EMERGENT GRAVITY: the Analogue Models Perspective

Total Page:16

File Type:pdf, Size:1020Kb

EMERGENT GRAVITY: the Analogue Models Perspective Emergent Gravity: The Analogue Models Perspective Thesis submitted for the degree of “Doctor Philosophiæ” September 2009 Candidate Supervisor Lorenzo Sindoni Stefano Liberati SISSA International School for Advanced Studies Via Beirut 2-4, 34151 Trieste, Italy. E-mail: [email protected] To my family EMERGENT GRAVITY: The Analogue Models Perspective Lorenzo Sindoni — Ph.D. Thesis Supervisor: S. Liberati Abstract This thesis is devoted to the study of some aspects of emergent gravity scenarios, i.e. of non-gravitational systems which exhibit, under suitable conditions, the emergence of effective spacetime metrics and the associated gravitational dynamics. While this area of research is rather broad, we will assume a particular perspective: the starting point is the discussion of analogue models for gravity, which have so far provided precious insights on aspects of physics on curved spacetimes, on extensions of Riemannian geometry and on the possible role of high energy Lorentz symmetry violations in low energy physics. The first part is devoted to the study of the most relevant kinematical features of emergent spacetimes typical of condensed matter analogue models. In particular, it will be shown that a natural framework for the description of the geometrical properties of emergent spacetimes is Finsler geometry, which thus represent an interesting candidate for extensions of special (and eventually general) relativity. We will present the basic concepts of this particular generalization of Riemannian geometry, and hence we will pass to the careful analysis of the main issues to be solved and of the features that can be of major interest for physical applications, in particular the geometrical interpretation of modified dispersion relations and the fate of Lorentz symmetry at the Planck scale. Some emphasis will be given to the conditions under which pseudo-Riemannian geometries are selected among the larger class of Finsler geometries. The second part is devoted to the discussion of some features of the dynamics of the emergent spacetimes. In particular, we will discuss the lessons that can be learned from a Bose–Einstein condensate analogue model. It is shown that, in an appropriate regime, a modified non-relativistic gravitational theory does appear to be the effective description of quasiparticles and their interactions with the condensate. While this is by no means an attempt to realize a perfect analogue of a realistic gravitational theory, this particular example gives the possibility of discussing a number of interesting features (e.g. locality and the nature of the cosmological constant). These features could be used as an inspiration to understand some of the problems encountered in understanding gravity at both classical and quantum levels. Finally, a generalization to the relativistic case will give the possibility of discussing more refined questions, like the possibility of emerging diffeomorphism invariance and time out of a system defined in flat Euclidean space. Despite the particular perspective and the very specific form of the toy models considered, we believe that all the observations and hints that can be collected from these investigations, in particular the role of symmetries, can shed some light onto some of the most challenging problems in the formulation of a satisfactory theory of emergent gravity. List of papers The research presented in this thesis is part of the outcome of the scientific collaborations stated below, as well as of the author’s own work. The research activity has led to the following research papers published in refereed Journals. • Planck-scale modified dispersion relations and Finsler geometry. Florian Girelli, Stefano Liberati, Lorenzo Sindoni (SISSA, Trieste & INFN, Trieste) . Published in Phys.Rev.D75:064015, 2007. [e-Print: gr-qc/0611024] (Ref. [234], discussed in chapter 5) • Shell-mediated tunnelling between (anti-)de Sitter vacua. Stefano Ansoldi (MIT, LNS & MIT & ICRA, Rome), Lorenzo Sindoni (SISSA, Trieste & INFN, Trieste) . Published in Phys.Rev.D76:064020,2007. [e-Print: arXiv:0704.1073 [gr-qc]] • The Higgs mechanism in Finsler spacetimes. Lorenzo Sindoni (SISSA, Trieste & INFN, Trieste) . Published in Phys.Rev.D77:124009,2008. [e-Print: arXiv:0712.3518 [gr-qc]] (Ref. [241], discussed