P2IO 2010 Acronyme Du Projet

Total Page:16

File Type:pdf, Size:1020Kb

P2IO 2010 Acronyme Du Projet APPEL A PROJETS LABEX/ CALL FOR PROPOSALS P2IO 2010 DOCUMENT SCIENTIFIQUE B / SCIENTIFIC SUBMISSION FORM B Acronyme du projet/ P2IO Acronym of the project Titre du projet en Physique des 2 Infinis et des Origines français Project title in English Physics of the 2 infinities and of the Origins Nom / Name : Guy Wormser Coordinateur du Etablissement / Institution : CNRS-IN2P3 projet/Coordinator of Laboratoire / Laboratory : Laboratoire de l’Accélérateur the project Linéaire Numéro d’unité/Unit number : UMR8607 Aide demandée/ Budget Total demandé : 20,8 M€ Requested funding □ Santé, bien-être, alimentation et biotechnologies / Health, well- being, nutrition and biotechnologies Champs disciplinaires □ Urgence environnementale et écotechnologies / Environnemental urgency, ecotechnologies (SNRI) / Disciplinary □ Information, communication et nanotechnologies / Information, field communication and nantechnologies □ Sciences humaines et sociales / Social sciences X Autre champ disciplinaire / Other disciplinary scope Particle Physics, Nuclear Physics, Astroparticle physics, Domaines scientifiques/ Astrophysique, Accelerators science, Interfaces with scientific areas Health and Energy Participation à un ou plusieurs projet(s) « Initiatives d’excellence » (IDEX) / X oui □ non Participation in an « Initiatives d’excellence » project 1/129 APPEL A PROJETS LABEX/ CALL FOR PROPOSALS P2IO 2010 DOCUMENT SCIENTIFIQUE B / SCIENTIFIC SUBMISSION FORM B Affiliation(s) du partenaire coordinateur de projet/ Organisation of the coordinating partner Laboratoire(s)/Etablissement(s) Numéro(s) d’unité/ Tutelle(s) /Research Organisation Laboratory/Institution(s) Unit number reference Fondation de Coopération Scientifique du Campus Paris Saclay Laboratoire de l’Accélérateur UMR8607 CNRS-IN2P3/Univ. Paris Sud Linéaire Affiliations des partenaires au projet/Organization of the partner(s) Laboratoire(s)/Etablissement(s) Numéro(s) d’unité/ Tutelle(s)/Research Laboratory/Institution(s) Unit number Organisation reference CNRS-INP/Ecole Centre de Physique Théorique UMR7644 Polytechnique Centre de Spectrométrie CNRS-IN2P3/Univ. Paris Nucléaire et de Spectrométrie de UMR8609 Sud masse Institut d’Astrophysique Spatiale UMR8617 CNRS-INSU/Univ. Paris Sud Imagerie Modélisation en CNRS-IN2P3/Univ. Paris UMR8165 Neurobiologie et Cancérologie Sud/ Univ Paris Diderot Institut de Physique Théorique URA2306 CEA/DSM- CNRS/INP CNRS-IN2P3/Univ. Paris Institut de Physique Nucléaire UMR8608 Sud Institut de Recherche Fondamentale et des lois de CEA/DSM l’Univers Ingénierie, Radioprotection, UPS3364 CNRS-INP Sûreté et Démantèlement CNRS-IN2P3/Ecole Laboratoire Leprince-Ringuet UMR7638 Polytechnique Laboratoire de Physique UMR8627 CNRS-INP/Univ. Paris Sud Théorique Service d’Etudes des Réacteurs CEA-DEN et de Mathématiques Appliquées 2/129 APPEL A PROJETS LABEX/ CALL FOR PROPOSALS P2IO 2010 DOCUMENT SCIENTIFIQUE B / SCIENTIFIC SUBMISSION FORM B 1. RESUME / SUMMARY ................................................................................ 5 2. CANDIDATURE AUX ACTIONS DU PROGRAMME INVESTISSEMENTS D’AVENIR/APPLICATION TO THE ACTIONS OF THE PROGRAMME « INVESTISSEMENTS D’AVENIR » .................... 7 3. ORGANISATION DU PARTENARIAT/MANAGEMENT OF THE PARTNERSHIP.................... 12 3.1. Composition du partenariat/ Composition of the partnership..................12 3.2. Qualification du coordinateur de projet /Relevant experience of the project coordinator.......................................................................................................12 4. DESCRIPTION DE L’EXISTANT/ DESCRIPTION OF THE EXISTING ............................. 13 4.1. Présentation des partenaires...................................................................13 4.1.1 Partenaire 1/ Partner 1 : FCS Paris Saclay / LAL 13 4.1.1.1 Recherche et innovation / Research and innovation 14 4.1.1.2 Valorisation / Exploitation of results 15 4.1.1.3 Enseignement superieur / Higher education 16 4.1.1.4 Organisation / Organisation 16 4.1.2 Partenaire 2/ Partner 2 : CPHT 17 4.1.2.1 Recherche et innovation / Research and innovation 17 4.1.2.2 Valorisation / Exploitation of results 17 4.1.2.3 Enseignement superieur / Higher education 17 4.1.3 Partenaire 3/ Partner 3 : CSNSM 17 4.1.3.1 Recherche et innovation / Research and innovation Erreur ! Signet non défini. 