Fourier Analysis for Beginners

Total Page:16

File Type:pdf, Size:1020Kb

Fourier Analysis for Beginners Fourier Analysis for Beginners Indiana University School of Optometry Coursenotes for V791: Quantitative Methods for Vision Research (Sixth edition) © L.N. Thibos (1989, 1993, 2000, 2003, 2012, 2014) Table of Contents Preface.............................................................................................................................v Chapter 1: Mathematical Preliminaries .....................................................................1 1.A Introduction ...............................................................................................1 1.B Review of some useful concepts of geometry and algebra. ................3 Scalar arithmetic....................................................................................3 Vector arithmetic...................................................................................4 Vector multiplication............................................................................6 Vector length..........................................................................................8 Summary. ...............................................................................................9 1.C Review of phasors and complex numbers.............................................9 Phasor length, the magnitude of complex numbers, and Euler's formula. .....................................................................................10 Multiplying complex numbers ...........................................................12 Statistics of complex numbers.............................................................13 1.D Terminology summary. ...........................................................................13 Chapter 2: Sinusoids, Phasors, and Matrices ..........................................................15 2.A Phasor representation of sinusoidal waveforms..................................15 2.B Matrix algebra. ...........................................................................................16 Rotation matrices. .................................................................................18 Basis vectors...........................................................................................20 Orthogonal decomposition..................................................................20 Chapter 3: Fourier Analysis of Discrete Functions .................................................23 3.A Introduction. ..............................................................................................23 3.B A Function Sampled at 1 point...............................................................24 3.C A Function Sampled at 2 points.............................................................25 3.D Fourier Analysis is a Linear Transformation.......................................26 3.E Fourier Analysis is a Change in Basis Vectors. ....................................27 3.F A Function Sampled at 3 points..............................................................29 3.G A Function Sampled at D points............................................................32 3.H Tidying Up................................................................................................34 3.I Parseval's Theorem....................................................................................36 3.J A Statistical Connection............................................................................39 3.K Image Contrast and Compound Gratings............................................41 3.L Fourier Descriptors of the Shape of a Closed Curve ...........................43 Chapter 4: The Frequency Domain............................................................................47 4.A Spectral Analysis.......................................................................................47 4.B Physical Units.............................................................................................48 4.C Cartesian vs. Polar Form. .........................................................................50 4.D Complex Form of Spectral Analysis.......................................................51 4.E Complex Fourier Coefficients..................................................................53 4.F Relationship between Complex and Trigonometric Fourier Coefficients.........................................................................................................55 4.G Discrete Fourier Transforms in Two or More Dimensions.................58 4.H Matlab's Implementation of the DFT ....................................................59 4.I Parseval's Theorem, Revisited .................................................................60 Chapter 5: Continuous Functions..............................................................................61 5.A Introduction. ..............................................................................................58 5.B Inner products and orthogonality...........................................................63 5.C Symmetry. ..................................................................................................65 5.D Complex-valued functions. .....................................................................67 Chapter 6: Fourier Analysis of Continuous Functions...........................................69 6.A Introduction. ..............................................................................................69 6.B The Fourier Model.....................................................................................69 6.C Practicalities of Obtaining the Fourier Coefficients. ............................71 6.D Theorems....................................................................................................73 1. Linearity .............................................................................................73 2. Shift theorem......................................................................................73 3. Scaling theorem.................................................................................75 4. Differentiation theorem....................................................................76 5. Integration theorem ..........................................................................77 6.E Non-sinusoidal basis functions ...............................................................79 Chapter 7: Sampling Theory.......................................................................................81 7.A Introduction. ..............................................................................................81 