The Y Chromosome: a Complex Locus for Genetic Analyses of Complex Human Traits

Total Page:16

File Type:pdf, Size:1020Kb

The Y Chromosome: a Complex Locus for Genetic Analyses of Complex Human Traits G C A T T A C G G C A T genes Review The Y Chromosome: A Complex Locus for Genetic Analyses of Complex Human Traits Katherine Parker 1, A. Mesut Erzurumluoglu 2 and Santiago Rodriguez 1,3,* 1 Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK; [email protected] 2 Medical Research Council (MRC) Epidemiology Unit, University of Cambridge, Cambridge CB2 0SL, UK; [email protected] 3 MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK * Correspondence: [email protected]; Tel.: +44-(0)117-3310133 Received: 9 September 2020; Accepted: 26 October 2020; Published: 29 October 2020 Abstract: The Human Y chromosome (ChrY) has been demonstrated to be a powerful tool for phylogenetics, population genetics, genetic genealogy and forensics. However, the importance of ChrY genetic variation in relation to human complex traits is less clear. In this review, we summarise existing evidence about the inherent complexities of ChrY variation and their use in association studies of human complex traits. We present and discuss the specific particularities of ChrY genetic variation, including Y chromosomal haplogroups, that need to be considered in the design and interpretation of genetic epidemiological studies involving ChrY. Keywords: Y chromosome; Y haplogroups; complex locus; genetic association analyses; genetic epidemiology; complex human traits 1. Introduction During the last decade, genome-wide association studies (GWASs) have identified large numbers of loci associated with common complex human traits, enabling a better understanding of the genetic architecture of human disease [1]. This progress is documented by the NHGRI-EBI GWAS Catalogue [2], which includes all published GWAS hits to date. The latest version (accessed 11/10/20) of the widely used diagram, “SNP-trait associations, mapped onto the human genome by chromosomal location and displayed on the human karyotype”, provided by the catalogue (Figure1), shows evidence of many SNP–trait associations on all 22 autosomes and the X chromosome. Notably, however, none of the GWAS hits found to date reside on the Y chromosome (ChrY). Results from studies of various designs not limited to GWASs (e.g., candidate gene association analyses) also provide evidence that minimises the role of ChrY common genetic variation in relation to human complex traits. It is important to consider alternative explanations for this lack of association, such as the inherent genetic complexity of ChrY, which differs from the remainder of human chromosomes in terms of structure, function and population history. These differences make it more complex to analyse than other human chromosomes, which consequently leads to the removal or misanalysis of ChrY variants from association studies. This review addresses specific features of human ChrY relevant for the design and interpretation of genetic association studies of complex human traits and covers different study designs applied in genetic epidemiological studies of ChrY, discussing their strengths and weaknesses, as well as potential avenues for future research. Genes 2020, 11, 1273; doi:10.3390/genes11111273 www.mdpi.com/journal/genes Genes 2020, 11, 1273 2 of 19 Genes 2020, 11, x FOR PEER REVIEW 2 of 21 FigureFigure 1.1. GWASs can be be used used to to look look for for genetic genetic associ associationsations with with human human disease disease traits traits across across the thehuman human genome. genome. This This figure figure is a ismodified a modified version version of the of GWAS the GWAS diagram diagram from from the September the September 2019 2019version version of the of GWAS the GWAS Catalog, Catalog, a directory a directory which which contains contains more more than than157,000 157,000 associations associations from from4,220 4220publications publications [2]. [The2]. The diagram diagram shows shows hits hits identified identified on on chromosomes chromosomes 22 22 and and X, withwith didifferentfferent categoriescategories of of disease disease indicated indicated by by di differentfferent coloured coloured markers. markers. There There are are no no hits hits which which correspond correspond to to ChrY.ChrY. Legend Legend has has not not been been included included for for clarity, clarity, but but the the original original diagram diagram and and legend legend can can be be found found at at https:https://www.ebi.ac.uk/gwas/diagram.