Metamorphic Petrology, Pressure-Temperature Paths, and Tectonic Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Metamorphic Petrology, Pressure-Temperature Paths, and Tectonic Evolution METAMORPHIC PETROLOGY, PRESSURE-TEMPERATURE PATHS, AND TECTONIC EVOLUTION OF THE MOUNT CUBE QUADRANGLE, NEW HAMPSHIRE AND VERMONT by DANIEL LEWIS ORANGE S.B. Massachusetts Institute of Technology (1985) Submitted to the Department of Earth, Atmospheric and Planetary Sciences in Partial Fulfillment of the Requirements of the Degree of MASTER OF SCIENCE at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May, 1985 0 Daniel L. Orange 1985 The author hereby grants to M.I.T. permission to reproduce and distribute copies ot this thesis document in whole or in part. Signature of Author Department of Earth,"'Ampheric and Planetary Sciences, May 14, 1985 Certified by Frank Spear Thesis Supervisor Accepted by ___ _._' - - f__ Theodore Madden Chairma ee on Graduate Students Room 14-0551 77 Massachusetts Avenue Cambridge, MA 02139 Ph: 617.253.5668 Fax: 617.253.1690 MITLibraries Email: [email protected] Document Services http://libraries.mit.edu/docs DISCLAIMER OF QUALITY Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible. Thank you. Some pages in the original document contain text That runs off the edge of the page. (Pages A-100 & A-101) METAMORPHIC PETROLOGY, PRESSURE-TEMPERATURE PATHS, AND TECTONIC EVOLUTION OF THE MOUNT CUBE QUADRANGLE, NEW HAMPSHIRE AND VERMONT by DANIEL LEWIS ORANGE Submitted to the Department of Earth, Atmospheric and Planetary Sciences in Partial Fulfillment of the Requirements for the Degree of Master of Science in Geology May 14, 1985 ABSTRACT The metamorphic history of a traverse across the Mount Cube Quadrangle and Rumney Quadrangle, New Hampshire and Vermont, is investigated using optical petrology, geothermometry, geobarometry, and a garnet zoning technique for calculating pressure-temperature paths. A variety of pelitic assemblages are present across 15 kilometers of strike; these range from garnet-staurolite-kyanite rocks in the Archertown Brook (AB) and Cottonstone Mountain (CM) localities to the west to garnet-chlorite- chloritoid grade rocks along the Northey Hill Line (NHL) to garnet- cordierite-sillimanite grade rocks in-the Baker Pond (BP) locality to the east. Pressure-temperature calculations indicate peak metamorphic conditions in the CM locality of 3.75-5.25 kb and 460-5100 C. The AB locality presents peak conditions of 3-5 kb and 425-5000C. The NHL has lower peak conditions of 2-3 kb and 450-490 0C. Samples from the Jacobs Brook Recumbant Syncline (JBRS) have a peak temperature of 490-575 0C and the pressure is not constrained. The BP locality has peak conditions of 3-5 kb and 490-5500C. The garnets analyzed from the NHL exhibit small zoning gradients. In contrast, garnets from the other localities have steep zoning profiles. Quantitative P-T paths are presented for all but the JBRS and BP localities. Pressure-temperature paths computed from samples west of the NHL suggest up to two nappe-stage compressional events, a near-isothermal dome-stage decompression, and a late-stage isobaric cooling correlative with the development of the Sunday Mountain Cleavage Belt. The NHL samples show an isothermal decompression associated with the Sunday Mountain Cleavage Belt. The isobaric cooling seen west of the NHL is thought to be due either to thrusting of hot rocks over cold rocks or the folding of isosotherms during a late stage back-folding event. Neither of these hypotheses can accomodate the isothermal decompression seen in the NHL samples. A structural break is inferred along the Northey Hill Line, where detailed mapping shows drastic thinning of beds and the highest intensity of the Sunday Mountain Cleavage Belt. To create the P-T path geometry seen in the NHL, this locality must have experienced differential uplift with respect to the samples to the west. In this interpretation, the isobaric cooling in the samples to the west is produced prior to the uplift along the NHL. Thesis Supervisor: Frank Spear Title: Associate Professor of Geology ACKNOWLEDGEMENTS First and foremost, I would like to thank my father for four years of financial and emotional support. I would like to thank my advisor, Frank Spear, for his enthusiasm and support all along, and for the insight he has given me towards metamorphic processes. Don Hickmott deserves special note, for without his constant availability and untiring fielding of my many questions, this thesis would never have been completed. I would also like to thank Dr. Douglas Rumble III for the many days he spent with me in the field explaining the structures of the Mount Cube Quadrangle, and also for providing thin sections for the Cottonstone