7.B The Sampling Theorem.............................................................................81 7.C Aliasing.......................................................................................................83 7.D Parseval's Theorem...................................................................................84 7.E Truncation Errors. .....................................................................................85 7.F Truncated Fourier Series & Regression Theory. ...................................86 Chapter 8: Statistical Description of Fourier Coefficients......................................89 8.A Introduction. ..............................................................................................89 8.B Statistical Assumptions.............................................................................90 8.C Mean and Variance of Fourier Coefficients for Noisy Signals. ..........92 8.D Distribution of Fourier Coefficients for Noisy Signals........................94 8.E Distribution of Fourier Coefficients for Random Signals....................97 8.F Signal Averaging. ......................................................................................98 Chapter 9: Hypothesis Testing for Fourier Coefficients.........................................101 9.A Introduction. ..............................................................................................101 9.B Regression analysis. ..................................................................................101 9.C Band-limited signals. ................................................................................104 9.D Confidence intervals.................................................................................105 9.E Multivariate statistical analysis of Fourier coefficients........................107 Chapter 10: Directional Data Analysis......................................................................109 10.A Introduction. ............................................................................................109 10.B Determination of mean direction and concentration. ........................109 10.C Hypothesis testing. .................................................................................110 10.D Grouped data...........................................................................................110 10.D The Fourier connection. .........................................................................112 10.E Higher harmonics....................................................................................113 Chapter 11: The Fourier Transform...........................................................................115 11.A Introduction. ............................................................................................115 11.B The Inverse Cosine and Sine Transforms.............................................115 11.C The Forward Cosine and Sine Transforms..........................................117 11.D Discrete
Recommended publications
  • The Fast Fourier Transform
    The Fast Fourier Transform Derek L. Smith SIAM Seminar on Algorithms - Fall 2014 University of California, Santa Barbara October 15, 2014 Table of Contents History of the FFT The Discrete Fourier Transform The Fast Fourier Transform MP3 Compression via the DFT The Fourier Transform in Mathematics Table of Contents History of the FFT The Discrete Fourier Transform The Fast Fourier Transform MP3 Compression via the DFT The Fourier Transform in Mathematics Navigating the Origins of the FFT The Royal Observatory, Greenwich, in London has a stainless steel strip on the ground marking the original location of the prime meridian. There's also a plaque stating that the GPS reference meridian is now 100m to the east. This photo is the culmination of hundreds of years of mathematical tricks which answer the question: How to construct a more accurate clock? Or map? Or star chart? Time, Location and the Stars The answer involves a naturally occurring reference system. Throughout history, humans have measured their location on earth, in order to more accurately describe the position of astronomical bodies, in order to build better time-keeping devices, to more successfully navigate the earth, to more accurately record the stars... and so on... and so on... Time, Location and the Stars Transoceanic exploration previously required a vessel stocked with maps, star charts and a highly accurate clock. Institutions such as the Royal Observatory primarily existed to improve a nations' navigation capabilities. The current state-of-the-art includes atomic clocks, GPS and computerized maps, as well as a whole constellation of government organizations.
    [Show full text]
  • B1. Fourier Analysis of Discrete Time Signals
    B1. Fourier Analysis of Discrete Time Signals Objectives • Introduce discrete time periodic signals • Define the Discrete Fourier Series (DFS) expansion of periodic signals • Define the Discrete Fourier Transform (DFT) of signals with finite length • Determine the Discrete Fourier Transform of a complex exponential 1. Introduction In the previous chapter we defined the concept of a signal both in continuous time (analog) and discrete time (digital). Although the time domain is the most natural, since everything (including our own lives) evolves in time, it is not the only possible representation. In this chapter we introduce the concept of expanding a generic signal in terms of elementary signals, such as complex exponentials and sinusoids. This leads to the frequency domain representation of a signal in terms of its Fourier Transform and the concept of frequency spectrum so that we characterize a signal in terms of its frequency components. First we begin with the introduction of periodic signals, which keep repeating in time. For these signals it is fairly easy to determine an expansion in terms of sinusoids and complex exponentials, since these are just particular cases of periodic signals. This is extended to signals of a finite duration which becomes the Discrete Fourier Transform (DFT), one of the most widely used algorithms in Signal Processing. The concepts introduced in this chapter are at the basis of spectral estimation of signals addressed in the next two chapters. 2. Periodic Signals VIDEO: Periodic Signals (19:45) http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/chapter1-seg1_media/chapter1-seg1- 0.wmv http://faculty.nps.edu/rcristi/eo3404/b-discrete-fourier-transform/videos/b1_02_periodicSignals.mp4 In this section we define a class of discrete time signals called Periodic Signals.
