How Many Alleles Per Locus Should Be Used to Estimate Genetic Distances?

Total Page:16

File Type:pdf, Size:1020Kb

How Many Alleles Per Locus Should Be Used to Estimate Genetic Distances? Heredity (2002) 88, 62–65 2002 Nature Publishing Group All rights reserved 0018-067X/02 $25.00 www.nature.com/hdy How many alleles per locus should be used to estimate genetic distances? ST Kalinowski Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, N.O.A.A., Seattle, WA 98112, USA As more microsatellite loci become available for use in gen- results could be achieved by examining either a few loci with etic surveys of population structure, population geneticists many alleles or many loci with a few alleles. More specifi- are able to select loci to use in population structure surveys. cally, the total number of independent alleles appears to be This study used computer simulations to investigate how the a good indicator of how precise estimates of genetic dis- number of alleles at loci affects the precision of estimates of tance will be. four common genetic distances. This showed that equivalent Heredity (2002) 88, 62–65. DOI: 10.1038/sj/hdy/6800009 Keywords: genetic distance; estimation; alleles; sampling; population genetics Introduction Edwards, 1967), the standard genetic distance of Nei, DS (Nei, 1972, 1978), and the Weir and Cockerham estimator Analysis of selectively neutral molecular markers has ␪ of FST, (Weir and Cockerham, 1984). become a common method for inferring the evolutionary Each of these genetic distances has unique evolution- history of populations and species. Technological ary and statistical properties (see Nei, 1987 for a review). advances have enabled population and conservation gen- Given a few simple assumptions, such as random mating eticists to describe increasingly complex and subtle gen- and constant population size, the genetic distance etic relationships. However, molecular data remains between two halves of a population instantly split into expensive and many population level studies are limited two completely isolated new populations will initially by the amount of data that can be collected. Efficient increase linearly with time. For example, D between two study design remains important in order to maximize the S such population fragments will be equal to ability of genetic data to describe genetic relationships between populations. Increasingly often, researchers have the luxury of selecting a set of loci to use in a study D Ϸ 2␮t from a larger number of loci that have been previously S characterized. This is particularly true for microsatellite loci. One of the most common criteria used to select loci where t is the number of generations the populations is the number of alleles present. I shall call this the allele have been isolated, and ␮ is the mutation rate of the loci number of a locus. Loci with more alleles are generally examined. In this case, F increases approximately lin- thought to produce more precise estimates of genetic dis- ST early with time, provided t is small tances than loci with few alleles, especially for closely related populations. However, loci with a large number Ϸ t of alleles can be difficult to score and take up more space FST on electrophoretic gels. This space issue is usually not a 2Ne problem when only one locus is run per gel, but it becomes a critical consideration when multiple loci are where Ne is the effective size of each population. The run on each gel. Unfortunately, there have been few expectations of DA and DC have not been expressed as guidelines for balancing these two contradictory con- functions of isolation time or other evolutionary vari- cerns. In this investigation, I examine the relationship ables, however they will initially increase linearly with between allele number and the coefficient of variation of time. All of these genetic distances are equal to zero when four popular genetic distances: the DA distance (Nei et al, populations have the same allele frequencies. The 1983), the chord distance, DC (Cavalli-Sforza and maximum value of DA, DC, and FST is equal to 1.0. DS will have a value of infinity when two populations do not share any alleles. The rate at which DA, DC, and DS Correspondence: S Kalinowski, Conservation Biology Division, Northwest increase with time is proportional to mutation rate. Fisheries Science Center, National Marine Fisheries Service, National Therefore, each of these three genetic distances is Oceanic and Atmospheric Administration, 2725 Montlake Boulevard expected to be higher at loci with many alleles than loci East, Seattle, WA 98112, USA. E-mail: [email protected] Received 3 April 2001; accepted 6 August 2001 with fewer alleles. How many alleles? ST Kalinowski 63 Methods of alleles at the locus minus one, and the total number of independent alleles is the sum of the number of inde- An analytical evaluation of the coefficient of variation for pendent alleles at each locus). For example, 16 loci each most genetic distances would be formidably complex, so having two independent alleles had