in chapter 5) • On the emergence of Lorentzian signature and scalar gravity. Florian Girelli, Stefano Liberati, Lorenzo Sindoni (SISSA, Trieste& INFN, Trieste) . Published in Phys.Rev.D79:044019,2009. [e-Print: arXiv:0806.4239 [gr-qc]] (Ref. [295], discussed in chapter 8) • Gravitational dynamics in Bose Einstein condensates. Florian Girelli, Stefano Liberati, Lorenzo Sindoni (SISSA, Trieste & INFN, Sezione di Trieste). Published in Phys.Rev.D78:084013,2008. [e-Print: arXiv:0807.4910 [gr-qc]] (Ref. [283], discussed in chapter 7) • Reconciling MOND and dark matter? Jean Philippe Bruneton, Stefano Liberati, Lorenzo Sindoni and Benoit Famaey Published in JCAP 0903:021,2009. [e-Print arXiv:0811.3143 [astro-ph]] (Ref. [315], mentioned in chapter 9) • Linking the trans-Planckian and the information loss problems in black hole physics. Stefano Liberati, Lorenzo Sindoni (SISSA, Trieste & INFN, Trieste) Sebastiano Sonego (Universit`a di Udine) e-Print: arXiv:0904.0815 [gr-qc] Submitted to Annals of Physics (Ref. [82], mentioned in chapter 2) Acknowledgments There are several people that I want to thank. First of all, my supervisor, a great teacher and a patient guide in these four years. His lessons about all the aspects of the research in physics are a precious treasure that I hope to be able to administrate wisely. Without his constant inspiration and deep insight, the work presented in this thesis would not have been possible. Not only: his human qualities have made all the endless conversations of these years very pleasant and special occasions, beyond the scientific aspects. I have to thank Sebastiano Sonego for his help and advice, for his good questions, for all the discussions about physics and for the trans-Planckian collaboration. He deserves a special mention for having shared endless hours of travels by train between Udine and Miramare. I want to warmly thank Florian Girelli, for having taught me a lot, for his patience, for his precious advice and for the great job done together. I had also the opportunity to work with Stefano Ansoldi and Jean-Philippe Bruneton: I have to thank them for the fruitful collaborations, for discussions and for their friendship. During the PhD I had also enjoyed several conversations with Matt Visser and Silke Weinfurtner: all the discussions with them have been a valuable source of help and inspiration, and for this I owe them a lot. I want to thank Christoph, Luca, Annibale, Sara, Stefano, Goffredo, Vincenzo, Gaurav, Lorena and all the several friends I have met in SISSA in these years. It has been wonderful to share with them the days of the PhD. I will miss them. Of course, all this would not have been possible without the constant support of my family: my mother, my brother Pietro and Gianni. They have been a constant presence in these years. I owe them everything, and for this I dedicate this thesis to them. August 2009 Lorenzo Sindoni Contents 1 Motivations and overview 1 I Kinematics 9 2 Preliminaries 10 2.1 Acousticspacetimes .............................. ...... 10 2.1.1 Horizons,blackholes. ..... 11 2.2 BECgeneralization............................... ...... 12 2.2.1 Second quantization and the mean field approximation . ............ 13 2.2.2 Gross–Pitaevski and its fluid interpretation . ............ 16 2.3 Phonons......................................... .. 17 2.3.1 Bogoliubovtransformations . ....... 17 2.3.2 Bogoliubovdispersionrelation . ........ 18 2.3.3 Thehealinglength .............................. ... 19 2.3.4 Thedepletionfactor . .. .. .. .. .. .. .. .. .. .. .. .... 20 2.3.5 TheBogoliubov–deGennesformalism . ....... 20 2.4 BEC-basedanaloguemodels. ....... 22 2.5 Multi-component systems: normal modes analysis . ............. 23 2.5.1 Birefringentcrystals . ...... 24 2.5.2 TwocomponentsBEC.............................. 26 2.6 Fromanaloguemodelsto Finslergeometry. ........... 27 3 Special Relativity beyond the Planck scale 29 3.1 Is Lorentz invariance a fundamental symmetry? . ............. 29 3.2 TestsofLorentzinvariance . ........ 31 3.2.1 Robertson–Mansouri–Sexlformalism . ......... 32 3.2.2 Lorentz Invariance violation in effective field theories.............. 32 3.2.3 Dispersionrelations . ..... 34 3.2.4 Modified dispersion relations and the effective field theoryapproach . 35 3.2.5 Quantumgravityphenomenology . ...... 37 3.3 Special Relativity revisited: axiomatic approach . ................. 