    [Show full text]
  • About the Phasor Pathways in Analogical Amplitude Modulations
    About the Phasor Pathways in Analogical Amplitude Modulations H.M. de Oliveira1, F.D. Nunes1 ABSTRACT Phasor diagrams have long been used in Physics and Engineering. In telecommunications, this is particularly useful to clarify how the modulations work. This paper addresses rotating phasor pathways derived from different standard Amplitude Modulation Systems (e.g. A3E, H3E, J3E, C3F). A cornucopia of algebraic curves is then derived assuming a single tone or a double tone modulation signal. The ratio of the frequency of the tone modulator (fm) and carrier frequency (fc) is considered in two distinct cases, namely: fm/fc<1 and fm/fc 1. The geometric figures are some sort of Lissajours figures. Different shapes appear looking like epicycloids (including cardioids), rhodonea curves, Lemniscates, folium of Descartes or Lamé curves. The role played by the modulation index is elucidated in each case. Keyterms: Phasor diagram, AM, VSB, Circular harmonics, algebraic curves, geometric figures. 1. Introduction Classical analogical modulations are a nearly exhausted subject, a century after its introduction. The first approach to the subject typically relies on the case of transmission of a single tone (for the sake of simplicity) and establishes the corresponding phasor diagram. This furnishes a straightforward interpretation, which is quite valuable, especially with regard to illustrating the effects of the modulation index, overmodulation effects, and afterward, distinctions between AM and NBFM. Often this presentation is rather naïf. Nice applets do exist to help the understanding of the phasor diagram [1- 4]. However ... Without further target, unpretentiously, we start a deeper investigating the dynamic phasor diagram with the aim of building applets or animations that illustrates the temporal variation of the magnitude of the amplitude modulated phasor.
    [Show full text]
  • Correspondence Between Phasor Transforms and Frequency Response Function in Rlc Circuits
    CORRESPONDENCE BETWEEN PHASOR TRANSFORMS AND FREQUENCY RESPONSE FUNCTION IN RLC CIRCUITS Hassan Mohamed Abdelalim Abdalla Polytechnic Department of Engineering and Architecture, University of Studies of Udine, 33100 Udine, Italy. E-mail: [email protected] Abstract: The analysis of RLC circuits is usually made by considering phasor transforms of sinusoidal signals (characterized by constant amplitude, period and phase) that allow the calculation of the AC steady state of RLC circuits by solving simple algebraic equations. In this paper I try to show that phasor representation of RLC circuits is analogue to consider the frequency response function (commonly designated by FRF) of the total impedance of the circuit. In this way I derive accurate expressions for the resonance and anti-resonance frequencies and their corresponding values of impedances of the parallel and series RLC circuits respectively, notwithstanding the presence of damping effects. Keywords: Laplace transforms, phasors, Frequency response function, RLC circuits. 1. Introduction and mathematical background RLC circuits have many applications as oscillator circuits described by a second-order differential equation. The three circuit elements, resistor R, inductor L and capacitor C can be combined in different manners. All three elements in series or in parallel are the simplest and most straightforward to analyze. RLC circuits are analyzed mathematically in the phasor domain instead of solving differential equations in the time domain. Generally, a time-dependent sinusoidal function is expressed in the following way è [1]: () (1.1) where is the amplitude, is the angular frequency and is the initial phase of . () = sin ( + ) The medium value of is given by: () () (1.2) 1 2 = |()| = where is the period of the sinusoidal function .