approximately the I have relied on computer simulation to examine a simple same coefficient of variation for each of the genetic dis- model of population bifurcation (a similar simulation tances as two loci having 16 independent alleles each. The program available for general use is described by ratio t/Ne appeared to determine the relationship Excoffier et al, 2000). In this model, a randomly mating between number of alleles, number of loci, and the coef- population having an effective population size of Ne dip- ficient of variation. For example, the coefficient of vari- loid individuals is instantaneously split into two com- ation of genetic distances for populations of 500 individ- pletely isolated populations, each also having Ne individ- uals separated for 50 generations was identical to the uals. The populations are assumed to remain completely coefficient of variation of estimates of genetic distances isolated until samples are collected t generations after between populations of 5000 individuals separated for fragmentation. Gene trees for each locus were simulated 500 generations. using standard coalescent techniques (see Hudson, 1990 These results are in good agreement with an analysis for review). The mutation rate for each locus was of the Sanghvi (1953) genetic distance made by Foulley − obtained by selecting a number, u, from the interval [ 7, and Hill (1999). The Sanghvi distance is not used often − u 2] and using 10 as the mutation rate for that locus. Two for describing population structure, but it has tractable mutational models were used: infinite alleles and single mathematical properties and has been shown to estimate step mutation. phylogenies effectively (Takezaki and Nei, 1996). Foulley The infinite alleles model of mutation assumes that and Hill showed analytically that the coefficient of vari- each mutation is unique. The single step model of ation of the Sanghvi distance is approximately pro- mutation assumes that each allele can be represented as portional to the sum of the number of independent alleles a sum, and that each mutation either adds or subtracts at each locus in the sample. one from that sum. Mutation increasing the number of When divergence time was substantial, ie t/Ne was 1.0 repeat units was assumed to be as likely as mutation or greater, the relationship between the coefficient of decreasing the number of repeat units. All mutations variation of genetic distances and the number of inde- were assumed to change the number of repeat units by pendent alleles observed at small to moderate divergence a single step and no bounds were placed on the number times broke down, especially for highly polymorphic loci. of repeat units possible at simulated loci. Large numbers This is not especially problematic, for the utility of these of loci were simulated and loci with 2, 3, 4, 8, 16, and 33 genetic distances to quantify genetic differences between alleles were selected for analysis. Loci not having one of highly differentiated populations is limited. Keep in these numbers of alleles were dropped from analysis. All mind that both genetic drift and mutation lead to differ- samples consisted of 100 diploid individuals from each entiation. Both DA and DC approach their maximum population. The number of loci in the samples was varied value of 1.0 when mutation rate and divergence time are = from 2 to 32. Three effective population sizes (Ne 500, high. This results in these statistics having a low coef- = 5000, and 50000) and three divergence times (t 50, 500 ficient of variation when divergence time and polymor- and 5000) were examined. All combinations of these four phism are high (Figure 1), but decreases their ability to parameters was examined (number of loci, number of describe the length of population separation. DS loses its alleles, Ne, t). Four commonly used genetic distances utility when polymorphism is high, divergence time is were estimated from the data: the DA distance (Nei et al, long, and few loci are scored. In this case, samples from 1983), the chord distance, DC (Cavalli-Sforza and each population often share no alleles and DS is unde- Edwards, 1967), the standard genetic distance of Nei, DS fined. For example, about half of the loci having 33 alleles (Nei, 1978), and the Weir and Cockerham estimator of had no alleles in common in populations of 5000 individ- ␪ FST, (Weir and Cockerham, 1984). uals after 5000 generations. Lastly, ␪ has two undesirable The coefficients of variation for each of these genetic properties when divergence time and polymorphism is distances were estimated from the data by dividing the high. It asymptotically approaches a maximum value, standard deviation of the estimates by the average esti- and this value is inversely proportional to the amount of mate. Contour plots showing the coefficient of variation polymorphism present in the populations (eg, Hedrick, for data sets with different numbers of loci and varying 1999). numbers of alleles per locus were created with Sigma- Of the four distances examined, DA and DC exhibited Plot 2000.