38 i 3.4 Anisotropic relativity and Finsler geometry . .............. 40 3.4.1 Towards a generalization in 3 + 1 dimensions . ......... 44 3.4.2 Finsler geometry as a test theory for Minkowski spacetime........... 45 3.5 IntroducingthePlanckscale. ......... 46 3.6 Insummary....................................... .. 50 4 Finsler geometry: basics 52 4.1 Finslerspaces:definition. ......... 52 4.1.1 Basictheorems ................................. .. 53 4.1.2 TheCartantensor ............................... .. 55 4.1.3 Finslerspaces................................. ... 56 4.1.4 Theindicatrix ................................. .. 57 4.2 Examples ........................................ .. 58 4.2.1 Randersspaces ................................. .. 58 4.2.2 Berwald–Moor .................................. 59 4.2.3 (α, β)spaces .................................... 59 4.3
Recommended publications
  • Report of Contributions
    2016 CAP Congress / Congrès de l’ACP 2016 Report of Contributions https://indico.cern.ch/e/CAP2016 2016 CAP Congr … / Report of Contributions **WITHDRAWN** Nanoengineeri … Contribution ID: 980 Type: Oral (Non-Student) / orale (non-étudiant) **WITHDRAWN** Nanoengineering materials: a bottom-up approach towards understanding long outstanding challenges in condensed matter science Thursday, 16 June 2016 08:30 (15 minutes) Chemists have made tremendous advances in synthesizing a variety of nanostructures with control over their size, shape, and chemical composition. Plus, it is possible to control their assembly and to make macroscopic materials. Combined, these advances suggest an opportunity to “nanoengineer” materials ie controllably fabricate materials from the nanoscale up with a wide range of controlled and potentially even new behaviours. Our group has been exploring this opportunity, and has found a rich range of material elec- tronic behaviours that even simple nano-building blocks can generate, e.g. single electron effects, metal-insulator transitions, semiconductor transistor-like conductance gating, and, most recently, strongly correlated electronic behaviour. The latter is particularly exciting. Strongly correlated electrons are known to lie at the heart of some of the most exotic, widely studied and still out- standing challenges in condensed matter science (e.g. high Tc superconductivity in the cuprates and others). The talk will survey both new insights and new opportunities that arise as a result of usingthis nanoengineering
    [Show full text]
  • Large-D Behavior of the Feynman Amplitudes for a Just-Renormalizable Tensorial Group Field Theory
    PHYSICAL REVIEW D 103, 085006 (2021) Large-d behavior of the Feynman amplitudes for a just-renormalizable tensorial group field theory † Vincent Lahoche1,* and Dine Ousmane Samary 1,2, 1Commissariatal ` ’Énergie Atomique (CEA, LIST), 8 Avenue de la Vauve, 91120 Palaiseau, France 2Facult´e des Sciences et Techniques (ICMPA-UNESCO Chair), Universit´ed’Abomey- Calavi, 072 BP 50, Benin (Received 22 December 2020; accepted 22 March 2021; published 16 April 2021) This paper aims at giving a novel approach to investigate the behavior of the renormalization group flow for tensorial group field theories to all order of the perturbation theory. From an appropriate choice of the kinetic kernel, we build an infinite family of just-renormalizable models, for tensor fields with arbitrary rank d. Investigating the large d-limit, we show that the self-energy melonic amplitude is decomposed as a product of loop-vertex functions depending only on dimensionless mass. The corresponding melonic amplitudes may be mapped as trees in the so-called Hubbard-Stratonivich representation, and we show that only trees with edges of different colors survive in the large d-limit. These two key features allow to resum the perturbative expansion for self energy, providing an explicit expression for arbitrary external momenta in terms of Lambert function. Finally, inserting this resummed solution into the Callan-Symanzik equations, and taking into account the strong relation between two and four point functions arising from melonic Ward- Takahashi identities, we then deduce an explicit expression for relevant and marginal β-functions, valid to all orders of the perturbative expansion. By investigating the solutions of the resulting flow, we conclude about the nonexistence of any fixed point in the investigated region of the full phase space.