    [Show full text]
  • Fourier Series
    Academic Press Encyclopedia of Physical Science and Technology Fourier Series James S. Walker Department of Mathematics University of Wisconsin–Eau Claire Eau Claire, WI 54702–4004 Phone: 715–836–3301 Fax: 715–836–2924 e-mail: [email protected] 1 2 Encyclopedia of Physical Science and Technology I. Introduction II. Historical background III. Definition of Fourier series IV. Convergence of Fourier series V. Convergence in norm VI. Summability of Fourier series VII. Generalized Fourier series VIII. Discrete Fourier series IX. Conclusion GLOSSARY ¢¤£¦¥¨§ Bounded variation: A function has bounded variation on a closed interval ¡ ¢ if there exists a positive constant © such that, for all finite sets of points "! "! $#&% (' #*) © ¥ , the inequality is satisfied. Jordan proved that a function has bounded variation if and only if it can be expressed as the difference of two non-decreasing functions. Countably infinite set: A set is countably infinite if it can be put into one-to-one £0/"£ correspondence with the set of natural numbers ( +,£¦-.£ ). Examples: The integers and the rational numbers are countably infinite sets. "! "!;: # # 123547698 Continuous function: If , then the function is continuous at the point : . Such a point is called a continuity point for . A function which is continuous at all points is simply referred to as continuous. Lebesgue measure zero: A set < of real numbers is said to have Lebesgue measure ! $#¨CED B ¢ £¦¥ zero if, for each =?>A@ , there exists a collection of open intervals such ! ! D D J# K% $#L) ¢ £¦¥ ¥ ¢ = that <GFIH and . Examples: All finite sets, and all countably infinite sets, have Lebesgue measure zero. "! "! % # % # Odd and even functions: A function is odd if for all in its "! "! % # # domain.
    [Show full text]
  • FOURIER TRANSFORM Very Broadly Speaking, the Fourier Transform Is a Systematic Way to Decompose “Generic” Functions Into
    FOURIER TRANSFORM TERENCE TAO Very broadly speaking, the Fourier transform is a systematic way to decompose “generic” functions into a superposition of “symmetric” functions. These symmetric functions are usually quite explicit (such as a trigonometric function sin(nx) or cos(nx)), and are often associated with physical concepts such as frequency or energy. What “symmetric” means here will be left vague, but it will usually be associated with some sort of group G, which is usually (though not always) abelian. Indeed, the Fourier transform is a fundamental tool in the study of groups (and more precisely in the representation theory of groups, which roughly speaking describes how a group can define a notion of symmetry). The Fourier transform is also related to topics in linear algebra, such as the representation of a vector as linear combinations of an orthonormal basis, or as linear combinations of eigenvectors of a matrix (or a linear operator). To give a very simple prototype of the Fourier transform, consider a real-valued function f : R → R. Recall that such a function f(x) is even if f(−x) = f(x) for all x ∈ R, and is odd if f(−x) = −f(x) for all x ∈ R. A typical function f, such as f(x) = x3 + 3x2 + 3x + 1, will be neither even nor odd. However, one can always write f as the superposition f = fe + fo of an even function fe and an odd function fo by the formulae f(x) + f(−x) f(x) − f(−x) f (x) := ; f (x) := . e 2 o 2 3 2 2 3 For instance, if f(x) = x + 3x + 3x + 1, then fe(x) = 3x + 1 and fo(x) = x + 3x.
    [Show full text]
  • An Introduction to Fourier Analysis Fourier Series, Partial Differential Equations and Fourier Transforms
    An Introduction to Fourier Analysis Fourier Series, Partial Differential Equations and Fourier Transforms Notes prepared for MA3139 Arthur L. Schoenstadt Department of Applied Mathematics Naval Postgraduate School Code MA/Zh Monterey, California 93943 August 18, 2005 c 1992 - Professor Arthur L. Schoenstadt 1 Contents 1 Infinite Sequences, Infinite Series and Improper Integrals 1 1.1Introduction.................................... 1 1.2FunctionsandSequences............................. 2 1.3Limits....................................... 5 1.4TheOrderNotation................................ 8 1.5 Infinite Series . ................................ 11 1.6ConvergenceTests................................ 13 1.7ErrorEstimates.................................. 15 1.8SequencesofFunctions.............................. 18 2 Fourier Series 25 2.1Introduction.................................... 25 2.2DerivationoftheFourierSeriesCoefficients.................. 26 2.3OddandEvenFunctions............................. 35 2.4ConvergencePropertiesofFourierSeries.................... 40 2.5InterpretationoftheFourierCoefficients.................... 48 2.6TheComplexFormoftheFourierSeries.................... 53 2.7FourierSeriesandOrdinaryDifferentialEquations............... 56 2.8FourierSeriesandDigitalDataTransmission.................. 60 3 The One-Dimensional Wave Equation 70 3.1Introduction.................................... 70 3.2TheOne-DimensionalWaveEquation...................... 70 3.3 Boundary Conditions ............................... 76 3.4InitialConditions................................