4.1.4 Partenaire 4/ Partner 4 : IAS 20 4.1.4.1 Recherche et innovation / Research and innovation 20 4.1.4.2 Valorisation / Exploitation of results 21 4.1.4.3 Enseignement superieur / Higher education 21 4.1.4.4 Organisation / Organisation 21 4.1.5 Partenaire 5/ Partner 5 : IMNC 22 4.1.5.1 Recherche et innovation / Research and innovation 22 4.1.5.2 Valorisation / Exploitation of results 23 4.1.5.3 Enseignement superieur / Higher education 23 4.1.5.4 Organisation / Organisation 23 4.1.6 Partenaire 6/ Partner 6 : IPhT Saclay 23 4.1.6.1 Recherche et innovation / Research and innovation 23 4.1.6.2 Enseignement superieur / Higher education 24 4.1.6.3 Organisation / Organisation 24 4.1.7 Partenaire 7/ Partner 7 : IPNO 24 4.1.7.1 Recherche et innovation / Research and innovation 24 4.1.7.2 Valorisation / Exploitation of results 27 4.1.7.3 Enseignement superieur / Higher education 28 4.1.7.4 Organisation / Organisation 28 4.1.8 Partenaire 8/ Partner 8 : IRFU 28 4.1.8.1 Recherche et innovation / Research and innovation 29 4.1.8.2 Valorisation / Exploitation of results 31 4.1.8.3 Enseignement superieur / Higher education 31 4.1.8.4 Organisation / Organisation 31 4.1.9 Partenaire 9/ Partner 9 : IRSD 32 4.1.9.1 Recherche et innovation / Research and innovation 32 4.1.10 Partenaire 10/ Partner 10 : LLR 32 4.1.10.1 Recherche et innovation / Research and innovation 32 4.1.10.2 Valorisation / Exploitation of results 33 4.1.10.3 Enseignement superieur / Higher education 33 4.1.11 Partenaire 11/ Partner 11 : LPT 34 4.1.11.1 Recherche et innovation / Research and innovation 34 4.1.11.2 Valorisation / Exploitation of results 34 4.1.11.3 Enseignement superieur / Higher education 35 4.1.11.4 Organisation / Organisation 35 3/129 APPEL A PROJETS LABEX/ CALL FOR PROPOSALS P2IO 2010 DOCUMENT SCIENTIFIQUE B / SCIENTIFIC SUBMISSION FORM B 4.1.12 Partenaire 12/ Partner 12 : SERMA 35 4.1.12.1 Recherche et innovation / Research and innovation 35 4.1.12.2 Enseignement superieur / Higher education 36 4.1.12.3 Organisation / Organisation 36 4.2. Collaborations existantes / Existing collaborations .................................36 5. DESCRIPTION SCIENTIFIQUE ET TECHNIQUE DU PROJET / TECHNICAL AND SCIENTIFIC DESCRIPTION OF THE PROJECT................................................................... 39 5.1. Etat de l’art / State of the art ................................. Erreur ! Signet non défini. 5.1.1 S1 symmetries in the subatomic world Erreur ! Signet non défini. 5.1.2 S2 Dark components of the Universe Erreur ! Signet non défini. 5.1.3 S3 Strongly coupled nuclear matter Erreur ! Signet non défini. 5.1.4 S4 Formation of the planetary systems and conditions for the emergence of lifeErreur ! Signet non défini. 5.1.5 T1 Innovative developments in accelerator science and related spinoffsErreur ! Signet non défini. 5.1.6 T2 Advanced sensors and related spinoffs Erreur ! Signet non défini. 5.1.7 T3 Data mining and simulation Erreur ! Signet non défini. 5.1.8 I1 Energy : nuclear energy for the future Erreur ! Signet non défini. 5.2. Objectifs du projet par rapport à l’état de l’art et liens avec la SNRI/ Objectives of the project compared to the state of the art and in relation to the SNRI Erreur ! Signet non défini. 5.2.1 Présentation scientifique du projet de recherche/ Scientific programme Erreur ! Signet non défini. 5.2.2 Valorisation, transfert et expertise/ Exploitation of results, transfer and expertise Erreur ! Signet non défini. 5.2.3 Enseignement supérieur, Insertion / Higher education, Integration into the workplace Erreur ! Signet non défini. 5.2.4 Gouvernance du Labex/ Governance Erreur ! Signet non défini. 5.2.5 Attractivité/Attraction Erreur ! Signet non défini. 5.3. Stratégie des établissements tutelles/ Strategy of the supervising institution........................................................................ Erreur ! Signet non défini. 5.4. Relation avec le monde socio-économique/ Connections to the socio- economic world ............................................................... Erreur ! Signet non défini. 