Backward Can Extrusion and Materials Behaviour

Total Page:16

File Type:pdf, Size:1020Kb

Backward Can Extrusion and Materials Behaviour Backward can extrusion and materials behaviour Citation for published version (APA): Sillekens, W. H. (1992). Backward can extrusion and materials behaviour. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR374925 DOI: 10.6100/IR374925 Document status and date: Published: 01/01/1992 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. Download date: 27. Sep. 2021 Backward Can Extrusion and Materials Behaviour W. H. Sillekens CJP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG Sillekens, Wilhelmus Hubertina Backward can extrusion and materials behaviour 1 Wilhelmus Hubertina Sillekens. - Eindhoven : Technische Universiteit Eindhoven. - 111. Proefschrift Eindhoven. - Met lit. opg. - Met samenvatting in het Nederlands. ISBN 90-386-0032·1 Trefw.: omvormtechniek. Druk: drukkerij Creemers, Sint Odiliënberg Dit proefschrift is goedgekeurd door de promotoren: prof. ir. J.A.G. Kals en Prof. Dr.-Ing. R. Kopp copromotor: dr. ir. J.H. Dautzenberg Backward Can Extrusion and Materials Behaviour PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de Rector Magnificus, prof. dr.• I.H. van Lint, voor een commissie aangewezen door het College van Dekanen in het openbaar te verdedigen op vrijdag 5 juni 1992 om 14.00 uur door WILHELMUS HUBERTINA SILLEKENS geboren te Herten vii Summary This thesis reports on a studyin the field of metal forming. Topic is the bulk-forming process of backward can extrusion in relation to the plastic behaviour of the worked material. The issue of the workpiece material's behaviour during forming is an interesting one: it is here where the fields of materials science and forming technology have a common relevance. A better insight into these phenomena - tor the aim of better process control - requires the inlegration of aspects trom both disciplines. lt is in this context that the present contribution must be regarded. Backward can extrusion is used in the mass production of discrete parts tor the manufacture of can-shaped components. lndustrial productions cover a variety of shapes, sizes and materials; these products are utilised in a diversity of consumer goods. Presently available methods of backward can extrusion modelling are reviewed. These are classified in experimental, analytica!, and numerical methods. Special emphasis is placed on the category of analytica! models. Same important upper-bound models, proposed in the literature, are introduced. A comparison on the basis of the upper-bound principle makes clear that each of the treated models has an outlined validity range. From a combination of these models, it is possible to calculate the ram pressure as a tunetion of the ram stroke tor the initia! and the final stage of the process. In addition, information is acquired concerning the material flow. A further account deals with the properties, which are important in the evaluation of a (new) material tor forming applications. A number of characteristic quantities is discussed; these reprasent distinct features of the tormability, like flow behaviour, failure behaviour, and plastic anisotropy. These quantities, as they are obtained trom basic material tests, can be used to formulate some directives for the application. Aluminiuïn, redaimed trom scrap by rapid-solidification processing, is used as an illustrative material. viii Summary Next, the attention concentratas on a particular aspect of the workpiece material's properties: the flow behaviour. This flow behaviour can be represented by means of a flow curve, which depiets the flow stress as a tunetion of the plastic strain. Except tor the influence of strain rate and temperature, such a flow curve does depend also on the strain path; this is of importance since different processes, in genera!, entail different strain paths. The strain-path dependenee of flow curves is studied. Corresponding results of compression, torsion and tension tests are compared to each ether and to those trom tests, invalving an abrupt change in the deformation mode. Obtained flow curves are described by means of an accommodated flow function. Concerning the backgrounds to these phenomena, possible crigins are discussed. In condusion, the behaviour of the workpiece material is interpreled with respect to the backward can extrusion process. An application