Recommended publications
  • Y-Chromosome Short Tandem Repeat, Typing Technology, Locus Information and Allele Frequency in Different Population: a Review
    Vol. 14(27), pp. 2175-2178, 8 July, 2015 DOI:10.5897/AJB2015.14457 Article Number: 2E48C3F54052 ISSN 1684-5315 African Journal of Biotechnology Copyright © 2015 Author(s) retain the copyright of this article http://www.academicjournals.org/AJB Review Y-Chromosome short tandem repeat, typing technology, locus information and allele frequency in different population: A review Muhanned Abdulhasan Kareem1, Ameera Omran Hussein2 and Imad Hadi Hameed2* 1Babylon University, Centre of Environmental Research, Hilla City, Iraq. 2Department of Molecular Biology, Babylon University, Hilla City, Iraq. Received 29 January, 2015; Accepted 29 June, 2015 Chromosome Y microsatellites seem to be ideal markers to delineate differences between human populations. They are transmitted in uniparental and they are very sensitive for genetic drift. This review will highlight the importance of the Y- Chromosome as a tool for tracing human evolution and describes some details of Y-chromosomal short tandem repeat (STR) analysis. Among them are: microsatellites, amplification using polymerase chain reaction (PCR) of STRs, separation and detection and advantages of X-chromosomal microsatellites. Key words: Forensic, population, review, STR, Y- chromosome. INTRODUCTION Microsatellites are DNA regions with repeat units that are microsatellite, but repeats of five (penta-) or six (hexa-) 2 to 7 bp in length or most generally short tandem nucleotides are usually classified as microsatellites as repeats (STRs) or simple sequence repeats (SSRs) well. DNA can be used to study human evolution. (Ellegren, 2000; Imad et al., 2014). The classification of Besides, information from DNA typing is important for the DNA sequences is determined by the length of the medico-legal matters with polymorphisms leading to more core repeat unit and the number of adjacent repeat units.
    [Show full text]
  • Combinatorial Genomic Data Refute the Human Chromosome 2 Evolutionary Fusion and Build a Model of Functional Design for Interstitial Telomeric Repeats
    The Proceedings of the International Conference on Creationism Volume 8 Print Reference: Pages 222-228 Article 32 2018 Combinatorial Genomic Data Refute the Human Chromosome 2 Evolutionary Fusion and Build a Model of Functional Design for Interstitial Telomeric Repeats Jeffrey P. Tomkins Institute for Creation Research Follow this and additional works at: https://digitalcommons.cedarville.edu/icc_proceedings Part of the Biology Commons, and the Genomics Commons DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Tomkins, J.P. 2018. Combinatorial genomic data refute the human chromosome 2 evolutionary fusion and build a model of functional design for interstitial telomeric repeats. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 222–228. Pittsburgh, Pennsylvania: Creation Science Fellowship. Tomkins, J.P. 2018. Combinatorial genomic data refute the human chromosome 2 evolutionary fusion and build a model of functional design for interstitial telomeric repeats. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 222–228. Pittsburgh, Pennsylvania: Creation Science Fellowship. COMBINATORIAL GENOMIC DATA REFUTE THE HUMAN CHROMOSOME 2 EVOLUTIONARY FUSION AND BUILD A MODEL OF FUNCTIONAL DESIGN FOR INTERSTITIAL TELOMERIC REPEATS Jeffrey P.