5.5. Effet d’entraînement potentiel/ Pull effect ............. Erreur ! Signet non défini. 6. JUSTIFICATION SCIENTIFIQUE ET FINANCIERE DES MOYENS DEMANDES / FINANCIAL AND SCIENTIFIC JUSTIFICATION FOR THE MOBILISATION OF THE RESOURCES.................. 64 6.1. Justification des moyens demandés (sur 10 ans) / Justification for the mobilisation of the resources ...........................................................................64 6.1.1 Projet de recherche/ Research project 64 6.1.2 Projet pédagogique/ Educational project 65 6.1.3 Valorisation/ Exploitation of results 66 6.1.4 Gouvernance/ governance 66 6.2. Autres ressources / others resources......................................................67 7. ANNEXES / APPENDICES .......................................................................... 67 7.1. Références bibliographiques de l’etat de l’art/State of the art references67 7.2. Références bibliographiques des partenaires/Partners’ references.........69 7.2.1 CSNSM Publications 69 7.2.2 IAS Publications 75 7.2.3 IPhT Publications 81 7.2.4 CPhT publications 87 7.2.5 IPNO Publications 90 7.2.6 IRFU Publications 93 7.2.7 LAL Publications 103
Recommended publications
  • Report of Contributions
    2016 CAP Congress / Congrès de l’ACP 2016 Report of Contributions https://indico.cern.ch/e/CAP2016 2016 CAP Congr … / Report of Contributions **WITHDRAWN** Nanoengineeri … Contribution ID: 980 Type: Oral (Non-Student) / orale (non-étudiant) **WITHDRAWN** Nanoengineering materials: a bottom-up approach towards understanding long outstanding challenges in condensed matter science Thursday, 16 June 2016 08:30 (15 minutes) Chemists have made tremendous advances in synthesizing a variety of nanostructures with control over their size, shape, and chemical composition. Plus, it is possible to control their assembly and to make macroscopic materials. Combined, these advances suggest an opportunity to “nanoengineer” materials ie controllably fabricate materials from the nanoscale up with a wide range of controlled and potentially even new behaviours. Our group has been exploring this opportunity, and has found a rich range of material elec- tronic behaviours that even simple nano-building blocks can generate, e.g. single electron effects, metal-insulator transitions, semiconductor transistor-like conductance gating, and, most recently, strongly correlated electronic behaviour. The latter is particularly exciting. Strongly correlated electrons are known to lie at the heart of some of the most exotic, widely studied and still out- standing challenges in condensed matter science (e.g. high Tc superconductivity in the cuprates and others). The talk will survey both new insights and new opportunities that arise as a result of usingthis nanoengineering
    [Show full text]
  • Large-D Behavior of the Feynman Amplitudes for a Just-Renormalizable Tensorial Group Field Theory
    PHYSICAL REVIEW D 103, 085006 (2021) Large-d behavior of the Feynman amplitudes for a just-renormalizable tensorial group field theory † Vincent Lahoche1,* and Dine Ousmane Samary 1,2, 1Commissariatal ` ’Énergie Atomique (CEA, LIST), 8 Avenue de la Vauve, 91120 Palaiseau, France 2Facult´e des Sciences et Techniques (ICMPA-UNESCO Chair), Universit´ed’Abomey- Calavi, 072 BP 50, Benin (Received 22 December 2020; accepted 22 March 2021; published 16 April 2021) This paper aims at giving a novel approach to investigate the behavior of the renormalization group flow for tensorial group field theories to all order of the perturbation theory. From an appropriate choice of the kinetic kernel, we build an infinite family of just-renormalizable models, for tensor fields with arbitrary rank d. Investigating the large d-limit, we show that the self-energy melonic amplitude is decomposed as a product of loop-vertex functions depending only on dimensionless mass. The corresponding melonic amplitudes may be mapped as trees in the so-called Hubbard-Stratonivich representation, and we show that only trees with edges of different colors survive in the large d-limit. These two key features allow to resum the perturbative expansion for self energy, providing an explicit expression for arbitrary external momenta in terms of Lambert function. Finally, inserting this resummed solution into the Callan-Symanzik equations, and taking into account the strong relation between two and four point functions arising from melonic Ward- Takahashi identities, we then deduce an explicit expression for relevant and marginal β-functions, valid to all orders of the perturbative expansion. By investigating the solutions of the resulting flow, we conclude about the nonexistence of any fixed point in the investigated region of the full phase space.