    [Show full text]
  • Geodesic Motion in Bogoslovsky-Finsler Spacetimes
    2004.02751v4 [gr-qc] Geodesic motion in Bogoslovsky-Finsler Spacetimes M. Elbistan1∗, P. M. Zhang1y, N. Dimakis2z, G. W. Gibbons3x, P. A. Horvathy4{ 1 School of Physics and Astronomy, Sun Yat-sen University, Zhuhai, China 2 Center for Theoretical Physics, College of Physical Science and Technology, Sichuan University, Chengdu 610065, China 3D.A.M.T.P., Cambridge University, Wilberforce Road, Cambridge CB3 0WA, United Kingdom 4Institut Denis Poisson, Tours University { Orl´eansUniversity, UMR 7013 (France) (Dated: July 6, 2020) arXiv:2004.02751v4 [gr-qc] 3 Jul 2020 ∗ email:[email protected]. y corresponding author. email:[email protected] z email:[email protected] x email:[email protected] { email:[email protected] 1 Abstract We study the free motion of a massive particle moving in the background of a Finslerian defor- mation of a plane gravitational wave in Einstein's general relativity. The deformation is a curved version of a one-parameter family of relativistic Finsler structures introduced by Bogoslovsky, which are invariant under a certain deformation of Cohen and Glashow's very special relativity group ISIM(2). The partially broken Carroll symmetry we derive using Baldwin-Jeffery-Rosen coordinates allows us to integrate the geodesics equations. The transverse coordinates of timelike Finsler-geodesics are identical to those of the underlying plane gravitational wave for any value of the Bogoslovsky-Finsler parameter b. We then replace the underlying plane gravitational wave with a homogenous pp-wave solution of the Einstein-Maxwell equations. We conclude by extending the theory to the Finsler-Friedmann-Lemaitre model.
    [Show full text]
  • Chapter 9: the 'Emergence' of Spacetime in String Theory
    Chapter 9: The `emergence' of spacetime in string theory Nick Huggett and Christian W¨uthrich∗ May 21, 2020 Contents 1 Deriving general relativity 2 2 Whence spacetime? 9 3 Whence where? 12 3.1 The worldsheet interpretation . 13 3.2 T-duality and scattering . 14 3.3 Scattering and local topology . 18 4 Whence the metric? 20 4.1 `Background independence' . 21 4.2 Is there a Minkowski background? . 24 4.3 Why split the full metric? . 27 4.4 T-duality . 29 5 Quantum field theoretic considerations 29 5.1 The graviton concept . 30 5.2 Graviton coherent states . 32 5.3 GR from QFT . 34 ∗This is a chapter of the planned monograph Out of Nowhere: The Emergence of Spacetime in Quantum Theories of Gravity, co-authored by Nick Huggett and Christian W¨uthrich and under contract with Oxford University Press. More information at www.beyondspacetime.net. The primary author of this chapter is Nick Huggett ([email protected]). This work was sup- ported financially by the ACLS and the John Templeton Foundation (the views expressed are those of the authors not necessarily those of the sponsors). We want to thank Tushar Menon and James Read for exceptionally careful comments on a draft this chapter. We are also grateful to Niels Linnemann for some helpful feedback. 1 6 Conclusions 35 This chapter builds on the results of the previous two to investigate the extent to which spacetime might be said to `emerge' in perturbative string the- ory. Our starting point is the string theoretic derivation of general relativity explained in depth in the previous chapter, and reviewed in x1 below (so that the philosophical conclusions of this chapter can be understood by those who are less concerned with formal detail, and so skip the previous one).