    [Show full text]
  • Microdeletion of the Azfc Locus with High Frequency of Mosaicism 46,XY/47XYY in Cases of Non Obstructive Azoospermia in Eastern Population of India
    Microdeletion of the AZFc locus with high frequency of mosaicism 46,XY/47XYY in cases of non obstructive azoospermia in eastern population of India A.K. Saxena and K. Aniket Department of Pathology/Lab Medicine, Molecular Cytogenetics Laboratory, All India Institute of Medical Sciences, Patna (Bihar), India Corresponding author: A.K. Saxena E-mail: [email protected] Genet. Mol. Res. 18 (2): gmr18349 Received May 07, 2019 Accepted June 06, 2019 Published June 18, 2019 DOI http://dx.doi.org/10.4238/gmr18349 ABSTRACT. The etiopathology of male infertility is highly complex, involving gene - environment interactions to regulate spermatogenesis. Consequently, genetic analysis becomes imperative for cases of non-obstructive azoospermia (NOA) to identify the causative factors. Cases (n = 111) of NOA referred to the cytogenetics and molecular genetics laboratory of the All India Institute of Medical Sciences in -Patna from 2013-2018 were subjected to 1) karyotyping using GTG bandings techniques, 2) fluorescence in situ hybridization (FISH) for the sex determining region (SRY), and 3) PCR based analysis of STS markers based on microdeletion of the Y- chromosome after isolation of genomic DNA from whole blood. A flow cytometer was used for a cell- kinetic and DNA methylation study after incorporation of 5-azacytidine (5- AzaC) (1.0 ug/mL) in lymphocyte culture. PCR products were analyzed on an agarose gel (1.5%) and bands were visualized on Gel Doc after ethidium bromide staining. Chromosomal abnormalities, including structural numerical variations, were observed in 14 of the karyotypes. Eight cases showed a 46,XY/47,XYY i.e. mosaic pattern; two cases 46, XY/45/XO; a single case with 47,XY +16; two cases with 46,X+ ring Y; a single case with 46,XY+dicentric in Genetics and Molecular Research 18 (2): gmr18349 ©FUNPEC-RP www.funpecrp.com.br A.K.
    [Show full text]
  • A Genetic Map of Chromosome 11 Q. Including the Atopy Locus
    Original Paper EurJ Hum Genet 1995;3:188-194 A.J. Sandforda A Genetic Map of Chromosome M.F. Moffat t* S.E. Danielsa 11 q. Including the Atopy Locus Y. Nakamura'0 GM. Lathropc J.M. Hopkind W.O.CM. Cooksona 1608202 a Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK; b Division of Biochemistry, Abstract Cancer Institute, Tokyo, Japan; Atopy is a common and genetically heterogeneous syndrome c CEPHB, Paris, France; and predisposing to allergic asthma and rhinitis. A locus linked to d Osier Chest Unit, Churchill Hospital, Oxford, UK the atopy phenotype has been shown to be present on chromo­ some llql2-13. Linkage has only been seen in maternally derived alleles. We have constructed a genetic linkage map of Key Words the region, using 15 markers to span approximately 27 cM, Atopy and integrate previously published maps. Under a model of Genetic map maternal inheritance, the atopy locus is placed within a 7-cM Linkage analysis interval between D11S480 and D11S451. The interval con­ Chromosome 11 tains the important candidate gene FCERIB. Introduction The linkage has been replicated in nuclear families [3], and has been independently con­ Atopy is a common familial syndrome firmed in extended Japanese families [4], and which underlies allergic asthma and rhinitis. Dutch asthmatic sib pairs [5]. All these posi­ It is characterised by immunoglobulin E re­ tive linkage results were seen in families with sponses to common aero-allergens such as severe symptomatic atopy. Linkage at this grass pollens or house dust mite. An atopy- locus is made more difficult because it is seen associated phenotype may be defined by mea­ predominately through maternal meioses [3- suring prick skin test responses to these aller­ 7], Linkage is also confounded by a high pop­ gens, by measuring specific IgE responses and ulation prevalence, and low penetrance in ear­ by estimating the total serum IgE.
    [Show full text]
  • Glossary/Index
    Glossary 03/08/2004 9:58 AM Page 119 GLOSSARY/INDEX The numbers after each term represent the chapter in which it first appears. additive 2 allele 2 When an allele’s contribution to the variation in a One of two or more alternative forms of a gene; a single phenotype is separately measurable; the independent allele for each gene is inherited separately from each effects of alleles “add up.” Antonym of nonadditive. parent. ADHD/ADD 6 Alzheimer’s disease 5 Attention Deficit Hyperactivity Disorder/Attention A medical disorder causing the loss of memory, rea- Deficit Disorder. Neurobehavioral disorders character- soning, and language abilities. Protein residues called ized by an attention span or ability to concentrate that is plaques and tangles build up and interfere with brain less than expected for a person's age. With ADHD, there function. This disorder usually first appears in persons also is age-inappropriate hyperactivity, impulsive over age sixty-five. Compare to early-onset Alzheimer’s. behavior or lack of inhibition. There are several types of ADHD: a predominantly inattentive subtype, a predomi- amino acids 2 nantly hyperactive-impulsive subtype, and a combined Molecules that are combined to form proteins. subtype. The condition can be cognitive alone or both The sequence of amino acids in a protein, and hence pro- cognitive and behavioral. tein function, is determined by the genetic code. adoption study 4 amnesia 5 A type of research focused on families that include one Loss of memory, temporary or permanent, that can result or more children raised by persons other than their from brain injury, illness, or trauma.