    [Show full text]
  • Chapter 9: the 'Emergence' of Spacetime in String Theory
    Chapter 9: The `emergence' of spacetime in string theory Nick Huggett and Christian W¨uthrich∗ May 21, 2020 Contents 1 Deriving general relativity 2 2 Whence spacetime? 9 3 Whence where? 12 3.1 The worldsheet interpretation . 13 3.2 T-duality and scattering . 14 3.3 Scattering and local topology . 18 4 Whence the metric? 20 4.1 `Background independence' . 21 4.2 Is there a Minkowski background? . 24 4.3 Why split the full metric? . 27 4.4 T-duality . 29 5 Quantum field theoretic considerations 29 5.1 The graviton concept . 30 5.2 Graviton coherent states . 32 5.3 GR from QFT . 34 ∗This is a chapter of the planned monograph Out of Nowhere: The Emergence of Spacetime in Quantum Theories of Gravity, co-authored by Nick Huggett and Christian W¨uthrich and under contract with Oxford University Press. More information at www.beyondspacetime.net. The primary author of this chapter is Nick Huggett ([email protected]). This work was sup- ported financially by the ACLS and the John Templeton Foundation (the views expressed are those of the authors not necessarily those of the sponsors). We want to thank Tushar Menon and James Read for exceptionally careful comments on a draft this chapter. We are also grateful to Niels Linnemann for some helpful feedback. 1 6 Conclusions 35 This chapter builds on the results of the previous two to investigate the extent to which spacetime might be said to `emerge' in perturbative string the- ory. Our starting point is the string theoretic derivation of general relativity explained in depth in the previous chapter, and reviewed in x1 below (so that the philosophical conclusions of this chapter can be understood by those who are less concerned with formal detail, and so skip the previous one).
    [Show full text]
  • Group Field Theory Condensate Cosmology: an Appetizer
    KCL-PH-TH/2019-41 Group field theory condensate cosmology: An appetizer Andreas G. A. Pithis∗ and Mairi Sakellariadouy Department of Physics, King's College London, University of London, Strand WC2R 2LS, London, United Kingdom (still E.U.) (Dated: June 14, 2019) This contribution is an appetizer to the relatively young and fast evolving approach to quantum cosmology based on group field theory condensate states. We summarize the main assumptions and pillars of this approach which has revealed new perspectives on the long-standing question of how to recover the continuum from discrete geometric building blocks. Among others, we give a snapshot of recent work on isotropic cosmological solutions exhibiting an accelerated expansion, a bounce where anisotropies are shown to be under control and inhomogeneities with an approximately scale- invariant power spectrum. Finally, we point to open issues in the condensate cosmology approach. Most important part of doing physics is the knowledge of approximation. Lev Davidovich Landau I. Introduction The current observational evidence strongly suggests that our Universe is accurately described by the standard model of cosmology [1]. This model relies on Einstein's theory of general relativity (GR) and assumes its validity on all scales. However, this picture proves fully inadequate to describe the earliest stages of our Universe, as our concepts of spacetime and its geometry as given by GR are then expected to break down due to the extreme physical conditions encountered in the vicinity of and shortly after the big bang. More explicitly, it appears that our Universe emerged from a singularity, as implied by the famous theorems of Penrose and Hawking [2].