    [Show full text]
  • Group Field Theory Condensate Cosmology: an Appetizer
    KCL-PH-TH/2019-41 Group field theory condensate cosmology: An appetizer Andreas G. A. Pithis∗ and Mairi Sakellariadouy Department of Physics, King's College London, University of London, Strand WC2R 2LS, London, United Kingdom (still E.U.) (Dated: June 14, 2019) This contribution is an appetizer to the relatively young and fast evolving approach to quantum cosmology based on group field theory condensate states. We summarize the main assumptions and pillars of this approach which has revealed new perspectives on the long-standing question of how to recover the continuum from discrete geometric building blocks. Among others, we give a snapshot of recent work on isotropic cosmological solutions exhibiting an accelerated expansion, a bounce where anisotropies are shown to be under control and inhomogeneities with an approximately scale- invariant power spectrum. Finally, we point to open issues in the condensate cosmology approach. Most important part of doing physics is the knowledge of approximation. Lev Davidovich Landau I. Introduction The current observational evidence strongly suggests that our Universe is accurately described by the standard model of cosmology [1]. This model relies on Einstein's theory of general relativity (GR) and assumes its validity on all scales. However, this picture proves fully inadequate to describe the earliest stages of our Universe, as our concepts of spacetime and its geometry as given by GR are then expected to break down due to the extreme physical conditions encountered in the vicinity of and shortly after the big bang. More explicitly, it appears that our Universe emerged from a singularity, as implied by the famous theorems of Penrose and Hawking [2].
    [Show full text]
  • Scaling Behaviour of Three-Dimensional Group Field Theory Jacques Magnen, Karim Noui, Vincent Rivasseau, Matteo Smerlak
    Scaling behaviour of three-dimensional group field theory Jacques Magnen, Karim Noui, Vincent Rivasseau, Matteo Smerlak To cite this version: Jacques Magnen, Karim Noui, Vincent Rivasseau, Matteo Smerlak. Scaling behaviour of three- dimensional group field theory. 2009. hal-00400149v1 HAL Id: hal-00400149 https://hal.archives-ouvertes.fr/hal-00400149v1 Preprint submitted on 30 Jun 2009 (v1), last revised 22 Sep 2009 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Scaling behaviour of three-dimensional group field theory Jacques Magnen,1 Karim Noui,2 Vincent Rivasseau,3 and Matteo Smerlak4 1Centre de Physique Th´eorique, Ecole polytechnique 91128 Palaiseau Cedex, France 2Laboratoire de Math´ematiques et de Physique Th´eorique, Facult´edes Sciences et Techniques Parc de Grandmont, 37200 Tours, France 3Laboratoire de Physique Th´eorique, Universit´eParis XI 91405 Orsay Cedex, France 4Centre de Physique Th´eorique, Campus de Luminy, Case 907 13288 Marseille Cedex 09, France (Dated: June 30, 2009) Group field theory is a generalization of matrix models, with triangulated pseudomanifolds as Feyn- man diagrams and state sum invariants as Feynman amplitudes. In this paper, we consider Boula- tov’s three-dimensional model and its Freidel-Louapre positive regularization (hereafter the BFL model) with a ‘ultraviolet’ cutoff, and study rigorously their scaling behavior in the large cutoff limit.
    [Show full text]
  • Voigt Transformations in Retrospect: Missed Opportunities?
    Voigt transformations in retrospect: missed opportunities? Olga Chashchina Ecole´ Polytechnique, Palaiseau, France∗ Natalya Dudisheva Novosibirsk State University, 630 090, Novosibirsk, Russia† Zurab K. Silagadze Novosibirsk State University and Budker Institute of Nuclear Physics, 630 090, Novosibirsk, Russia.‡ The teaching of modern physics often uses the history of physics as a didactic tool. However, as in this process the history of physics is not something studied but used, there is a danger that the history itself will be distorted in, as Butterfield calls it, a “Whiggish” way, when the present becomes the measure of the past. It is not surprising that reading today a paper written more than a hundred years ago, we can extract much more of it than was actually thought or dreamed by the author himself. We demonstrate this Whiggish approach on the example of Woldemar Voigt’s 1887 paper. From the modern perspective, it may appear that this paper opens a way to both the special relativity and to its anisotropic Finslerian generalization which came into the focus only recently, in relation with the Cohen and Glashow’s very special relativity proposal. With a little imagination, one can connect Voigt’s paper to the notorious Einstein-Poincar´epri- ority dispute, which we believe is a Whiggish late time artifact. We use the related historical circumstances to give a broader view on special relativity, than it is usually anticipated. PACS numbers: 03.30.+p; 1.65.+g Keywords: Special relativity, Very special relativity, Voigt transformations, Einstein-Poincar´epriority dispute I. INTRODUCTION Sometimes Woldemar Voigt, a German physicist, is considered as “Relativity’s forgotten figure” [1].