concerns the modelling of the process trom a viewpoint of the workpiece material's ductility. An analytica! model tor the calculation of local strains and stresses is introduced. Finite-element simuiatien serves as a verification. The failure behaviour is determined experimentally, and is represented by means of ductile-failure curves. From a confrontation of the analytica! results with this experimental information, as well as with actual extrusion experiments, an insight is gained into the process limit of material tracture. ix Samenvatting Dit proefschrift beschrijft de resultaten van een studie op het gebied van de omvorm­ techniek. Onderwerp is het massief-omvormproces achterwaartse hulsextrusie in relatie tot het bewerkingsgedrag van het werkstukmateriaaL Het gedrag van het werkstukmateriaal is van bijzondere interesse: de kennisgebieden van materiaalkunde en omvormtechnologie hebben hier een raakvlak. Inzicht in dit gedrag is van belang voor een betere procesbeheersing. Dit vereist een integratie van kenniselementen uit beide disciplines; in deze context moet het gepresenteerde onderzoek worden geplaatst. Achterwaartse hulsextrusie (of slagextrusie) wordt toegepast in de massa­ fabricage van busvormige metalen onderdelen. Industriële produkties omvatten een scala aan vormen, afmetingen en materialen; deze produkten vinden toepassing in een verscheidenheid aan gebruiksgoederen. Beschikbare methoden van procesmodellering worden besproken. Deze zijn ingedeeld naar de manier van aanpak in experimentele, analytische en numerieke methoden. De belangstelling gaat vooral uit naar de klasse van bovengrensmodellen; hiervan is een inventarisatie gemaakt- gebaseerd op de literatuur. Toepassing van het bovengrensprincipe maakt duidelijk welk model het beste voldoet voor de verschillende procescondities; elk van de modellen blijkt een eigen geldigheidsgebied te hebben. Door combinatie van deze modellen wordt zowel het begin- als het eindstadium van het proces analytisch beschreven, waarbij het verloop van de stempeldruk wordt voorspeld. Bovendien wordt een indicatie verkregen betreffende de materiaalstroom. Verdere aandacht gaat uit naar de materiaaleigenschappen, die van belang zijn bij de beoordeling van een (nieuw) materiaal voor omvormende bewerkingen. Een aantal karakteristieke grootheden wordt hierbij gehanteerd, die onderscheiden kenmerken van de omvormbaarheid kwantificeren. Hierin zijn begrepen: het vloeigedrag, de ductiliteit (deformatievermogen), de plastische anisotropie. Deze grootheden zijn met behulp van materiaalproeven bepaald. Aan de hand hiervan kunnen richtlijnen worden geformuleerd voor de bewerking. Als illustratief materiaal is x Samenvatting gerecycled aluminium gebruikt, verkregen uit het basismateriaal via een snelle stollingstechniek. Eén belangrijk aspect van het materiaalgedrag betreft het llloeigedrag. Dit vloeigedrag kan worden weergegeven met behulp van een vloeikromme, die de vloeispanning van het materiaal vastlegt als functie van de plastische rek. Behalve van reksnelheid en temperatuur blijkt de vloeikromme ook afhankelijk te zijn van de rekweg; dit is van belang omdat deze rekweg varieert per omvormproces. De rekweg­ afhankelijkheid is experimenteel onderzocht, enerzijds aan de hand van stuik-, torsie­ en trekproeven, anderzijds door gecombineerde proeven met abrupte overgangen in de rekweg. Een aangepaste vloeifunctie is gebruikt om het gedrag te kwantificeren. Mogelijke oorzaken van verschillen in vloeigedrag worden behandeld. Tot slot wordt het gedrag van het werkstukmateriaal
Recommended publications
  • Extrusion.Pdf
    Extrusion: Second Edition Copyright © 2006 ASM International® M. Bauser, G. Sauer, K. Siegert, editors, p 195-321 All rights reserved. DOI:10.1361/exse2006p195 www.asminternational.org CHAPTER 5 The Production of Extruded Semifinished Products from Metallic Materials* THE HOT-WORKING PROCESS extrusion ered to be the most important of the hot-working is, in contrast to other compressive deformation processes. processes used to produce semifinished prod- ucts, a deformation process with pure compres- sive forces in all three force directions. These favorable deformation conditions do not exist in other production processes for semifinished products. Even in rolling, which is the most im- Extrusion of Materials with portant compressive working process for pro- ducing semifinished products, tensile