    [Show full text]
  • A Genetic Locus on Chromosome 2Q24 Predicting Peripheral Neuropathy Risk in Type 2 Diabetes: Results from the ACCORD and BARI 2D Studies
    Page 1 of 53 Diabetes A genetic locus on chromosome 2q24 predicting peripheral neuropathy risk in type 2 diabetes: results from the ACCORD and BARI 2D studies. Yaling Tang, M.D.1,2, Petra A. Lenzini, M.S.3, Rodica Pop Busui, M.D., Ph.D.4, Pradipta R. Ray, Ph.D5, Hannah Campbell, M.P.H3,6 , Bruce A. Perkins, M.D., M.P.H.7, Brian Callaghan, M.D., M.S.8, Michael J. Wagner, Ph.D.9, Alison A. Motsinger-Reif, Ph.D.10, John B. Buse, M.D., Ph.D.11, Theodore J. Price, Ph.D.5, Josyf C. Mychaleckyj, DPhil.12, Sharon Cresci, M.D.3,6, Hetal Shah, M.D., M.P.H.1,2*, Alessandro Doria, M.D., Ph.D., M.P.H.1,2* 1: Research Division, Joslin Diabetes Center, Boston, Massachusetts 2: Department of Medicine, Harvard Medical School, Boston, Massachusetts 3: Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 4: Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan 5: School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, Texas 6: Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 7: Leadership Sinai Centre for Diabetes, Sinai Health System and Division of Endocrinology & Metabolism, University of Toronto, Toronto, Canada 8: Department of Neurology, University of Michigan, Ann Arbor, Michigan 9: Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 10: Bioinformatics Research Center, and Department of Statistics, North Carolina State University, Raleigh, North Carolina 11: Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 12: Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia * These authors contributed equally to this work and are co-senior authors.
    [Show full text]
  • Cells Exhibiting Strong P16ink4a Promoter Activation in Vivo Display Features of Senescence
    INK4a Cells exhibiting strong p16 promoter activation in vivo display features of senescence Jie-Yu Liua,b, George P. Souroullasc, Brian O. Diekmanb,d,e, Janakiraman Krishnamurthyb, Brandon M. Hallf, Jessica A. Sorrentinob, Joel S. Parkerb,g, Garrett A. Sessionsd, Andrei V. Gudkovf,h, and Norman E. Sharplessa,b,i,j,1 aCurriculum in Genetics and Molecular Biology, University of North Carolina School of Medicine, Chapel Hill, NC 27599; bThe Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599; cDepartment of Medicine, Washington University School of Medicine, St. Louis, MO 63110; dThurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599; eJoint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 and, North Carolina State University, Raleigh, NC 27695; fResearch Division, Everon Biosciences, Inc., Buffalo, NY 14203; gDepartment of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599; hDepartment of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263; iDepartment of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599; and jOffice of the Director, The National Cancer Institute, Bethesda, MD 20892 Edited by Scott W. Lowe, Memorial Sloan Kettering Cancer Center, New York, NY, and approved December 17, 2018 (received for review October 31, 2018) The activation of cellular senescence throughout the lifespan has proven to be one of the most useful in vivo markers of se- INK4a promotes tumor suppression, whereas the persistence of senescent nescence. As a cell cycle regulator, p16 limits G1 to S-phase cells contributes to aspects of aging.