//www.ebi.ac.uk/gwas/diagram. 2.2. TheThe HumanHuman YY Chromosome,Chromosome, a a Complex Complex Locus Locus for for Complex Complex Trait Trait Analysis Analysis SinceSince the the discovery discovery of of ChrY ChrY in in 1921 1921 [3], [3], specific specific particularities particularities related related to its to structure, its structure, function function and populationand population history history have beenhave discovered.been discovered. A comprehensive A comprehensive list can list be can found be found in Table in 1Table. 1. In summary, ChrY is the sex-determining chromosome in humans and is passed strictly from fathersTable to 1.sons.Chronological Current understanding order of the discovery suggests of that the particularitiesthe function of theChrY Y chromosomeis limited with from regards the to complexdiscovery disease of the causal male-determining genes. Here we region provide to exploration a review of of gene the function.literature related to ChrY and complex diseasesYear and also make suggestions for future Description studies. References 1985 ChrY utilised for evolutionary studies ‘genetic distance’ genealogy [4] Table1986 1. Chronological First evidence that order the male-determining of the discovery region of is the located particularities on the short arm of of the the Y chromosomechromosome from [5 ]the discovery1989 of the male-determining ChrY regi polymorphismson to exploration utilised in of phylogenetics gene function. [6] Year1990 First gene, sex-determiningDescription region Y (SRY), mapped onto ChrYReferences [7] 19851990 ChrY utilised Animal models for evolutionary used to investigate studies the influence ‘genetic of ChrY distance’ on hypertension genealogy [8][4] 1991 Sry used in animal models to form transgenic mice [9] First evidence that the male-determining region is located on the short 19861997 ChrY utilised for forensic science and paternity testing [10[5]] arm of the Y chromosome 2000 ChrY utilised for phylogenetics [11] 1989 ChrY polymorphisms utilised in phylogenetics [6] 2000 Association between hind III restriction fragment polymorphism and cardiovascular disease detected [12–15] 1990onwards First gene, sex-determining region Y (SRY), mapped onto ChrY [7] 2002Animal models Y-chromosomalused to investigate haplogroups the established influence of ChrY on [16] 1990 [8] 2003 MSYhypertension first sequenced [17] 2005 1991 UnconvincingSry used evidence in animal relating themodels MSY to to cardiovascular form transgenic disease risk mice is reported [18–21[9]] onwards 19972009 ChrY utilised for forensic science and paternity testing [10] Y haplotypes utilised to investigate association between ChrY and other complex traits [22–24] 2000onwards ChrY utilised for phylogenetics [11] 20002016 Association between Exploration ofhind the functionIII restri of genesction identified fragment on within polymorphism MSY and [25] [12–15] onwards cardiovascular disease detected 2002 Y-chromosomal haplogroups established [16] 2003 MSY first sequenced [17] Genes 2020, 11, 1273 3 of 19 Genes 2020, 11, x FOR PEER REVIEW 3 of 21 In summary, ChrY is the sex-determining chromosome in humans and is passed strictly from 2005 Unconvincing evidence relating the MSY to cardiovascular disease risk fathers to sons. Current understanding suggests that the function of ChrY is limited with[18–21] regards to complexonwards disease causal genes. Here we provideis areported review of the literature related to ChrY and complex 2009 Y haplotypes utilised to investigate association between ChrY and diseases and also make suggestions for future studies. [22–24] onwards other complex traits 2.1. Structure2016 of HumanExploration Chromosome of Ythe and function Recombination of genes identified on within MSY [25] In2.1. mammals, Structure of gender Human is Chromosome dictated by Y and either Recombination the presence or absence of ChrY. This chromosome is structurally unusual in relation to autosomes and, in humans, bears an extremely high quantity of In mammals, gender is dictated by either the presence or absence of ChrY. This