forces oc- Working Temperatures cur in the acceleration zone of the roll gap as between 0 and 300 ЊC well as in the cross rolling process used to pierce blanks in the rolling of steel tubes. These Gu¨nther Sauer* tensile forces cause problems in the rolled prod- uct if the deformation conditions are not opti- mized. The benefits of this three-dimensional compression in terms of deformation technol- 5.1 Extrusion of Semifinished ogy, which have already been discussed in this Products in Tin Alloys book, can be clearly seen in Fig. 5.1 based on experimental results for face-centred cubic (fcc) Tin is a silver-white, very soft metal with a aluminum and zinc with its hexagonal lattice stable tetragonal lattice in the temperature range structure. 20 to 161 ЊC. The pure metal has a density of The extensive variations in the extrusion pro- 7.28 g/cm3 and a melting point of 232 ЊC.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2005/0183616A1 Eberhart Et Al
    US 2005O183616A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0183616A1 Eberhart et al. (43) Pub. Date: Aug. 25, 2005 (54) BULLET WITH SPHERICAL NOSE PORTION (60) Provisional application No. 60/338,134, filed on Nov. 9, 2001. (76) Inventors: Gerald T. Eberhart, Bethalto, IL (US); Richard A. Hayes, Brighton, IL (US) Publication Classification Correspondence Address: (51) Int. Cl. .................................................. F42B 10/00 WGGN AND DANA LLP (52) U.S. Cl. .............................................................. 1027510 ATTENTION: PATENT DOCKETING ONE CENTURY TOWER, P.O. BOX 1832 NEW HAVEN, CT 06508-1832 (US) (57) ABSTRACT (21) Appl. No.: 10/871,093 A bullet includes a frontward facing aperture. Contained (22) Filed: Jun. 18, 2004 within the aperture is a relatively hard bullet frontal element that provides advantageous bullet impact performance. In Related U.S. Application Data one embodiment, the frontal element is a Steel sphere that provides advantageous penetration and weight retention (62) Division of application No. 10/288,889, filed on Nov. when the bullet impacts laminated glass., Such as an auto 6, 2002, now Pat. No. 6,837,165. mobile windshield. 32 34 27.222 %.SES 2 Patent Application Publication Aug. 25, 2005 Sheet 1 of 11 US 2005/0183616A1 Patent Application Publication Aug. 25, 2005 Sheet 2 of 11 US 2005/0183616A1 #8 ZZZZZ&º Patent Application Publication Aug. 25, 2005 Sheet 3 of 11 US 2005/0183616A1 NCSC%Net (KRSN N NYT RN T N S. s N NNC S.1N1 CN V Na N/E 2 514 N 510 FIG.5A FIG.5B Patent Application Publication Aug.
    [Show full text]
  • Cold Extrusion
    ASM Handbook, Volume 14A: Metalworking: Bulk Forming Copyright © 2005 ASM International® S.L. Semiatin, editor, p405-418 All rights reserved. DOI: 10.1361/asmhba0004005 www.asminternational.org Cold Extrusion Revised by Murali Bhupatiraju, Metaldyne and Robert Greczanik, American Axle and Manufacturing COLD EXTRUSION is a push-through com- hardening (strengthening), and grain flow or Backward extrusion: pressive forming process with the starting directional strengthening. Compared to other n R material (billet/slug) at room temperature. Dur- forging operations cold extrusion is particularly Pb=0:4[sys+K( ln R) ](ab+bb ln R) ing the process, however, the deforming material attractive for the following reasons: dimensional R71 undergoes deformation heating (conversion of precision, superior surface finish, net-shaped where deformation work to heat) to several hundred features, lower energy consumption, higher degrees. Typically, a punch is used to apply production rates, and cleaner work environment. a af=1:15 7 cot a +4my pressure to the billet enclosed, partially or com- Drawbacks of cold extrusion are higher loads, 57:3 sin2 a pletely, in a stationary die. Aluminum and alu- lubrication cost, limited deformation, and lim- minum alloys, copper and copper alloys, carbon ited shape complexity. and steels, alloy steels, and stainless steels can be b : : R cold extruded. f ¼ 1 1 þ mð1 þ 0 5 ln Þ cot a Based on the punch and die design and the resulting material flow, cold extrusion can be Extrusion Pressure where ab =0.28; bb =2.36; s is the 0.2% yield classified into three primary processes: forward strength, psi; K is the true flow strength at unit extrusion, backward extrusion, and lateral The punch pressure in extrusion depends on strain, psi; R is the extrusion ratio; n is the strain- extrusion.