    [Show full text]
  • Fourier Transforms & the Convolution Theorem
    Convolution, Correlation, & Fourier Transforms James R. Graham 11/25/2009 Introduction • A large class of signal processing techniques fall under the category of Fourier transform methods – These methods fall into two broad categories • Efficient method for accomplishing common data manipulations • Problems related to the Fourier transform or the power spectrum Time & Frequency Domains • A physical process can be described in two ways – In the time domain, by h as a function of time t, that is h(t), -∞ < t < ∞ – In the frequency domain, by H that gives its amplitude and phase as a function of frequency f, that is H(f), with -∞ < f < ∞ • In general h and H are complex numbers • It is useful to think of h(t) and H(f) as two different representations of the same function – One goes back and forth between these two representations by Fourier transforms Fourier Transforms ∞ H( f )= ∫ h(t)e−2πift dt −∞ ∞ h(t)= ∫ H ( f )e2πift df −∞ • If t is measured in seconds, then f is in cycles per second or Hz • Other units – E.g, if h=h(x) and x is in meters, then H is a function of spatial frequency measured in cycles per meter Fourier Transforms • The Fourier transform is a linear operator – The transform of the sum of two functions is the sum of the transforms h12 = h1 + h2 ∞ H ( f ) h e−2πift dt 12 = ∫ 12 −∞ ∞ ∞ ∞ h h e−2πift dt h e−2πift dt h e−2πift dt = ∫ ( 1 + 2 ) = ∫ 1 + ∫ 2 −∞ −∞ −∞ = H1 + H 2 Fourier Transforms • h(t) may have some special properties – Real, imaginary – Even: h(t) = h(-t) – Odd: h(t) = -h(-t) • In the frequency domain these
    [Show full text]
  • Fourier Analysis
    Chapter 1 Fourier analysis In this chapter we review some basic results from signal analysis and processing. We shall not go into detail and assume the reader has some basic background in signal analysis and processing. As basis for signal analysis, we use the Fourier transform. We start with the continuous Fourier transformation. But in applications on the computer we deal with a discrete Fourier transformation, which introduces the special effect known as aliasing. We use the Fourier transformation for processes such as convolution, correlation and filtering. Some special attention is given to deconvolution, the inverse process of convolution, since it is needed in later chapters of these lecture notes. 1.1 Continuous Fourier Transform. The Fourier transformation is a special case of an integral transformation: the transforma- tion decomposes the signal in weigthed basis functions. In our case these basis functions are the cosine and sine (remember exp(iφ) = cos(φ) + i sin(φ)). The result will be the weight functions of each basis function. When we have a function which is a function of the independent variable t, then we can transform this independent variable to the independent variable frequency f via: +1 A(f) = a(t) exp( 2πift)dt (1.1) −∞ − Z In order to go back to the independent variable t, we define the inverse transform as: +1 a(t) = A(f) exp(2πift)df (1.2) Z−∞ Notice that for the function in the time domain, we use lower-case letters, while for the frequency-domain expression the corresponding uppercase letters are used. A(f) is called the spectrum of a(t).
    [Show full text]
  • STATISTICAL FOURIER ANALYSIS: CLARIFICATIONS and INTERPRETATIONS by DSG Pollock
    STATISTICAL FOURIER ANALYSIS: CLARIFICATIONS AND INTERPRETATIONS by D.S.G. Pollock (University of Leicester) Email: stephen [email protected] This paper expounds some of the results of Fourier theory that are es- sential to the statistical analysis of time series. It employs the algebra of circulant matrices to expose the structure of the discrete Fourier transform and to elucidate the filtering operations that may be applied to finite data sequences. An ideal filter with a gain of unity throughout the pass band and a gain of zero throughout the stop band is commonly regarded as incapable of being realised in finite samples. It is shown here that, to the contrary, such a filter can be realised both in the time domain and in the frequency domain. The algebra of circulant matrices is also helpful in revealing the nature of statistical processes that are band limited in the frequency domain. In order to apply the conventional techniques of autoregressive moving-average modelling, the data generated by such processes must be subjected to anti- aliasing filtering and sub sampling. These techniques are also described. It is argued that band-limited processes are more prevalent in statis- tical and econometric time series than is commonly recognised. 1 D.S.G. POLLOCK: Statistical Fourier Analysis 1. Introduction Statistical Fourier analysis is an important part of modern time-series analysis, yet it frequently poses an impediment that prevents a full understanding of temporal stochastic processes and of the manipulations to which their data are amenable. This paper provides a survey of the theory that is not overburdened by inessential complications, and it addresses some enduring misapprehensions.
