The Y Chromosome: a Complex Locus for Genetic Analyses of Complex Human Traits
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Y-Chromosome and Surname Analyses for Reconstructing Past Population Structures: the Sardinian Population As a Test Case
International Journal of Molecular Sciences Article Y-chromosome and Surname Analyses for Reconstructing Past Population Structures: The Sardinian Population as a Test Case Viola Grugni 1, Alessandro Raveane 1, Giulia Colombo 1, Carmen Nici 1, Francesca Crobu 1,2, Linda Ongaro 1,3,4, Vincenza Battaglia 1, Daria Sanna 1,5, Nadia Al-Zahery 1, Ornella Fiorani 6, Antonella Lisa 6, Luca Ferretti 1 , Alessandro Achilli 1, Anna Olivieri 1, Paolo Francalacci 7, Alberto Piazza 8, Antonio Torroni 1 and Ornella Semino 1,* 1 Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; [email protected] (V.G.); [email protected] (A.R.); [email protected] (G.C.); [email protected] (C.N.); [email protected] (F.C.); [email protected] (L.O.); [email protected] (V.B.); [email protected] (D.S.); [email protected] (N.A.-Z.); [email protected] (L.F.); [email protected] (A.A.); [email protected] (A.O.); [email protected] (A.T.) 2 Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Italy 3 Estonian Biocentre, Institute of Genomics, Riia 23, 51010 Tartu, Estonia 4 Department of Evolutionary Biology, Institute of Molecular and Cell Biology, Riia 23, 51010 Tartu, Estonia 5 Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy 6 Istituto di Genetica Molecolare “L.L. Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), 27100 Pavia, Italy; fi[email protected] -
Germanic Origins from the Perspective of the Y-Chromosome
Germanic Origins from the Perspective of the Y-Chromosome By Michael Robert St. Clair A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor in Philosophy in German in the Graduate Division of the University of California, Berkeley Committee in charge: Irmengard Rauch, Chair Thomas F. Shannon Montgomery Slatkin Spring 2012 Abstract Germanic Origins from the Perspective of the Y-Chromosome by Michael Robert St. Clair Doctor of Philosophy in German University of California, Berkeley Irmengard Rauch, Chair This dissertation holds that genetic data are a useful tool for evaluating contemporary models of Germanic origins. The Germanic languages are a branch of the Indo-European language family and include among their major contemporary representatives English, German, Dutch, Danish, Swedish, Norwegian and Icelandic. Historically, the search for Germanic origins has sought to determine where the Germanic languages evolved, and why the Germanic languages are similar to and different from other European languages. Both archaeological and linguist approaches have been employed in this research direction. The linguistic approach to Germanic origins is split among those who favor the Stammbaum theory and those favoring language contact theory. Stammbaum theory posits that Proto-Germanic separated from an ancestral Indo-European parent language. This theoretical approach accounts for similarities between Germanic and other Indo- European languages by posting a period of mutual development. Germanic innovations, on the other hand, occurred in isolation after separation from the parent language. Language contact theory posits that Proto-Germanic was the product of language convergence and this convergence explains features that Germanic shares with other Indo-European languages. -
Y-Chromosome Short Tandem Repeat, Typing Technology, Locus Information and Allele Frequency in Different Population: a Review