    [Show full text]
  • Heading Hints a Guide to Cold Forming Specialty Alloys Heading Hints a Guide to Cold Forming Specialty Alloys
    Heading Hints A Guide to Cold Forming Specialty Alloys Heading Hints A Guide to Cold Forming Specialty Alloys • Basics • Materials • Selection • Coatings • Tooling The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his or her own evalua- tion and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available. MEMBER: MEMBER: © Copyright 2001, CRS Holdings, Inc. All rights reserved. 8-01/5M Printed in U.S.A. Introduction Heading Hints is published by Carpenter Technology Corporation (“Carpenter”), whose Specialty Alloys Operations produces more than 400 stainless steels and specialty alloys, including numerous grades specifically designed for the heading industry. Heading Hints is intended to serve as a reference source to aid in the suc- cessful fabrication of these materials in cold forming operations. Among the subjects covered are selection, lubricants and coatings, tooling and die design and manufacture, important techniques and case histories. Most of the information relates to stainless steel and high temperature alloys heading practices, but much of it is also applicable to heading other ferrous and nonferrous alloys. While it is important to have a thorough knowledge of general cold forming procedures, virtually all applications have their unique require- ments. If you have any questions about a specific application for stainless steel or high temperature alloys, or about heading and cold forming in general, please feel free to contact Carpenter’s technical service staff.
    [Show full text]
  • Ammunition Making NRA by G. Frost
    By George E. Frost *A (11.201) 4410 A Publication of the National Rifle Association of America c in m ii MAKING w c ml U MAKING An insider's Story By George E. Frost A Publication of the National Rifle Association of America George E. Frost George Ernest Frost has been known as "Jack" to his friends in the ammunition industry for nearly six decades—since the day in 1935 when he went to work for the Western Cartridge Co. of East Alton, Illinois. A graduate of Iowa State University, with a Bachelor of Science degree in Chemical Engineering, Frost joined the Western staff to pursue a company sponsored project involving dynamite filler, and stayed for a 27-year career that saw him fill managerial and executive positions in the sales, product services, quality control and military liaison divisions of Western and its parent company, Olin-Mathieson Chemical Corp. While a part of the Olin team. Frost gained a reputation as a top-notch, competitive rifleman and shotgunner, and an avid hunter and outdoorsman. In 1962, he moved to Lewiston, Idaho, to become Vice President for Production of Cascade Cartridge Co., where he established ammunition manufacturing facilities in Lewiston and a subsidiary plant in San Luis Potosi, Mexico. From Mexico, Frost moved to the Republic of the Philippines and to the position of Executive Vice President and General Manager for The Squires-Bingham Manufacturing Co. He was instru- mental in the establishment of facilities for the production of both military and sporting metallic cartridges and shotshells. Retired since 1979, Frost continues to work with Squires Bingham's successor.
    [Show full text]
  • Small Arms Ammunition Manufacturing : Background and Pr a C Tic Es
    Small Arms Ammunition Manufacturing : Background and Pr a c tic es Presented by: Richard Pumerantz, P hD Ten - X Ammunition, Inc. PO Box 726 Lake Arrowhead , CA 9 2352 (909) 744 - 8352 www.tenxammo.com SMALL ARMS AMMUNITION MANUFACTURING : Background and Practices Introduction Knowledge of the evolution of small - arms systems for sporting and military purposes is important for the student of firearms identification. The individual components of the syst em — firearms and ammunition — are closely interrelated. Small improvements in one continue to lead to small improvements in the other. Understanding this evolution will make the student a better firearm examiner and witness. As an evolutionary overview, this discussion follows the significant milestones showing how today’s technology is connected to the past and tracing the key lines of growth. It is a story of constant improvement, of new strengths from old weaknesses, and of the incredible inventiveness of t he human mind. Ammunition Ammunition consists of four components: Propellant Projectile (bullets and shot pellets) Cartridge cases Primer Self - contained ammunition, in which the propellant, projectile, and primer are held together by a cartridge cas e, is called fixed ammunition . Artillery ammunition with separate components is called semifixed ammunition . A cartridge is a single unit of fixed ammunition. Evolution of Propellants Propellant materials are the evolutionary product of a basic tenet i n weapon technology: energy must be stored for later use . The concept of a propellant is that energy can be stored in chemical form, possibly years before it is ultimately released. This demands a material that is reasonably stable, compact, and portable.
    [Show full text]