    [Show full text]
  • Cenpj Regulates Cilia Disassembly and Neurogenesis in the Developing Mouse Cortex
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. A link to any extended data will be provided when the final version is posted online. Research Articles: Development/Plasticity/Repair Cenpj regulates cilia disassembly and neurogenesis in the developing mouse cortex Wenyu Ding1,2, Qian Wu1,2, Le Sun1,2, Na Clara Pan1,2 and Xiaoqun Wang1,2,2 1State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Beijing Institute for Brain Disorders, Beijing 100069, China https://doi.org/10.1523/JNEUROSCI.1849-18.2018 Received: 20 July 2018 Revised: 19 December 2018 Accepted: 24 December 2018 Published: 9 January 2019 Author contributions: W.D., Q.W., and X.W. designed research; W.D., Q.W., L.S., N.C.P., and X.W. performed research; W.D., Q.W., L.S., N.C.P., and X.W. analyzed data; W.D., Q.W., L.S., N.C.P., and X.W. edited the paper; W.D., Q.W., and X.W. wrote the paper; Q.W. and X.W. wrote the first draft of the paper; X.W. contributed unpublished reagents/analytic tools. Conflict of Interest: The authors declare no competing financial interests. We gratefully acknowledge Dr. Bradley Yoder (University of Alabama at Birmingham) kindly shared and transferred the mouse strain to us. We thank Dr. Tian Xue (University of Science and Technology of China) for sharing ARPE19 cell line with us.
    [Show full text]
  • Modifier Genes in Microcephaly: a Report on WDR62, CEP63, RAD50
    G C A T T A C G G C A T genes Article Modifier Genes in Microcephaly: A Report on WDR62, CEP63, RAD50 and PCNT Variants Exacerbating Disease Caused by Biallelic Mutations of ASPM and CENPJ Ehtisham Ul Haq Makhdoom 1,2,3,†, Syeda Seema Waseem 1,4,†, Maria Iqbal 1,2,4, Uzma Abdullah 5 , Ghulam Hussain 3, Maria Asif 1,4, Birgit Budde 1 , Wolfgang Höhne 1, Sigrid Tinschert 6, Saadia Maryam Saadi 2 , Hammad Yousaf 2, Zafar Ali 7, Ambrin Fatima 8, Emrah Kaygusuz 9 , Ayaz Khan 2 , Muhammad Jameel 2, Sheraz Khan 2 , Muhammad Tariq 2 , Iram Anjum 10 , Janine Altmüller 1, Holger Thiele 1, Stefan Höning 4, Shahid Mahmood Baig 2,8,11, Peter Nürnberg 1,12 and Muhammad Sajid Hussain 1,4,12,* 1 Cologne Center for Genomics (CCG), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; [email protected] (E.U.H.M.); [email protected] (S.S.W.); [email protected] (M.I.); [email protected] (M.A.); [email protected] (B.B.); [email protected] (W.H.); [email protected] (J.A.); [email protected] (H.T.); [email protected] (P.N.) 2 Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College, PIEAS, Faisalabad 38000, Pakistan; [email protected] (S.M.S.); [email protected] (H.Y.); [email protected] (A.K.); [email protected] (M.J.); [email protected] (S.K.); [email protected] (M.T.); [email protected] (S.M.B.) 3 Citation: Makhdoom, E.U.H.; Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Waseem, S.S.; Iqbal, M.; Abdullah, U.; Government College University, Faisalabad 38000, Pakistan; [email protected] 4 Hussain, G.; Asif, M.; Budde, B.; Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; [email protected] Höhne, W.; Tinschert, S.; Saadi, 5 University Institute of Biochemistry and Biotechnology (UIBB), PMAS-Arid Agriculture University, S.M.; et al.
    [Show full text]
  • Polymorphisms on the Bare Locus of Drosophila Sub Obscura
    Heredity 76 (1996) 404—411 Received 9 October 1995 Measuring selective effects of modifier gene polymorphisms on the Bare locus of Drosophila sub obscura GONZALO ALVAREZ* & CARLOS ZAPATA Departamento de Bio/ogIa Fundamental, Facultad do Biologla, Universidad de Santiago do Compostela, Santiago de Compostela, Spain Anattempt to quantify the effects of modifier gene polymorphisms on the operation of natural selection on a major locus has been carried out. The modifier system we have investigated is constituted by a set of polygenic modifier loci affecting the morphological expression of the Bare (Ba) bristle mutant of Drosophila subobscura. Ba is a dominant mutant that is lethal in homozygous condition and both the polygenic modifiers and Ba are located on the 0 chromo- some of this species. Experimental populations were founded with Ba! + individuals and two different types of populations were started according to their modifier genetic background: populations with wild 0 chromosomes of either high or low modifier effect (cages H and L, respectively). Fitness estimates (total fitness, viability and fertility) for genotypes of the Ba locus were obtained under the two different modifier backgrounds. In the populations with high modifier background the total fitness of the Ba! + heterozygote was very similar to that of the +/+ homozygote (fitness equal to 1). However, in cages with low modifier background a strong selection against the Ba! + heterozygote was detected (average of total fitnesses over generations was 0.66±0.10), and fertility appears to be the fitness component responsible for this effect (mean fertility was 0.55 0.08). These findings demonstrate that modifier gene polymorphisms affecting the expression of the Ba mutant may be associated with large selective effects on the major locus.