    [Show full text]
  • Scaling Behaviour of Three-Dimensional Group Field Theory Jacques Magnen, Karim Noui, Vincent Rivasseau, Matteo Smerlak
    Scaling behaviour of three-dimensional group field theory Jacques Magnen, Karim Noui, Vincent Rivasseau, Matteo Smerlak To cite this version: Jacques Magnen, Karim Noui, Vincent Rivasseau, Matteo Smerlak. Scaling behaviour of three- dimensional group field theory. 2009. hal-00400149v1 HAL Id: hal-00400149 https://hal.archives-ouvertes.fr/hal-00400149v1 Preprint submitted on 30 Jun 2009 (v1), last revised 22 Sep 2009 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Scaling behaviour of three-dimensional group field theory Jacques Magnen,1 Karim Noui,2 Vincent Rivasseau,3 and Matteo Smerlak4 1Centre de Physique Th´eorique, Ecole polytechnique 91128 Palaiseau Cedex, France 2Laboratoire de Math´ematiques et de Physique Th´eorique, Facult´edes Sciences et Techniques Parc de Grandmont, 37200 Tours, France 3Laboratoire de Physique Th´eorique, Universit´eParis XI 91405 Orsay Cedex, France 4Centre de Physique Th´eorique, Campus de Luminy, Case 907 13288 Marseille Cedex 09, France (Dated: June 30, 2009) Group field theory is a generalization of matrix models, with triangulated pseudomanifolds as Feyn- man diagrams and state sum invariants as Feynman amplitudes. In this paper, we consider Boula- tov’s three-dimensional model and its Freidel-Louapre positive regularization (hereafter the BFL model) with a ‘ultraviolet’ cutoff, and study rigorously their scaling behavior in the large cutoff limit.
    [Show full text]
  • Quantum Gravity: a Primer for Philosophers∗
    Quantum Gravity: A Primer for Philosophers∗ Dean Rickles ‘Quantum Gravity’ does not denote any existing theory: the field of quantum gravity is very much a ‘work in progress’. As you will see in this chapter, there are multiple lines of attack each with the same core goal: to find a theory that unifies, in some sense, general relativity (Einstein’s classical field theory of gravitation) and quantum field theory (the theoretical framework through which we understand the behaviour of particles in non-gravitational fields). Quantum field theory and general relativity seem to be like oil and water, they don’t like to mix—it is fair to say that combining them to produce a theory of quantum gravity constitutes the greatest unresolved puzzle in physics. Our goal in this chapter is to give the reader an impression of what the problem of quantum gravity is; why it is an important problem; the ways that have been suggested to resolve it; and what philosophical issues these approaches, and the problem itself, generate. This review is extremely selective, as it has to be to remain a manageable size: generally, rather than going into great detail in some area, we highlight the key features and the options, in the hope that readers may take up the problem for themselves—however, some of the basic formalism will be introduced so that the reader is able to enter the physics and (what little there is of) the philosophy of physics literature prepared.1 I have also supplied references for those cases where I have omitted some important facts.
    [Show full text]
  • On the Relations Between Gravity and BF Theories⋆
    Symmetry, Integrability and Geometry: Methods and Applications SIGMA 8 (2012), 032, 15 pages On the Relations between Gravity and BF Theories? Laurent FREIDEL y and Simone SPEZIALE z y Perimeter Institute, 31 Caroline St N, Waterloo ON, N2L 2Y5, Canada E-mail: [email protected] z Centre de Physique Th´eorique,CNRS-UMR 7332, Luminy Case 907, 13288 Marseille, France E-mail: [email protected] Received January 23, 2012, in final form May 18, 2012; Published online May 26, 2012 http://dx.doi.org/10.3842/SIGMA.2012.032 Abstract. We review, in the light of recent developments, the existing relations between gravity and topological BF theories at the classical level. We include the Plebanski action in both self-dual and non-chiral formulations, their generalizations, and the MacDowell{ Mansouri action. Key words: Plebanski action; MacDowell{Mansouri action; BF gravity; TQFT; modified theories of gravity 2010 Mathematics Subject Classification: 83C45 1 Introduction It is an intriguing fact that general relativity can be given a polynomial action principle which relates it to topological BF theory. The fundamental variable is a connection, and the metric is a derived quantity. For BF theory alone, a Lagrange multiplier, B, enforces the curvature of the connection to be constant. This type of theories require no metric to be formulated, and posses no local degrees of freedom. The relation with general relativity is established through the extraction of metric degrees of freedom from the fundamental fields. There are mainly two ways of achieving this that have appeared in the literature, based on original work by Plebanski [77] and by MacDowell and Mansouri [66].