Vol. 14(27), pp. 2175-2178, 8 July, 2015 DOI:10.5897/AJB2015.14457 Article Number: 2E48C3F54052 ISSN 1684-5315 African Journal of Biotechnology Copyright © 2015 Author(s) retain the copyright of this article http://www.academicjournals.org/AJB Review Y-Chromosome short tandem repeat, typing technology, locus information and allele frequency in different population: A review Muhanned Abdulhasan Kareem1, Ameera Omran Hussein2 and Imad Hadi Hameed2* 1Babylon University, Centre of Environmental Research, Hilla City, Iraq. 2Department of Molecular Biology, Babylon University, Hilla City, Iraq. Received 29 January, 2015; Accepted 29 June, 2015 Chromosome Y microsatellites seem to be ideal markers to delineate differences between human populations. They are transmitted in uniparental and they are very sensitive for genetic drift. This review will highlight the importance of the Y- Chromosome as a tool for tracing human evolution and describes some details of Y-chromosomal short tandem repeat (STR) analysis. Among them are: microsatellites, amplification using polymerase chain reaction (PCR) of STRs, separation and detection and advantages of X-chromosomal microsatellites. Key words: Forensic, population, review, STR, Y- chromosome. INTRODUCTION Microsatellites are DNA regions with repeat units that are microsatellite, but repeats of five (penta-) or six (hexa-) 2 to 7 bp in length or most generally short tandem nucleotides are usually classified as microsatellites as repeats (STRs) or simple sequence repeats (SSRs) well. DNA can be used to study human evolution. (Ellegren, 2000; Imad et al., 2014). The classification of Besides, information from DNA typing is important for the DNA sequences is determined by the length of the medico-legal matters with polymorphisms leading to more core repeat unit and the number of adjacent repeat units. -
Combinatorial Genomic Data Refute the Human Chromosome 2 Evolutionary Fusion and Build a Model of Functional Design for Interstitial Telomeric Repeats
The Proceedings of the International Conference on Creationism Volume 8 Print Reference: Pages 222-228 Article 32 2018 Combinatorial Genomic Data Refute the Human Chromosome 2 Evolutionary Fusion and Build a Model of Functional Design for Interstitial Telomeric Repeats Jeffrey P. Tomkins Institute for Creation Research Follow this and additional works at: https://digitalcommons.cedarville.edu/icc_proceedings Part of the Biology Commons, and the Genomics Commons DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Tomkins, J.P. 2018. Combinatorial genomic data refute the human chromosome 2 evolutionary fusion and build a model of functional design for interstitial telomeric repeats. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 222–228. Pittsburgh, Pennsylvania: Creation Science Fellowship. Tomkins, J.P. 2018. Combinatorial genomic data refute the human chromosome 2 evolutionary fusion and build a model of functional design for interstitial telomeric repeats. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 222–228. Pittsburgh, Pennsylvania: Creation Science Fellowship. COMBINATORIAL GENOMIC DATA REFUTE THE HUMAN CHROMOSOME 2 EVOLUTIONARY FUSION AND BUILD A MODEL OF FUNCTIONAL DESIGN FOR INTERSTITIAL TELOMERIC REPEATS Jeffrey P. -
The Human Y Chromosome's Azoospermia Factor B (Azfb) Region
18 ORIGINAL ARTICLE J Med Genet: first published as 10.1136/jmg.40.1.18 on 1 January 2003. Downloaded from The human Y chromosome’s azoospermia factor b (AZFb) region: sequence, structure, and deletion analysis in infertile men A Ferlin, E Moro, A Rossi, B Dallapiccola, C Foresta ............................................................................................................................. J Med Genet 2003;40:18–24 See end of article for authors’ affiliations Microdeletions of the Y chromosome long arm are the most common mutations in infertile males, where ....................... they involve one or more “azoospermia factors” (AZFa, b, and c). Understanding of the AZF structure and gene content and mapping of the deletion breakpoints in infertile men are still incomplete. We Correspondence to: Professor C Foresta, have assembled a complete 4.3 Mb map of AZFb and surrounding regions by means of 38 BAC University of Padova, clones. The proximal part of AZFb consists of large repeated sequences organised in palindromes, but Department of Medical and most of it is single copy sequence. A number of known and novel genes and gene families map in this Surgical Sciences, Clinica interval, and most of them are testis specific or have testis specific transcripts. STS mapping allowed us Medica 3, Via Ospedale to identify four severely infertile subjects with a deletion in AZFb with similar breakpoints, therefore 105, 35128 Padova, Italy; [email protected] suggesting a common deletion mechanism. This deletion includes at least five single copy genes and two duplicated genes, but does not remove the historical AZFb candidate gene RBMY1. These data Revised version received suggest that other genes in AZFb may have important roles in spermatogenesis. -