Mountain and Archertown Brook localities. I would like to thank Larry McKenna for his field assistance. Doug Chor (MIT) and Dave Lange (Harvard) provided many hours of instruction and assistance in the use of the electron microprobe. Matt Kohn typed the majority of this thesis, while Don Hickmott and Dr. Jane Selverstone provided thorough and thought-provoking commentaries on the rough drafts. Dr. Jane Selverstone also provided valuable insight into the role of fluids in metamorphic equilibria. Beatrice Silny assisted in putting the final draft together. I wish to thank my fellow Masters student, Rosamond Kinzler, for the months of constant support and assistance. I wish to thank the Thursday Mandarin lunch/Thirsty Ear crowd for giving me something to look forward to every week, no matter how badly things were going. I wish to thank Baker House for the support in the tough times and three years of the good times. Lastly, I would like to thank John Carl Adams, with whom I'm about to depart on a trip around the world. By consenting to this impending insanity, he has helped get through this year. Let the good times roll! "Hoya Saxa!!" (What Rocks!) iii TABLE OF CONTENTS ABSTRACT........................... ... 11 ACKNOWLEDGEMENTS............. .. 0 . .. .111 TABLE OF CONTENTS................. .. 0 . .. .. LIST OF TABLES AND APPENDICES..... .. 0 . .. .. LIST OF FIGURES................... ...vii I. INTRODUCTION................... ....... II. REGIONAL GEOLOGY.............. III. METHODS OF INVESTIGATION..... ...11 IV. SAMPLE LOCALITIES............. ..................... 0 9 . ...14 V. SYSTEMATIC MINERALOGY.......... .................... ...18 Cottonstone Mountain....... ...19 ..................... 0 0 t B k. ArI c her .UI roo Vown 0 o o*............................. ...21 Northey Hill Line....................... ..... 30 Jacobs Brook Recumbant Syncline......... ...39 Baker Pond.............................. ...41 ..................... a0 0 VI. ELECTRON MICROPROBE ANALYSES............. ...57 Cottonstone Mountain.................... ..................... 0 0 0 0 . ...58 Archertown Brook........................ ...62 ..................... 0 0 Northey Hill Line....................... ...74 Jacobs Brook Recumbant Syncline......... ......82 Baker Pond.............................. ...90 Garnet Zoning: Discussion............... ...95 VII. GEOTHERMOMETRY AND GEOBAROMETRY......... ...97 Cottonstone Mountain.................... ...98 Archertown Brook........................ ...99 Archertown Brook: Comparison............ .......................... 9 0 0 * 0 .107 TABLE OF CONTENTS (cont'd.) VII. GEOTHERMOMETRY AND GEOBAROMETRY (cont'd.) Northey Hill Line..................................................110 Jacobs Brook Recumbant Syncline....................................113 Baker Pond.........................................................117 Regional Cross Section: P-T Space..................................125 VIII. PRESSURE-TEMPERATURE PATHS FROM GARNET ZONING.....................128 Cottonstone Mountain...............................................130 Archertown Brook...................................................141 Northey Hill Line..................................................151 Jacobs Brook Recumbant Syncline....................................157 Baker Pond.........................................................158 IX. DISCUSSION AND CONCLUSIONS..........................................160 REFERENCES..............................................................166 LIST OF TABLES AND APPENDICES TABLE 1: COMPARITIVE SYSTEMATIC MINERALOGY.............................47 APPENDIX 1: MODAL ABUNDANCES-COTTONSTONE MOUNTAIN......................A-1 APPENDIX MODAL ABUNDANCES-ARCHERTOWN BROOK............... ........ 0 0 .. .A-2 APPENDIX MODAL ABUNDANCES-NORTHEY HILL LINE.............. A-4 ...... APPENDIX MODAL ABUNDANCES-JACOBS BROOK RECUMBANT SYNCLINE A-5 ...... APPENDIX MODAL ABUNDANCES-BAKER POND..................... .A- 7 ... APPENDIX MICROPROBE ANALYSES-COTTONSTONE MOUNTAIN........ .. .A-8 ... APPENDIX MICROPROBE ANALYSES-ARCHERTOWN BROOK............ .. A-17 .... APPENDIX MICROPROBE ANALYSES-NORTHEY HILL LINE........... A-53 ...... APPENDIX MICROPROBE ANALYSES-JACOBS BROOK RECUMBANT SYNCLINE... ..... A-64 APPENDIX 10: MICROPROBE ANALYSES-BAKER POND............................A-79 LIST OF FIGURES 1. Location of the Mount Cube and Rumney Quadrangles, New Hampshire and Vermont ........................................................ 3 2. Detailed geologic map of the Mount Cube Quadrangle and the surrounding area ................................................... 5 3. Cross-section across the Mount Cube Quadrangle ..................... 6 4. Stratigraphy of the Mount Cube Quadrangle .........................