chromosome is repetitivestructurally content. unusual ChrY alsoin relation contains to autosomes heterochromatic, and, in humans, X-transposed, bears an X-degenerate, extremely high ampliconic quantity ofand pseudoautosomalrepetitive content. regions ChrY (PAR) also [contains17], formed heterochro over time,matic, as X-transposed, the previously X-deg autologousenerate, ampliconic pair underwent and a sequencepseudoautosomal of large scale regions inversions (PAR) and[17], formed deletion over events time,[ as26 the]. previously autologous pair underwent ChrYa sequence shows of similarity large scale with inversions its counterpart, and deletion the events X chromosome, [26]. at the pseudoautosomal regions present atChrY the telomeres shows similarity (Figure with2). its As counterpart, a result, crossovers the X chromosome, involving at ChrYthe pseudoautosomal can only occur regions at these regions.present The remainderat the telomeres of ChrY (Figure
Recommended publications
  • Y-Chromosome and Surname Analyses for Reconstructing Past Population Structures: the Sardinian Population As a Test Case
    International Journal of Molecular Sciences Article Y-chromosome and Surname Analyses for Reconstructing Past Population Structures: The Sardinian Population as a Test Case Viola Grugni 1, Alessandro Raveane 1, Giulia Colombo 1, Carmen Nici 1, Francesca Crobu 1,2, Linda Ongaro 1,3,4, Vincenza Battaglia 1, Daria Sanna 1,5, Nadia Al-Zahery 1, Ornella Fiorani 6, Antonella Lisa 6, Luca Ferretti 1 , Alessandro Achilli 1, Anna Olivieri 1, Paolo Francalacci 7, Alberto Piazza 8, Antonio Torroni 1 and Ornella Semino 1,* 1 Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; [email protected] (V.G.); [email protected] (A.R.); [email protected] (G.C.); [email protected] (C.N.); [email protected] (F.C.); [email protected] (L.O.); [email protected] (V.B.); [email protected] (D.S.); [email protected] (N.A.-Z.); [email protected] (L.F.); [email protected] (A.A.); [email protected] (A.O.); [email protected] (A.T.) 2 Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Italy 3 Estonian Biocentre, Institute of Genomics, Riia 23, 51010 Tartu, Estonia 4 Department of Evolutionary Biology, Institute of Molecular and Cell Biology, Riia 23, 51010 Tartu, Estonia 5 Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy 6 Istituto di Genetica Molecolare “L.L. Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), 27100 Pavia, Italy; fi[email protected]
    [Show full text]
  • Germanic Origins from the Perspective of the Y-Chromosome
    Germanic Origins from the Perspective of the Y-Chromosome By Michael Robert St. Clair A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor in Philosophy in German in the Graduate Division of the University of California, Berkeley Committee in charge: Irmengard Rauch, Chair Thomas F. Shannon Montgomery Slatkin Spring 2012 Abstract Germanic Origins from the Perspective of the Y-Chromosome by Michael Robert St. Clair Doctor of Philosophy in German University of California, Berkeley Irmengard Rauch, Chair This dissertation holds that genetic data are a useful tool for evaluating contemporary models of Germanic origins. The Germanic languages are a branch of the Indo-European language family and include among their major contemporary representatives English, German, Dutch, Danish, Swedish, Norwegian and Icelandic. Historically, the search for Germanic origins has sought to determine where the Germanic languages evolved, and why the Germanic languages are similar to and different from other European languages. Both archaeological and linguist approaches have been employed in this research direction. The linguistic approach to Germanic origins is split among those who favor the Stammbaum theory and those favoring language contact theory. Stammbaum theory posits that Proto-Germanic separated from an ancestral Indo-European parent language. This theoretical approach accounts for similarities between Germanic and other Indo- European languages by posting a period of mutual development. Germanic innovations, on the other hand, occurred in isolation after separation from the parent language. Language contact theory posits that Proto-Germanic was the product of language convergence and this convergence explains features that Germanic shares with other Indo-European languages.