    [Show full text]
  • Zakopane Lectures on Loop Gravity
    Zakopane lectures on loop gravity Carlo Rovelli∗ Centre de Physique Théorique de Luminy,† Case 907, F-13288 Marseille, EU E-mail: [email protected] These are introductory lectures on loop quantum gravity. The theory is presented in self-contained form, without emphasis on its derivation from classical general relativity. Dynamics is given in the covariant form. Some applications are described. 3rd Quantum Gravity and Quantum Geometry School February 28 - March 13, 2011 Zakopane, Poland ∗Speaker. †Unité mixte de recherche (UMR 6207) du CNRS et des Universités de Provence (Aix-Marseille I), de la Méditer- ranée (Aix-Marseille II) et du Sud (Toulon-Var); affilié à la FRUMAM (FR 2291). c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Loop gravity Carlo Rovelli 1. Where are we in quantum gravity? Our current knowledge on the elementary structure of nature is summed up in three theories: quantum theory, the particle-physics standard model (with neutrino mass) and general relativity (with cosmological constant). With the notable exception of the “dark matter" phenomenology, these theories appear to be in accord with virtually all present observations. But there are physical situations where these theories lack predictive power: We do not know the gravitational scattering amplitude for two particles, if the center-of-mass energy is of the order of the impact parameter in Planck units; we miss a reliable framework for very early cosmology, for predicting what happens at the end of the evaporation of a black hole, or describing the quantum structure of spacetime at very small scale.
    [Show full text]
  • Report of Contributions
    DPF 2011 Report of Contributions https://indico.cern.ch/e/129980 DPF 2011 / Report of Contributions Possible Existence of Overlapping … Contribution ID: 1 Type: Poster Possible Existence of Overlapping Universe and Antiuniverse Tuesday, 9 August 2011 12:38 (1 minute) The creation of antihydrogens at CERN (1995) and Fermilab (1997) and the very recent synthe- sizing of antiheliums at CERN (2011) have invigorated the fascinating idea about the existence of separate universe and antiuniverse as a resultant of the big bang. Particularly, the production of exotic atoms composed of particles and antiparticles (e.g. positroniums, Ps, protoniums, Pn, true muoniums, Mu, and pioniums, A2π) as well as the experimental formation of positronium molecules, Ps2, and theoretical predictions of exotic four-body systems composed of matter and antimatter (e.g. Heterohydrogens, PsPn, Ps Mu, PsA2π ) open the gate in front of new research activities aiming to investigate the possible existence of overlapping universe and antiuniverse. The main goal of the present work is to discuss this possibility and show that it providesuswith satisfactory explanations of the dilemma connected with the rare existence of antimatter in our universe and the mysterious astrophysical observation of highly energetic gamma-rays occurring at the edge of our universe. Summary This work is addressing two problems, namely the rare existence of anti matter in ouruniverse and the existence of high energetic gamma- rays at its edge. Primary author: Prof. ABDEL-RAOUF, Mohamed Assad (United
    [Show full text]
  • Covariant Loop Quantum Gravity
    Covariant Loop Quantum Gravity An elementary introduction to Quantum Gravity and Spinfoam Theory CARLO ROVELLI AND FRANCESCA VIDOTTO iii . Cover: Martin Klimas, ”Jimi Hendrix, House Burning Down”. Contents Preface page ix Part I Foundations 1 1 Spacetime as a quantum object 3 1.1 The problem 3 1.2 The end of space and time 6 1.3 Geometry quantized 9 1.4 Physical consequences of the existence of the Planck scale 18 1.4.1 Discreteness: scaling is finite 18 1.4.2 Fuzziness: disappearance of classical space and time 19 1.5 Graphs, loops and quantum Faraday lines 20 1.6 The landscape 22 1.7 Complements 24 1.7.1 SU(2) representations and spinors 24 1.7.2 Pauli matrices 27 1.7.3 Eigenvalues of the volume 29 2 Physics without time 31 2.1 Hamilton function 