Pedigrees and Karyotypes Pedigree
Pedigrees and Karyotypes Pedigree A pedigree shows the relationships within a family and it helps to chart how one gene can be passed on from generation to generation. Pedigrees are tools used by genetic researchers or counselors to identify a genetic condition running through a family, they aid in making a diagnosis, and aid in determining who in the family is at risk for genetic conditions. On a pedigree: A circle represents a female A square represents a male A horizontal line connecting a male and female represents a marriage A vertical line and a bracket connect the parents to their children A circle/square that is shaded means the person HAS the trait. A circle/square that is not shaded means the person does not have the trait. Children are placed from oldest to youngest. A key is given to explain what the trait is. Marriage Male-DAD Female-MOM Has the trait Male-Son Female-daughter Female-daughter Male- Son Oldest to youngest Steps: ff Ff •Identify all people who have the trait. •For the purpose of this class all traits will be given to you. In other instances, you would have to determine whether or not the trait is autosomal dominant, autosomal recessive, or sex- linked. •In this example, all those who have the trait are homozygous recessive. •Can you correctly identify all genotypes of this family? ff ff Ff Ff •F- Normal •f- cystic fibrosis Key: affected male affected female unaffected male unaffected female Pp Pp PKU P- Unaffected p- phenylketonuria PP or Pp pp Pp pp pp Pp Pp Key: affected male affected female unaffected male unaffected female H-huntington’s hh Hh disease h-Unaffected Hh hh Hh hh Hh hh hh Key: affected male affected female unaffected male unaffected female Sex-Linked Inheritance Colorblindness Cy cc cy Cc Cc cy cy Key: affected male affected female unaffected male unaffected female Karyotypes To analyze chromosomes, cell biologists photograph cells in mitosis, when the chromosomes are fully condensed and easy to see (usually in metaphase). -
Discovery of Candidate Genes for Stallion Fertility from the Horse Y Chromosome
DISCOVERY OF CANDIDATE GENES FOR STALLION FERTILITY FROM THE HORSE Y CHROMOSOME A Dissertation by NANDINA PARIA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2009 Major Subject: Biomedical Sciences DISCOVERY OF CANDIDATE GENES FOR STALLION FERTILITY FROM THE HORSE Y CHROMOSOME A Dissertation by NANDINA PARIA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Terje Raudsepp Committee Members, Bhanu P. Chowdhary William J. Murphy Paul B. Samollow Dickson D. Varner Head of Department, Evelyn Tiffany-Castiglioni August 2009 Major Subject: Biomedical Sciences iii ABSTRACT Discovery of Candidate Genes for Stallion Fertility from the Horse Y Chromosome. (August 2009) Nandina Paria, B.S., University of Calcutta; M.S., University of Calcutta Chair of Advisory Committee: Dr. Terje Raudsepp The genetic component of mammalian male fertility is complex and involves thousands of genes. The majority of these genes are distributed on autosomes and the X chromosome, while a small number are located on the Y chromosome. Human and mouse studies demonstrate that the most critical Y-linked male fertility genes are present in multiple copies, show testis-specific expression and are different between species. In the equine industry, where stallions are selected according to pedigrees and athletic abilities but not for reproductive performance, reduced fertility of many breeding stallions is a recognized problem. Therefore, the aim of the present research was to acquire comprehensive information about the organization of the horse Y chromosome (ECAY), identify Y-linked genes and investigate potential candidate genes regulating stallion fertility. -
An Overview of the Independent Histories of the Human Y Chromosome and the Human Mitochondrial Chromosome
