2004.02751v4 [gr-qc] Geodesic motion in Bogoslovsky-Finsler Spacetimes M. Elbistan1∗, P. M. Zhang1y, N. Dimakis2z, G. W. Gibbons3x, P. A. Horvathy4{ 1 School of Physics and Astronomy, Sun Yat-sen University, Zhuhai, China 2 Center for Theoretical Physics, College of Physical Science and Technology, Sichuan University, Chengdu 610065, China 3D.A.M.T.P., Cambridge University, Wilberforce Road, Cambridge CB3 0WA, United Kingdom 4Institut Denis Poisson, Tours University { Orl´eansUniversity, UMR 7013 (France) (Dated: July 6, 2020) arXiv:2004.02751v4 [gr-qc] 3 Jul 2020 ∗ email:
[email protected]. y corresponding author. email:
[email protected] z email:
[email protected] x email:
[email protected] { email:
[email protected] 1 Abstract We study the free motion of a massive particle moving in the background of a Finslerian defor- mation of a plane gravitational wave in Einstein's general relativity. The deformation is a curved version of a one-parameter family of relativistic Finsler structures introduced by Bogoslovsky, which are invariant under a certain deformation of Cohen and Glashow's very special relativity group ISIM(2). The partially broken Carroll symmetry we derive using Baldwin-Jeffery-Rosen coordinates allows us to integrate the geodesics equations. The transverse coordinates of timelike Finsler-geodesics are identical to those of the underlying plane gravitational wave for any value of the Bogoslovsky-Finsler parameter b. We then replace the underlying plane gravitational wave with a homogenous pp-wave solution of the Einstein-Maxwell equations. We conclude by extending the theory to the Finsler-Friedmann-Lemaitre model.