    [Show full text]
  • Y-Chromosome Short Tandem Repeat, Typing Technology, Locus Information and Allele Frequency in Different Population: a Review
    Vol. 14(27), pp. 2175-2178, 8 July, 2015 DOI:10.5897/AJB2015.14457 Article Number: 2E48C3F54052 ISSN 1684-5315 African Journal of Biotechnology Copyright © 2015 Author(s) retain the copyright of this article http://www.academicjournals.org/AJB Review Y-Chromosome short tandem repeat, typing technology, locus information and allele frequency in different population: A review Muhanned Abdulhasan Kareem1, Ameera Omran Hussein2 and Imad Hadi Hameed2* 1Babylon University, Centre of Environmental Research, Hilla City, Iraq. 2Department of Molecular Biology, Babylon University, Hilla City, Iraq. Received 29 January, 2015; Accepted 29 June, 2015 Chromosome Y microsatellites seem to be ideal markers to delineate differences between human populations. They are transmitted in uniparental and they are very sensitive for genetic drift. This review will highlight the importance of the Y- Chromosome as a tool for tracing human evolution and describes some details of Y-chromosomal short tandem repeat (STR) analysis. Among them are: microsatellites, amplification using polymerase chain reaction (PCR) of STRs, separation and detection and advantages of X-chromosomal microsatellites. Key words: Forensic, population, review, STR, Y- chromosome. INTRODUCTION Microsatellites are DNA regions with repeat units that are microsatellite, but repeats of five (penta-) or six (hexa-) 2 to 7 bp in length or most generally short tandem nucleotides are usually classified as microsatellites as repeats (STRs) or simple sequence repeats (SSRs) well. DNA can be used to study human evolution. (Ellegren, 2000; Imad et al., 2014). The classification of Besides, information from DNA typing is important for the DNA sequences is determined by the length of the medico-legal matters with polymorphisms leading to more core repeat unit and the number of adjacent repeat units.
    [Show full text]
  • Combinatorial Genomic Data Refute the Human Chromosome 2 Evolutionary Fusion and Build a Model of Functional Design for Interstitial Telomeric Repeats
    The Proceedings of the International Conference on Creationism Volume 8 Print Reference: Pages 222-228 Article 32 2018 Combinatorial Genomic Data Refute the Human Chromosome 2 Evolutionary Fusion and Build a Model of Functional Design for Interstitial Telomeric Repeats Jeffrey P. Tomkins Institute for Creation Research Follow this and additional works at: https://digitalcommons.cedarville.edu/icc_proceedings Part of the Biology Commons, and the Genomics Commons DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Tomkins, J.P. 2018. Combinatorial genomic data refute the human chromosome 2 evolutionary fusion and build a model of functional design for interstitial telomeric repeats. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 222–228. Pittsburgh, Pennsylvania: Creation Science Fellowship. Tomkins, J.P. 2018. Combinatorial genomic data refute the human chromosome 2 evolutionary fusion and build a model of functional design for interstitial telomeric repeats. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 222–228. Pittsburgh, Pennsylvania: Creation Science Fellowship. COMBINATORIAL GENOMIC DATA REFUTE THE HUMAN CHROMOSOME 2 EVOLUTIONARY FUSION AND BUILD A MODEL OF FUNCTIONAL DESIGN FOR INTERSTITIAL TELOMERIC REPEATS Jeffrey P.
    [Show full text]
  • The Human Y Chromosome's Azoospermia Factor B (Azfb) Region
    18 ORIGINAL ARTICLE J Med Genet: first published as 10.1136/jmg.40.1.18 on 1 January 2003. Downloaded from The human Y chromosome’s azoospermia factor b (AZFb) region: sequence, structure, and deletion analysis in infertile men A Ferlin, E Moro, A Rossi, B Dallapiccola, C Foresta ............................................................................................................................. J Med Genet 2003;40:18–24 See end of article for authors’ affiliations Microdeletions of the Y chromosome long arm are the most common mutations in infertile males, where ....................... they involve one or more “azoospermia factors” (AZFa, b, and c). Understanding of the AZF structure and gene content and mapping of the deletion breakpoints in infertile men are still incomplete. We Correspondence to: Professor C Foresta, have assembled a complete 4.3 Mb map of AZFb and surrounding regions by means of 38 BAC University of Padova, clones. The proximal part of AZFb consists of large repeated sequences organised in palindromes, but Department of Medical and most of it is single copy sequence. A number of known and novel genes and gene families map in this Surgical Sciences, Clinica interval, and most of them are testis specific or have testis specific transcripts. STS mapping allowed us Medica 3, Via Ospedale to identify four severely infertile subjects with a deletion in AZFb with similar breakpoints, therefore 105, 35128 Padova, Italy; [email protected] suggesting a common deletion mechanism. This deletion includes at least five single copy genes and two duplicated genes, but does not remove the historical AZFb candidate gene RBMY1. These data Revised version received suggest that other genes in AZFb may have important roles in spermatogenesis.