31 2.1.1 Boundary terms 35 2.2 Transition amplitude 36 2.2.1 Transition amplitude as an integral over paths 37 2.2.2 General properties of the transition amplitude 40 2.3 General covariant form of mechanics 42 2.3.1 Hamilton function of a general covariant system 45 2.3.2 Partial observables 46 2.3.3 Classical physics without time 47 2.4 Quantum physics without time 48 2.4.1 Observability in quantum gravity 51 2.4.2 Boundary formalism 52 2.4.3 Relational quanta, relational space 54 2.5 Complements 55 2.5.1 Example of timeless system 55 2.5.2 Symplectic structure and Hamilton function 57 iv v Contents 3 Gravity 59 3.1 Einstein’s formulation 59 3.2 Tetrads and fermions 60 3.2.1 An important sign 63 3.2.2 First-order formulation 64 3.3 Holst action and Barbero-Immirzi coupling constant 65 3.3.1
    [Show full text]
  • Why We Need Quantum Gravity and Why We Don't Have It
    Why we need quantum gravity and why we don’t have it Steve Carlip U.C. Davis Quantum Gravity: Physics and Philosophy IHES, Bures-sur-Yvette October 2017 The first appearance of quantum gravity Einstein 1916: gravitational waves ) quantum theory must modify gravity Start of a long journey . The search for quantum gravity has given us – Gauge-fixing and ghosts (Feynman, DeWitt) – The correct understanding of constrained systems (Dirac, Komar) – The effective action and effective potential formalism (DeWitt) – The Hamiltonian formulation of general relativity (Arnowitt, Deser, Misner) – A better understanding of observables in classical general relativity (many) – Black hole thermodynamics (Bekenstein, Hawking, and others) – Insights into cosmology (Hartle, Hawking, and others) – Insights into the renormalization group (Weinberg) – Slick was to calculate QCD amplitudes (many) – Holography, with all of its implications (’t Hooft, Susskind, Maldacena) –Twistor theory (Penrose) What it hasn’t given us is a quantum theory of gravity What is quantum gravity? Requirements • Quantum mechanical –usual apparatus of operators, states in a Hilbert space – perhaps modified at some scales – perhaps with issues of interpretation (“wave function of the Universe”) • Reduces to general relativity in some classical limit • Reduces to standard quantum mechanics in some weak gravity limit Other desirable properties • Explains black hole thermodynamics (probably) • Explains other “universal” properties (maybe) – Short distance dimensional reduction? – Minimum length?
    [Show full text]
  • Graviton Propagator from LQG
    Graviton propagator from LQG Carlo Rovelli International Loop Quantum Gravity Seminar from Marseille, September 2006 4d: 1. Particle scattering in loop quantum gravity general idea Leonardo Modesto, CR PRL, 191301,2005, gr-qc/0502036 2. Graviton propagator from background-independent quantum gravity 1st calulation CR PRL, to appear, gr-qc/0508124 3. Graviton propagator in loop quantum gravity detailed discussion Eugenio Bianchi , Leonardo Modesto , Simone Speziale , CR and 2nd order results CQG, to appear, gr-qc/0604044 4. Group Integral Techniques for the Spinfoam Graviton Propagator improved boundary state Etera Livine, Simone Speziale gr-qc/0608131 3d: 5. Towards the graviton from spinfoams: The 3-D toy model Simone Speziale JHEP 0605:039,2006, gr-qc/0512102 6. Towards the graviton from spinfoams: Higher order corrections in the 3-D toy model Etera Livine , Simone Speziale , Joshua L. Willis gr-qc/0605123 ( 6. From 3-geometry transition amplitudes to graviton states Federico Mattei, Simone Speziale, Massimo Testa , CR Nucl.Phys.B739:234-253,2006 , gr-qc/0508007 ) Where we are in LQG • Kinematics well-defined: + Separable kinematical Hilbert space (spin networks, s-knots) + Geometrical interpretation (area and volume operators) - Euclidean/Lorentzian ? Immirzi parameter ? • Dynamics: • Hamiltonian operator (in various formulations) • Spinfoam formalism (several models) - triangulation independence: Group Field Theory (+ good finiteness, - λ ?) - Barrett-Crane vertex, or 10j symbol iS iS A e Regge + e− Regge + D vertex ∼ good bad Barrett,
    [Show full text]