The Proceedings of the International Conference on Creationism Volume 8 Print Reference: Pages 133-151 Article 7 2018 An Overview of the Independent Histories of the Human Y Chromosome and the Human Mitochondrial chromosome Robert W. Carter Stephen Lee University of Idaho John C. Sanford Cornell University, Cornell University College of Agriculture and Life Sciences School of Integrative Plant Science,Follow this Plant and Biology additional Section works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Carter, R.W., S.S. Lee, and J.C. Sanford. An overview of the independent histories of the human Y- chromosome and the human mitochondrial chromosome. 2018. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 133–151. Pittsburgh, Pennsylvania: Creation Science Fellowship. Carter, R.W., S.S. Lee, and J.C. Sanford. An overview of the independent histories of the human Y-chromosome and the human mitochondrial chromosome. 2018. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. -
The Canada's History Beginner's Guide to Genetic
THE CANADA’S HISTORY BEGINNER’S GUIDE TO GENETIC GENEALOGY Read in sequence or browse as you see fit by clicking on any navigation item below. Introduction C. How to proceed A. To test or not Testing strategies for beginners Reasons for testing Recovery guide for those who tested and were underwhelmed Bogus reasons for not testing Fear of the test D. Case studies “The tests are crap” Confirming a hypothesis with autosomal DNA Price Refuting a hypothesis with autosomal DNA Substantive reasons for not testing Confirming a hypothesis with Y DNA Privacy concerns Developing (and then confirming) a hypothesis with Unexpected findings autosomal DNA Developing a completely unexpected hypothesis from B. The ABCs of DNA testing autosomal DNA The four major testing companies (and others) Four types of DNA and three major genetic genealogy tests E. Assorted observations on interpreting DNA tests Mitochondrial DNA (mtDNA) Y DNA F. More resources Autosomal DNA (atDNA) Selected recent publications X DNA Basic information about genetic genealogy Summarizing the tests Blogs by notable genetic genealogists (a selective list) Tools and utilities © 2019 Paul Jones The text of this guide is protected by Canadian copyright law and published here with permission of the author. Unless otherwise noted, copyright of every image resides with the image’s owner. You should not use any of these images for any purpose without the owner’s express authorization unless this is already granted in a cited license. For further information or to report errors or omissions, please contact Paul Jones. CANADASHISTORY.CA ONLINE SPECIAL FEATURE 2019 1 Introduction The “bestest best boy in the land” recently had his DNA tested. -
Microdeletion of the Azfc Locus with High Frequency of Mosaicism 46,XY/47XYY in Cases of Non Obstructive Azoospermia in Eastern Population of India
Microdeletion of the AZFc locus with high frequency of mosaicism 46,XY/47XYY in cases of non obstructive azoospermia in eastern population of India A.K. Saxena and K. Aniket Department of Pathology/Lab Medicine, Molecular Cytogenetics Laboratory, All India Institute of Medical Sciences, Patna (Bihar), India Corresponding author: A.K. Saxena E-mail: [email protected] Genet. Mol. Res. 18 (2): gmr18349 Received May 07, 2019 Accepted June 06, 2019 Published June 18, 2019 DOI http://dx.doi.org/10.4238/gmr18349 ABSTRACT. The etiopathology of male infertility is highly complex, involving gene - environment interactions to regulate spermatogenesis. Consequently, genetic analysis becomes imperative for cases of non-obstructive azoospermia (NOA) to identify the causative factors. Cases (n = 111) of NOA referred to the cytogenetics and molecular genetics laboratory of the All India Institute of Medical Sciences in -Patna from 2013-2018 were subjected to 1) karyotyping using GTG bandings techniques, 2) fluorescence in situ hybridization (FISH) for the sex determining region (SRY), and 3) PCR based analysis of STS markers based on microdeletion of the Y- chromosome after isolation of genomic DNA from whole blood. A