Chemical Nomenclature and Structure Representation in collaboration with the Division of Inorganic Chemistry Prepared for publication by Neil G. -
March 2017 Sulfur Livestock Technical Report
Sulfur Livestock 1 Identification of Petitioned Substance 2 3 Chemical Names: CAS Numbers: 4 Sulfur, Sulphur 10544-50-0; 1326-66-5; 7704-34-9 5 Other Name: Other Codes: 6 Elemental sulfur, Octasulfur, cyclo-S8, cyclo- Pubchem: 66348; InCHI = 1S/S8/c1-2-4-6-8-7-5-3- 7 octasulfur, cyclooctasulfur, octathiocane, cyclic 1; InCHI key = JLQNHALFVCURHW- 8 octaatomic sulfur, orthorhombic sulfur UHFFFAOYSA-N; Canonical Smiles = S1SSSSSSS1; EC number = 215-437-4, 927-196-9; 9 Trade Names: UNII = 70D1KFU70 10 Sulfur ground, sulfur powder, sulfur flowers, 11 sulfur, 325 mesh 12 13 Summary of Petitioned Use 14 A petition was received by the NOP to add sulfur for use as an insecticide (miticide, acaracide) in organic 15 livestock production (§205.603(b)). Sulfur (elemental) is currently allowed for use in the production of organic 16 crops as an insecticide, for plant disease control, and as a plant or soil amendment. 17 Characterization of Petitioned Substance 18 Composition of the Substance: 19 Sulfur is a naturally occurring chemical element. It has been given the symbol S and has an atomic number of 16. 20 It is an abundant, multivalent nonmetal. 21 Source or Origin of the Substance: 22 Commercial elemental sulfur was once mined and extracted from salt domes where it sometimes occurs in nearly 23 pure form, but this method has been in decline since the late 20th century. Today, almost all elemental sulfur is 24 produced as a byproduct of coal, natural gas and petroleum refinement (Davis and Detro, 1992). Desulfurization 25 of diesel fuel, gasoline, and jet fuel to meet today’s air pollution standards requires the reduction of sulfur 26 concentration from levels exceeding 500 parts per million (ppm) to less than 15 ppm (Song, 2003). -
Investigations Into Structure and Properties of Atomically-Precise Transition Metal-Chalcogenide Clusters of Crte and Ligated Cr6te8(Pet3)6
Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2017 Investigations into structure and properties of atomically-precise transition metal-chalcogenide clusters of CrTe and ligated Cr6Te8(PEt3)6 Anthony F. Pedicini Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Atomic, Molecular and Optical Physics Commons, Materials Chemistry Commons, and the Physical Chemistry Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/4963 This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. © Copyright by Anthony F. Pedicini, 2017 All Rights Reserved Investigations into structure and properties of atomically- precise transition metal-chalcogenide clusters of CrTe and ligated Cr6Te8(PEt3)6 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Nanoscience & Nanotechnology at Virginia Commonwealth University by Anthony Filippo Pedicini B.S., Physics & B.S. Applied Mathematics Virginia Commonwealth University, 2011 M.S. Physics Virginia Commonwealth University, 2013 Director: Shiv N. Khanna, Ph.D. Chairman and Commonwealth Professor, Department of Physics Virginia Commonwealth University Richmond, Virginia July, 2017 Contents List of Figures