    [Show full text]
  • Pedigrees and Karyotypes Pedigree
    Pedigrees and Karyotypes Pedigree A pedigree shows the relationships within a family and it helps to chart how one gene can be passed on from generation to generation. Pedigrees are tools used by genetic researchers or counselors to identify a genetic condition running through a family, they aid in making a diagnosis, and aid in determining who in the family is at risk for genetic conditions. On a pedigree: A circle represents a female A square represents a male A horizontal line connecting a male and female represents a marriage A vertical line and a bracket connect the parents to their children A circle/square that is shaded means the person HAS the trait. A circle/square that is not shaded means the person does not have the trait. Children are placed from oldest to youngest. A key is given to explain what the trait is. Marriage Male-DAD Female-MOM Has the trait Male-Son Female-daughter Female-daughter Male- Son Oldest to youngest Steps: ff Ff •Identify all people who have the trait. •For the purpose of this class all traits will be given to you. In other instances, you would have to determine whether or not the trait is autosomal dominant, autosomal recessive, or sex- linked. •In this example, all those who have the trait are homozygous recessive. •Can you correctly identify all genotypes of this family? ff ff Ff Ff •F- Normal •f- cystic fibrosis Key: affected male affected female unaffected male unaffected female Pp Pp PKU P- Unaffected p- phenylketonuria PP or Pp pp Pp pp pp Pp Pp Key: affected male affected female unaffected male unaffected female H-huntington’s hh Hh disease h-Unaffected Hh hh Hh hh Hh hh hh Key: affected male affected female unaffected male unaffected female Sex-Linked Inheritance Colorblindness Cy cc cy Cc Cc cy cy Key: affected male affected female unaffected male unaffected female Karyotypes To analyze chromosomes, cell biologists photograph cells in mitosis, when the chromosomes are fully condensed and easy to see (usually in metaphase).
    [Show full text]
  • Discovery of Candidate Genes for Stallion Fertility from the Horse Y Chromosome
    DISCOVERY OF CANDIDATE GENES FOR STALLION FERTILITY FROM THE HORSE Y CHROMOSOME A Dissertation by NANDINA PARIA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2009 Major Subject: Biomedical Sciences DISCOVERY OF CANDIDATE GENES FOR STALLION FERTILITY FROM THE HORSE Y CHROMOSOME A Dissertation by NANDINA PARIA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Terje Raudsepp Committee Members, Bhanu P. Chowdhary William J. Murphy Paul B. Samollow Dickson D. Varner Head of Department, Evelyn Tiffany-Castiglioni August 2009 Major Subject: Biomedical Sciences iii ABSTRACT Discovery of Candidate Genes for Stallion Fertility from the Horse Y Chromosome. (August 2009) Nandina Paria, B.S., University of Calcutta; M.S., University of Calcutta Chair of Advisory Committee: Dr. Terje Raudsepp The genetic component of mammalian male fertility is complex and involves thousands of genes. The majority of these genes are distributed on autosomes and the X chromosome, while a small number are located on the Y chromosome. Human and mouse studies demonstrate that the most critical Y-linked male fertility genes are present in multiple copies, show testis-specific expression and are different between species. In the equine industry, where stallions are selected according to pedigrees and athletic abilities but not for reproductive performance, reduced fertility of many breeding stallions is a recognized problem. Therefore, the aim of the present research was to acquire comprehensive information about the organization of the horse Y chromosome (ECAY), identify Y-linked genes and investigate potential candidate genes regulating stallion fertility.