flow cytometer was used for a cell- kinetic and DNA methylation study after incorporation of 5-azacytidine (5- AzaC) (1.0 ug/mL) in lymphocyte culture. PCR products were analyzed on an agarose gel (1.5%) and bands were visualized on Gel Doc after ethidium bromide staining. Chromosomal abnormalities, including structural numerical variations, were observed in 14 of the karyotypes. Eight cases showed a 46,XY/47,XYY i.e. mosaic pattern; two cases 46, XY/45/XO; a single case with 47,XY +16; two cases with 46,X+ ring Y; a single case with 46,XY+dicentric in Genetics and Molecular Research 18 (2): gmr18349 ©FUNPEC-RP www.funpecrp.com.br A.K. -
The Evolutionary History of Human and Chimpanzee Y-Chromosome Gene Loss
The Evolutionary History of Human and Chimpanzee Y-Chromosome Gene Loss George H. Perry,* à Raul Y. Tito,* and Brian C. Verrelli* *Center for Evolutionary Functional Genomics, The Biodesign Institute, Arizona State University, Tempe; School of Life Sciences, Arizona State University, Tempe; and àSchool of Human Evolution and Social Change, Arizona State University, Tempe Recent studies have suggested that gene gain and loss may contribute significantly to the divergence between humans and chimpanzees. Initial comparisons of the human and chimpanzee Y-chromosomes indicate that chimpanzees have a dis- proportionate loss of Y-chromosome genes, which may have implications for the adaptive evolution of sex-specific as well as reproductive traits, especially because one of the genes lost in chimpanzees is critically involved in spermatogenesis in humans. Here we have characterized Y-chromosome sequences in gorilla, bonobo, and several chimpanzee subspecies for 7 chimpanzee gene–disruptive mutations. Our analyses show that 6 of these gene-disruptive mutations predate chimpan- zee–bonobo divergence at ;1.8 MYA, which indicates significant Y-chromosome change in the chimpanzee lineage Downloaded from https://academic.oup.com/mbe/article/24/3/853/1246230 by guest on 23 September 2021 relatively early in the evolutionary divergence of humans and chimpanzees. Introduction The initial comparisons of human and chimpanzee Comparative analyses of single-nucleotide differences (Pan troglodytes) Y-chromosome sequences revealed that between human and chimpanzee genomes typically show although there are no lineage-specific gene-disruptive mu- estimates of approximately 1–2% divergence (Watanabe tations in the X-degenerate portion of the Y-chromosome et al. 2004; Chimpanzee Sequencing and Analysis Consor- fixed within humans, surprisingly, 4 genes, CYorf15B, tium 2005). -
Cytogenetics, Chromosomal Genetics
Cytogenetics Chromosomal Genetics Sophie Dahoun Service de Génétique Médicale, HUG Geneva, Switzerland [email protected] Training Course in Sexual and Reproductive Health Research Geneva 2010 Cytogenetics is the branch of genetics that correlates the structure, number, and behaviour of chromosomes with heredity and diseases Conventional cytogenetics Molecular cytogenetics Molecular Biology I. Karyotype Definition Chromosomal Banding Resolution limits Nomenclature The metaphasic chromosome telomeres p arm q arm G-banded Human Karyotype Tjio & Levan 1956 Karyotype: The characterization of the chromosomal complement of an individual's cell, including number, form, and size of the chromosomes. A photomicrograph of chromosomes arranged according to a standard classification. A chromosome banding pattern is comprised of alternating light and dark stripes, or bands, that appear along its length after being stained with a dye. A unique banding pattern is used to identify each chromosome Chromosome banding techniques and staining Giemsa has become the most commonly used stain in cytogenetic analysis. Most G-banding techniques require pretreating the chromosomes with a proteolytic enzyme such as trypsin. G- banding preferentially stains the regions of DNA that are rich in adenine and thymine. R-banding involves pretreating cells with a hot salt solution that denatures DNA that is rich in adenine and thymine. The chromosomes are then stained with Giemsa. C-banding stains areas of heterochromatin, which are tightly packed and contain