    [Show full text]
  • A Locus for Familial Skewed X Chromosome Inactivation Maps to Chromosome Xq25 in a Family with a Female Manifesting Lowe Syndrome
    J Hum Genet (2006) 51:1030–1036 DOI 10.1007/s10038-006-0049-6 SHORT COMMUNICATION A locus for familial skewed X chromosome inactivation maps to chromosome Xq25 in a family with a female manifesting Lowe syndrome Milena Cau Æ Maria Addis Æ Rita Congiu Æ Cristiana Meloni Æ Antonio Cao Æ Simona Santaniello Æ Mario Loi Æ Francesco Emma Æ Orsetta Zuffardi Æ Roberto Ciccone Æ Gabriella Sole Æ Maria Antonietta Melis Received: 15 June 2006 / Accepted: 3 August 2006 / Published online: 6 September 2006 Ó The Japan Society of Human Genetics and Springer 2006 Abstract In mammals, X-linked gene products can be generations. The OCRL1 ‘‘de novo’’ mutation resides dosage compensated between males and females by in the active paternally inherited X chromosome. X inactivation of one of the two X chromosomes in the chromosome haplotype analysis suggests the presence developing female embryos. X inactivation choice is of a locus for the familial skewed X inactivation in usually random in embryo mammals, but several chromosome Xq25 most likely controlling X chromo- mechanisms can influence the choice determining some choice in X inactivation or cell proliferation. The skewed X inactivation. As a consequence, females description of this case adds Lowe syndrome to the list heterozygous for X-linked recessive disease can mani- of X-linked disorders which may manifest the full fest the full phenotype. Herein, we report a family with phenotype in females because of the skewed X inacti- extremely skewed X inactivation that produced the full vation. phenotype of Lowe syndrome, a recessive X-linked disease, in a female.
    [Show full text]
  • Print ACNR MA05
    Review Article The Genetics of Primary Microcephaly Clinical definition MCPH5 Autosomal recessive primary microcephaly (MCPH) is the MCPH5 mutation is the most common cause (~50% of term used to describe a genetically determined form of cases) of the MCPH phenotype.5 It is a large gene and microcephaly previously referred to as microcephaly vera or encodes the human orthologue of the Drosophila gene abnor- true microcephaly.1,2 It is clinically diagnosed using the follow- mal spindle (asp), called “abnormal spindle mutated in ing guidelines; microcephaly” (ASPM). The reported mutations are spread 1. Microcephaly (> -3SD) is present at birth. throughout the ASPM gene and result in truncated ASPM 2. Degree of microcephaly does not progress throughout protein products ranging in size from 116 – 3357aas.1,6 lifetime. ASPM is predicted to contain an N-terminal microtubule Gemma Thornton 3. Mild to severe mental retardation without other neuro- binding domain, two calponin homology domains (com- logical findings (fits are rare). mon to actin binding proteins), 81 isoleucine-glutamine 4. Height/weight/appearance are all normal (except with (IQ) repeat motifs (predicted to change conformation when mutation in MCPH1, where some reduction in height bound to calmodulin), and a C-terminal region of unknown may be observed). function.4 MCPH affects neurogenesis in utero. The brains of affected Structural projections and comparison with myosin sug- individuals are characterised by a significant reduction in the gest that when ASPM is present at the centrosome, it assumes size of the cerebral cortex (presumably the cause of the a semi-rigid-rod-conformation, with microtubules bound observed mental retardation).
    [Show full text]