    [Show full text]
  • An Overview of the Independent Histories of the Human Y Chromosome and the Human Mitochondrial Chromosome
    The Proceedings of the International Conference on Creationism Volume 8 Print Reference: Pages 133-151 Article 7 2018 An Overview of the Independent Histories of the Human Y Chromosome and the Human Mitochondrial chromosome Robert W. Carter Stephen Lee University of Idaho John C. Sanford Cornell University, Cornell University College of Agriculture and Life Sciences School of Integrative Plant Science,Follow this Plant and Biology additional Section works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Carter, R.W., S.S. Lee, and J.C. Sanford. An overview of the independent histories of the human Y- chromosome and the human mitochondrial chromosome. 2018. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 133–151. Pittsburgh, Pennsylvania: Creation Science Fellowship. Carter, R.W., S.S. Lee, and J.C. Sanford. An overview of the independent histories of the human Y-chromosome and the human mitochondrial chromosome. 2018. In Proceedings of the Eighth International Conference on Creationism, ed. J.H.
    [Show full text]
  • The Canada's History Beginner's Guide to Genetic
    THE CANADA’S HISTORY BEGINNER’S GUIDE TO GENETIC GENEALOGY Read in sequence or browse as you see fit by clicking on any navigation item below. Introduction C. How to proceed A. To test or not Testing strategies for beginners Reasons for testing Recovery guide for those who tested and were underwhelmed Bogus reasons for not testing Fear of the test D. Case studies “The tests are crap” Confirming a hypothesis with autosomal DNA Price Refuting a hypothesis with autosomal DNA Substantive reasons for not testing Confirming a hypothesis with Y DNA Privacy concerns Developing (and then confirming) a hypothesis with Unexpected findings autosomal DNA Developing a completely unexpected hypothesis from B. The ABCs of DNA testing autosomal DNA The four major testing companies (and others) Four types of DNA and three major genetic genealogy tests E. Assorted observations on interpreting DNA tests Mitochondrial DNA (mtDNA) Y DNA F. More resources Autosomal DNA (atDNA) Selected recent publications X DNA Basic information about genetic genealogy Summarizing the tests Blogs by notable genetic genealogists (a selective list) Tools and utilities © 2019 Paul Jones The text of this guide is protected by Canadian copyright law and published here with permission of the author. Unless otherwise noted, copyright of every image resides with the image’s owner. You should not use any of these images for any purpose without the owner’s express authorization unless this is already granted in a cited license. For further information or to report errors or omissions, please contact Paul Jones. CANADASHISTORY.CA ONLINE SPECIAL FEATURE 2019 1 Introduction The “bestest best boy in the land” recently had his DNA tested.
    [Show full text]
  • Microdeletion of the Azfc Locus with High Frequency of Mosaicism 46,XY/47XYY in Cases of Non Obstructive Azoospermia in Eastern Population of India
    Microdeletion of the AZFc locus with high frequency of mosaicism 46,XY/47XYY in cases of non obstructive azoospermia in eastern population of India A.K. Saxena and K. Aniket Department of Pathology/Lab Medicine, Molecular Cytogenetics Laboratory, All India Institute of Medical Sciences, Patna (Bihar), India Corresponding author: A.K. Saxena E-mail: [email protected] Genet. Mol. Res. 18 (2): gmr18349 Received May 07, 2019 Accepted June 06, 2019 Published June 18, 2019 DOI http://dx.doi.org/10.4238/gmr18349 ABSTRACT. The etiopathology of male infertility is highly complex, involving gene - environment interactions to regulate spermatogenesis. Consequently, genetic analysis becomes imperative for cases of non-obstructive azoospermia (NOA) to identify the causative factors. Cases (n = 111) of NOA referred to the cytogenetics and molecular genetics laboratory of the All India Institute of Medical Sciences in -Patna from 2013-2018 were subjected to 1) karyotyping using GTG bandings techniques, 2) fluorescence in situ hybridization (FISH) for the sex determining region (SRY), and 3) PCR based analysis of STS markers based on microdeletion of the Y- chromosome after isolation of genomic DNA from whole blood. A flow cytometer was used for a cell- kinetic and DNA methylation study after incorporation of 5-azacytidine (5- AzaC) (1.0 ug/mL) in lymphocyte culture. PCR products were analyzed on an agarose gel (1.5%) and bands were visualized on Gel Doc after ethidium bromide staining. Chromosomal abnormalities, including structural numerical variations, were observed in 14 of the karyotypes. Eight cases showed a 46,XY/47,XYY i.e. mosaic pattern; two cases 46, XY/45/XO; a single case with 47,XY +16; two cases with 46,X+ ring Y; a single case with 46,XY+dicentric in Genetics and Molecular Research 18 (2): gmr18349 ©FUNPEC-RP www.funpecrp.com.br A.K.