    [Show full text]
  • Quantum Gravity: a Primer for Philosophers∗
    Quantum Gravity: A Primer for Philosophers∗ Dean Rickles ‘Quantum Gravity’ does not denote any existing theory: the field of quantum gravity is very much a ‘work in progress’. As you will see in this chapter, there are multiple lines of attack each with the same core goal: to find a theory that unifies, in some sense, general relativity (Einstein’s classical field theory of gravitation) and quantum field theory (the theoretical framework through which we understand the behaviour of particles in non-gravitational fields). Quantum field theory and general relativity seem to be like oil and water, they don’t like to mix—it is fair to say that combining them to produce a theory of quantum gravity constitutes the greatest unresolved puzzle in physics. Our goal in this chapter is to give the reader an impression of what the problem of quantum gravity is; why it is an important problem; the ways that have been suggested to resolve it; and what philosophical issues these approaches, and the problem itself, generate. This review is extremely selective, as it has to be to remain a manageable size: generally, rather than going into great detail in some area, we highlight the key features and the options, in the hope that readers may take up the problem for themselves—however, some of the basic formalism will be introduced so that the reader is able to enter the physics and (what little there is of) the philosophy of physics literature prepared.1 I have also supplied references for those cases where I have omitted some important facts.
    [Show full text]
  • P2IO 2010 Acronyme Du Projet
    APPEL A PROJETS LABEX/ CALL FOR PROPOSALS P2IO 2010 DOCUMENT SCIENTIFIQUE B / SCIENTIFIC SUBMISSION FORM B Acronyme du projet/ P2IO Acronym of the project Titre du projet en Physique des 2 Infinis et des Origines français Project title in English Physics of the 2 infinities and of the Origins Nom / Name : Guy Wormser Coordinateur du Etablissement / Institution : CNRS-IN2P3 projet/Coordinator of Laboratoire / Laboratory : Laboratoire de l’Accélérateur the project Linéaire Numéro d’unité/Unit number : UMR8607 Aide demandée/ Budget Total demandé : 20,8 M€ Requested funding □ Santé, bien-être, alimentation et biotechnologies / Health, well- being, nutrition and biotechnologies Champs disciplinaires □ Urgence environnementale et écotechnologies / Environnemental urgency, ecotechnologies (SNRI) / Disciplinary □ Information, communication et nanotechnologies / Information, field communication and nantechnologies □ Sciences humaines et sociales / Social sciences X Autre champ disciplinaire / Other disciplinary scope Particle Physics, Nuclear Physics, Astroparticle physics, Domaines scientifiques/ Astrophysique, Accelerators science, Interfaces with scientific areas Health and Energy Participation à un ou plusieurs projet(s) « Initiatives d’excellence » (IDEX) / X oui □ non Participation in an « Initiatives d’excellence » project 1/129 APPEL A PROJETS LABEX/ CALL FOR PROPOSALS P2IO 2010 DOCUMENT SCIENTIFIQUE B / SCIENTIFIC SUBMISSION FORM B Affiliation(s) du partenaire coordinateur de projet/ Organisation of the coordinating partner Laboratoire(s)/Etablissement(s)
    [Show full text]
  • On the Relations Between Gravity and BF Theories⋆
    Symmetry, Integrability and Geometry: Methods and Applications SIGMA 8 (2012), 032, 15 pages On the Relations between Gravity and BF Theories? Laurent FREIDEL y and Simone SPEZIALE z y Perimeter Institute, 31 Caroline St N, Waterloo ON, N2L 2Y5, Canada E-mail: [email protected] z Centre de Physique Th´eorique,CNRS-UMR 7332, Luminy Case 907, 13288 Marseille, France E-mail: [email protected] Received January 23, 2012, in final form May 18, 2012; Published online May 26, 2012 http://dx.doi.org/10.3842/SIGMA.2012.032 Abstract. We review, in the light of recent developments, the existing relations between gravity and topological BF theories at the classical level. We include the Plebanski action in both self-dual and non-chiral formulations, their generalizations, and the MacDowell{ Mansouri action. Key words: Plebanski action; MacDowell{Mansouri action; BF gravity; TQFT; modified theories of gravity 2010 Mathematics Subject Classification: 83C45 1 Introduction It is an intriguing fact that general relativity can be given a polynomial action principle which relates it to topological BF theory. The fundamental variable is a connection, and the metric is a derived quantity. For BF theory alone, a Lagrange multiplier, B, enforces the curvature of the connection to be constant. This type of theories require no metric to be formulated, and posses no local degrees of freedom. The relation with general relativity is established through the extraction of metric degrees of freedom from the fundamental fields. There are mainly two ways of achieving this that have appeared in the literature, based on original work by Plebanski [77] and by MacDowell and Mansouri [66].