    [Show full text]
  • Complex Numbers and Phasor Technique
    RaoApp-Av3.qxd 12/18/03 5:44 PM Page 779 APPENDIX A Complex Numbers and Phasor Technique In this appendix, we discuss a mathematical technique known as the phasor technique, pertinent to operations involving sinusoidally time-varying quanti- ties.The technique simplifies the solution of a differential equation in which the steady-state response for a sinusoidally time-varying excitation is to be deter- mined, by reducing the differential equation to an algebraic equation involving phasors. A phasor is a complex number or a complex variable. We first review complex numbers and associated operations. A complex number has two parts: a real part and an imaginary part. Imag- inary numbers are square roots of negative real numbers. To introduce the con- cept of an imaginary number, we define 2-1 = j (A.1a) or ;j 2 =-1 (A.1b) 1 2 Thus, j5 is the positive square root of -25, -j10 is the negative square root of -100, and so on.A complex number is written in the form a + jb, where a is the real part and b is the imaginary part. Examples are 3 + j4 -4 + j1 -2 - j2 2 - j3 A complex number is represented graphically in a complex plane by using Rectangular two orthogonal axes, corresponding to the real and imaginary parts, as shown in form Fig.A.1, in which are plotted the numbers just listed. Since the set of orthogonal axes resembles the rectangular coordinate axes, the representation a + jb is 1 2 known as the rectangular form. 779 RaoApp-Av3.qxd 12/18/03 5:44 PM Page 780 780 Appendix A Complex Numbers and Phasor Technique Imaginary (3 ϩ j4) 4 (Ϫ4 ϩ j1) 1 Ϫ2 2 Ϫ 4 0 3 Real Ϫ2 (Ϫ2 Ϫj2) Ϫ3 Ϫ FIGURE A.1 (2 j3) Graphical representation of complex numbers in rectangular form.
    [Show full text]
  • Fourier Transform, Convolution Theorem, and Linear Dynamical Systems April 28, 2016
    Mathematical Tools for Neuroscience (NEU 314) Princeton University, Spring 2016 Jonathan Pillow Lecture 23: Fourier Transform, Convolution Theorem, and Linear Dynamical Systems April 28, 2016. Discrete Fourier Transform (DFT) We will focus on the discrete Fourier transform, which applies to discretely sampled signals (i.e., vectors). Linear algebra provides a simple way to think about the Fourier transform: it is simply a change of basis, specifically a mapping from the time domain to a representation in terms of a weighted combination of sinusoids of different frequencies. The discrete Fourier transform is therefore equiv- alent to multiplying by an orthogonal (or \unitary", which is the same concept when the entries are complex-valued) matrix1. For a vector of length N, the matrix that performs the DFT (i.e., that maps it to a basis of sinusoids) is an N × N matrix. The k'th row of this matrix is given by exp(−2πikt), for k 2 [0; :::; N − 1] (where we assume indexing starts at 0 instead of 1), and t is a row vector t=0:N-1;. Recall that exp(iθ) = cos(θ) + i sin(θ), so this gives us a compact way to represent the signal with a linear superposition of sines and cosines. The first row of the DFT matrix is all ones (since exp(0) = 1), and so the first element of the DFT corresponds to the sum of the elements of the signal. It is often known as the \DC component". The next row is a complex sinusoid that completes one cycle over the length of the signal, and each subsequent row has a frequency that is an integer multiple of this \fundamental" frequency.
    [Show full text]