    [Show full text]
  • The Evolutionary History of Human and Chimpanzee Y-Chromosome Gene Loss
    The Evolutionary History of Human and Chimpanzee Y-Chromosome Gene Loss George H. Perry,* à Raul Y. Tito,* and Brian C. Verrelli* *Center for Evolutionary Functional Genomics, The Biodesign Institute, Arizona State University, Tempe; School of Life Sciences, Arizona State University, Tempe; and àSchool of Human Evolution and Social Change, Arizona State University, Tempe Recent studies have suggested that gene gain and loss may contribute significantly to the divergence between humans and chimpanzees. Initial comparisons of the human and chimpanzee Y-chromosomes indicate that chimpanzees have a dis- proportionate loss of Y-chromosome genes, which may have implications for the adaptive evolution of sex-specific as well as reproductive traits, especially because one of the genes lost in chimpanzees is critically involved in spermatogenesis in humans. Here we have characterized Y-chromosome sequences in gorilla, bonobo, and several chimpanzee subspecies for 7 chimpanzee gene–disruptive mutations. Our analyses show that 6 of these gene-disruptive mutations predate chimpan- zee–bonobo divergence at ;1.8 MYA, which indicates significant Y-chromosome change in the chimpanzee lineage Downloaded from https://academic.oup.com/mbe/article/24/3/853/1246230 by guest on 23 September 2021 relatively early in the evolutionary divergence of humans and chimpanzees. Introduction The initial comparisons of human and chimpanzee Comparative analyses of single-nucleotide differences (Pan troglodytes) Y-chromosome sequences revealed that between human and chimpanzee genomes typically show although there are no lineage-specific gene-disruptive mu- estimates of approximately 1–2% divergence (Watanabe tations in the X-degenerate portion of the Y-chromosome et al. 2004; Chimpanzee Sequencing and Analysis Consor- fixed within humans, surprisingly, 4 genes, CYorf15B, tium 2005).
    [Show full text]
  • Cytogenetics, Chromosomal Genetics
    Cytogenetics Chromosomal Genetics Sophie Dahoun Service de Génétique Médicale, HUG Geneva, Switzerland [email protected] Training Course in Sexual and Reproductive Health Research Geneva 2010 Cytogenetics is the branch of genetics that correlates the structure, number, and behaviour of chromosomes with heredity and diseases Conventional cytogenetics Molecular cytogenetics Molecular Biology I. Karyotype Definition Chromosomal Banding Resolution limits Nomenclature The metaphasic chromosome telomeres p arm q arm G-banded Human Karyotype Tjio & Levan 1956 Karyotype: The characterization of the chromosomal complement of an individual's cell, including number, form, and size of the chromosomes. A photomicrograph of chromosomes arranged according to a standard classification. A chromosome banding pattern is comprised of alternating light and dark stripes, or bands, that appear along its length after being stained with a dye. A unique banding pattern is used to identify each chromosome Chromosome banding techniques and staining Giemsa has become the most commonly used stain in cytogenetic analysis. Most G-banding techniques require pretreating the chromosomes with a proteolytic enzyme such as trypsin. G- banding preferentially stains the regions of DNA that are rich in adenine and thymine. R-banding involves pretreating cells with a hot salt solution that denatures DNA that is rich in adenine and thymine. The chromosomes are then stained with Giemsa. C-banding stains areas of heterochromatin, which are tightly packed and contain
    [Show full text]