    [Show full text]
  • Zakopane Lectures on Loop Gravity
    Zakopane lectures on loop gravity Carlo Rovelli∗ Centre de Physique Théorique de Luminy,† Case 907, F-13288 Marseille, EU E-mail: [email protected] These are introductory lectures on loop quantum gravity. The theory is presented in self-contained form, without emphasis on its derivation from classical general relativity. Dynamics is given in the covariant form. Some applications are described. 3rd Quantum Gravity and Quantum Geometry School February 28 - March 13, 2011 Zakopane, Poland ∗Speaker. †Unité mixte de recherche (UMR 6207) du CNRS et des Universités de Provence (Aix-Marseille I), de la Méditer- ranée (Aix-Marseille II) et du Sud (Toulon-Var); affilié à la FRUMAM (FR 2291). c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Loop gravity Carlo Rovelli 1. Where are we in quantum gravity? Our current knowledge on the elementary structure of nature is summed up in three theories: quantum theory, the particle-physics standard model (with neutrino mass) and general relativity (with cosmological constant). With the notable exception of the “dark matter" phenomenology, these theories appear to be in accord with virtually all present observations. But there are physical situations where these theories lack predictive power: We do not know the gravitational scattering amplitude for two particles, if the center-of-mass energy is of the order of the impact parameter in Planck units; we miss a reliable framework for very early cosmology, for predicting what happens at the end of the evaporation of a black hole, or describing the quantum structure of spacetime at very small scale.
    [Show full text]
  • Report of Contributions
    DPF 2011 Report of Contributions https://indico.cern.ch/e/129980 DPF 2011 / Report of Contributions Possible Existence of Overlapping … Contribution ID: 1 Type: Poster Possible Existence of Overlapping Universe and Antiuniverse Tuesday, 9 August 2011 12:38 (1 minute) The creation of antihydrogens at CERN (1995) and Fermilab (1997) and the very recent synthe- sizing of antiheliums at CERN (2011) have invigorated the fascinating idea about the existence of separate universe and antiuniverse as a resultant of the big bang. Particularly, the production of exotic atoms composed of particles and antiparticles (e.g. positroniums, Ps, protoniums, Pn, true muoniums, Mu, and pioniums, A2π) as well as the experimental formation of positronium molecules, Ps2, and theoretical predictions of exotic four-body systems composed of matter and antimatter (e.g. Heterohydrogens, PsPn, Ps Mu, PsA2π ) open the gate in front of new research activities aiming to investigate the possible existence of overlapping universe and antiuniverse. The main goal of the present work is to discuss this possibility and show that it providesuswith satisfactory explanations of the dilemma connected with the rare existence of antimatter in our universe and the mysterious astrophysical observation of highly energetic gamma-rays occurring at the edge of our universe. Summary This work is addressing two problems, namely the rare existence of anti matter in ouruniverse and the existence of high energetic gamma- rays at its edge. Primary author: Prof. ABDEL-RAOUF, Mohamed Assad (United
    [Show full text]