Recommended publications
  • Expedition 369 Thin Sections, Site U1512
    Site U1512 core descriptions Thin sections THIN SECTION LABEL ID 369-U1512A-5R-4-W 72/75-TSB-TS1 Thin section no.: 1 Observer: CW Unit/subunit: II-a Thin section summary: A silty clay with moderately developed lamination and rare burrows. The sediment sample is moderately sorted and is comprised of silt-sized angular mineral grains including common quartz and trace amounts of feldspar hosted within a clay-rich matrix. Rare grains are sand sized. Other minerals/bioclasts present in common and trace amounts include muscovite mica, biotite mica, tubular bioclast fragments and poorly developed/fragmented radiolarians. Plane-polarized: 43920161 Cross-polarized: 43920141 Sediments and Sedimentary Rock Complete Lithology Name: silty clay Remarks: GRAIN SIZE Gravel Sand Silt Clay Percent 0 5 25 70 COMPOSITION Siliciclastic Calcareous Biosiliceous Mineral grains (%) 94 5 1 Cement (%) 94 5 1 MINERAL GRAIN ROUNDNESS MINERAL GRAIN SORTING angular moderate Mineral grain Abundance Quartz C Microcline feldspar T Clay D Calcite R D=dominant, A=abundant, C=common, R=rare, T=trace 369-U1512A-5R-4-W 72/75-TSB-TS1 Page 1 of 1 Site U1512 core descriptions Thin sections THIN SECTION LABEL ID 369-U1512A-13R-5-W 26/29-TSB-TS2 Thin section no.: 2 Observer: CW Unit/subunit: II-b Thin section summary: A possible sideritic siltstone, with quartz, glauconite, and Fe-oxide. The rock sample is moderately sorted and is comprised of silt-sized siderite grains hosted within a clay-rich matrix. Silt-sized quartz grains are common throughout. Pore spaces are also comprised of quartz cements. The rock sample is likely reworked from a proximal source area on the slope due to the angularity of the grains.
    [Show full text]
  • Depositional Setting of Algoma-Type Banded Iron Formation Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok
    Depositional Setting of Algoma-type Banded Iron Formation Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok To cite this version: Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok. Depositional Setting of Algoma-type Banded Iron Formation. Precambrian Research, Elsevier, 2016. hal-02283951 HAL Id: hal-02283951 https://hal-brgm.archives-ouvertes.fr/hal-02283951 Submitted on 11 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Depositional Setting of Algoma-type Banded Iron Formation B. Gourcerol, P.C. Thurston, D.J. Kontak, O. Côté-Mantha, J. Biczok PII: S0301-9268(16)30108-5 DOI: http://dx.doi.org/10.1016/j.precamres.2016.04.019 Reference: PRECAM 4501 To appear in: Precambrian Research Received Date: 26 September 2015 Revised Date: 21 January 2016 Accepted Date: 30 April 2016 Please cite this article as: B. Gourcerol, P.C. Thurston, D.J. Kontak, O. Côté-Mantha, J. Biczok, Depositional Setting of Algoma-type Banded Iron Formation, Precambrian Research (2016), doi: http://dx.doi.org/10.1016/j.precamres. 2016.04.019 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Metamorphism
    Title page INTRODUCING METAMORPHISM Ian Sanders DUNEDIN EDINBURGH LONDON Contents Contents v Preface ix Acknowledgements x 1 Introduction 1 1.1 What is metamorphism? 1 1.1.1 Protoliths 1 1.1.2 Changes to the minerals 1 1.1.3 Changes to the texture 3 1.1.4 Naming metamorphic rocks 3 1.2 Metamorphic rocks – made under mountains 3 1.2.1 Mountain building 3 1.2.2 Directed stress, pressure and temperature in a mountain’s roots 4 1.2.3 Exhumation of a mountain’s roots 6 1.3 Metamorphism in local settings 6 1.3.1 Contact metamorphism 7 1.3.2 Hydrothermal metamorphism 7 1.3.3 Dynamic metamorphism 9 1.3.4 Shock metamorphism 9 2 The petrography of metamorphic rocks 11 2.1 Quartzite and metapsammite 11 2.1.1 Quartzite 11 2.1.2 Metapsammite 13 2.2 Metapelite 13 2.2.1 Slate 14 2.2.2 Phyllite and low-grade schist 16 2.2.3 Minerals and textures of medium-grade schist 17 2.2.4 The regional distribution of minerals in