Fourier Analysis for Beginners

Fourier Analysis for Beginners

Fourier Analysis for Beginners Indiana University School of Optometry Coursenotes for V791: Quantitative Methods for Vision Research (Sixth edition) © L.N. Thibos (1989, 1993, 2000, 2003, 2012, 2014) Table of Contents Preface.............................................................................................................................v Chapter 1: Mathematical Preliminaries .....................................................................1 1.A Introduction ...............................................................................................1 1.B Review of some useful concepts of geometry and algebra. ................3 Scalar arithmetic....................................................................................3 Vector arithmetic...................................................................................4 Vector multiplication............................................................................6 Vector length..........................................................................................8 Summary. ...............................................................................................9 1.C Review of phasors and complex numbers.............................................9 Phasor length, the magnitude of complex numbers, and Euler's formula. .....................................................................................10 Multiplying complex numbers ...........................................................12 Statistics of complex numbers.............................................................13 1.D Terminology summary. ...........................................................................13 Chapter 2: Sinusoids, Phasors, and Matrices ..........................................................15 2.A Phasor representation of sinusoidal waveforms..................................15 2.B Matrix algebra. ...........................................................................................16 Rotation matrices. .................................................................................18 Basis vectors...........................................................................................20 Orthogonal decomposition..................................................................20 Chapter 3: Fourier Analysis of Discrete Functions .................................................23 3.A Introduction. ..............................................................................................23 3.B A Function Sampled at 1 point...............................................................24 3.C A Function Sampled at 2 points.............................................................25 3.D Fourier Analysis is a Linear Transformation.......................................26 3.E Fourier Analysis is a Change in Basis Vectors. ....................................27 3.F A Function Sampled at 3 points..............................................................29 3.G A Function Sampled at D points............................................................32 3.H Tidying Up................................................................................................34 3.I Parseval's Theorem....................................................................................36 3.J A Statistical Connection............................................................................39 3.K Image Contrast and Compound Gratings............................................41 3.L Fourier Descriptors of the Shape of a Closed Curve ...........................43 Chapter 4: The Frequency Domain............................................................................47 4.A Spectral Analysis.......................................................................................47 4.B Physical Units.............................................................................................48 4.C Cartesian vs. Polar Form. .........................................................................50 4.D Complex Form of Spectral Analysis.......................................................51 4.E Complex Fourier Coefficients..................................................................53 4.F Relationship between Complex and Trigonometric Fourier Coefficients.........................................................................................................55 4.G Discrete Fourier Transforms in Two or More Dimensions.................58 4.H Matlab's Implementation of the DFT ....................................................59 4.I Parseval's Theorem, Revisited .................................................................60 Chapter 5: Continuous Functions..............................................................................61 5.A Introduction. ..............................................................................................58 5.B Inner products and orthogonality...........................................................63 5.C Symmetry. ..................................................................................................65 5.D Complex-valued functions. .....................................................................67 Chapter 6: Fourier Analysis of Continuous Functions...........................................69 6.A Introduction. ..............................................................................................69 6.B The Fourier Model.....................................................................................69 6.C Practicalities of Obtaining the Fourier Coefficients. ............................71 6.D Theorems....................................................................................................73 1. Linearity .............................................................................................73 2. Shift theorem......................................................................................73 3. Scaling theorem.................................................................................75 4. Differentiation theorem....................................................................76 5. Integration theorem ..........................................................................77 6.E Non-sinusoidal basis functions ...............................................................79 Chapter 7: Sampling Theory.......................................................................................81 7.A Introduction. ..............................................................................................81 7.B The Sampling Theorem.............................................................................81 7.C Aliasing.......................................................................................................83 7.D Parseval's Theorem...................................................................................84 7.E Truncation Errors. .....................................................................................85 7.F Truncated Fourier Series & Regression Theory. ...................................86 Chapter 8: Statistical Description of Fourier Coefficients......................................89 8.A Introduction. ..............................................................................................89 8.B Statistical Assumptions.............................................................................90 8.C Mean and Variance of Fourier Coefficients for Noisy Signals. ..........92 8.D Distribution of Fourier Coefficients for Noisy Signals........................94 8.E Distribution of Fourier Coefficients for Random Signals....................97 8.F Signal Averaging. ......................................................................................98 Chapter 9: Hypothesis Testing for Fourier Coefficients.........................................101 9.A Introduction. ..............................................................................................101 9.B Regression analysis. ..................................................................................101 9.C Band-limited signals. ................................................................................104 9.D Confidence intervals.................................................................................105 9.E Multivariate statistical analysis of Fourier coefficients........................107 Chapter 10: Directional Data Analysis......................................................................109 10.A Introduction. ............................................................................................109 10.B Determination of mean direction and concentration. ........................109 10.C Hypothesis testing. .................................................................................110 10.D Grouped data...........................................................................................110 10.D The Fourier connection. .........................................................................112 10.E Higher harmonics....................................................................................113 Chapter 11: The Fourier Transform...........................................................................115 11.A Introduction. ............................................................................................115 11.B The Inverse Cosine and Sine Transforms.............................................115 11.C The Forward Cosine and Sine Transforms..........................................117 11.D Discrete

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    201 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us