low- and medium-grade schist 20 2.2.5 Pelitic gneiss and migmatite 22 2.2.6 Metapelite in a contact aureole 23 2.2.7 The significance of Al2SiO5 for inferring metamorphic conditions 23 2.3 Marble 24 2.3.1 Pure calcite marble 24 2.3.2 Impure marble 26 2.3.3 Metasediments with mixed compositions 29 CONTENTS 2.4 Metabasite 30 2.4.1 Six kinds of metabasite from regional metamorphic belts 31 2.4.2 The ACF triangle for minerals in metabasites 36 2.4.3 P–T stability of metabasites, and metamorphic facies 38 vi 2.4.4 A metabasite made by contact metamorphism 40 2.5 Metagranite 41 2.5.1 Granitic gneiss and orthogneiss 41 2.5.2 Dynamic metamorphism
    [Show full text]
  • Thin Section Petrography for Ceramic Glaze Microstructures
    minerals Commentary Breaking Preconceptions: Thin Section Petrography For Ceramic Glaze Microstructures Roberta Di Febo 1,2,3,*, Lluís Casas 4 , Jordi Rius 5, Riccardo Tagliapietra 6 and Joan Carles Melgarejo 7 1 Dept. de Ciències de l’Antiguitat i Edad Mitjana, Facultat de Filosofia i Lletres, Universitat Autònoma de Barcelona (UAB), Edifici B, 08193 Bellaterra, Spain 2 Institut Català d’Arqueologia Clàssica (ICAC), Unitat d’Estudis Arqueomètrics (UEA), Plaça d’en Rovellat, s/n, 43003 Tarragona, Spain 3 U Science Tech, MECAMAT group, University of Vic—Central University of Catalonia, C. De la Laura 13, 08500 Catalonia, Spain 4 Departament de Geologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; [email protected] 5 Institute de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Spain; [email protected] 6 Renishaw S.p.A Via dei Prati 5, 10044 Pianezza (TO), Italia; [email protected] 7 Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +34-977-249-133 Received: 16 December 2018; Accepted: 12 February 2019; Published: 15 February 2019 Abstract: During the last thirty years, microstructural and technological studies on ceramic glazes have been essentially carried out through the use of Scanning Electron Microscopy (SEM) combined with energy dispersive X-ray analysis (EDX). On the contrary, optical microscopy (OM) has been considered of limited use in solving the very complex and fine-scale microstructures associated with ceramic glazes.
    [Show full text]
  • Actually Consists of 2 Cleavages
    Types of foliations • Crenulation Cleavage- – Actually consists of 2 cleavages – The first may be a slaty cleavage or schistosity that becomes microfolded – Fold axial planes typically form at high angle to the σ1 of the second compressional phase 1 Progressive development (a → c) of a crenulation cleavage for both asymmetric (top) and symmetric (bottom) situations. From Spry (1969) Metamorphic Textures. Pergamon. Oxford. 2 Figure 23.24a. Symmetrical crenulation cleavages in amphibole-quartz-rich schist. Note concentration of quartz in hinge areas. From Borradaile et al. (1982) Atlas of Deformational and Metamorphic Rock Fabrics. Springer-Verlag. 3 Figure 23.24b. Asymmetric crenulation cleavages in mica-quartz-rich schist. Note horizontal compositional layering (relict bedding) and preferential dissolution of quartz from one limb of the folds. From Borradaile et al. (1982) Atlas of Deformational and Metamorphic Rock Fabrics. Springer-Verlag. 4 Figure 23.25. Stages in the development of crenulation cleavage as a function of temperature and intensity of the second deformation. From Passchier and Trouw (1996) Microtectonics. Springer-Verlag. Development of S2 micas depends upon T and the intensity of the second deformation 5 Types of lineations a. Preferred orientation of elongated mineral aggregates b. Preferred orientation of elongate minerals c. Lineation defined by platy minerals d. Fold axes (especially of crenulations) e. Intersecting planar elements. Figure 23.26. Types of fabric elements that define a lineation. From Turner and Weiss (1963) Structural 6 Analysis of Metamorphic Tectonites. McGraw Hill. Analysis of Deformed Rocks • If two or more geometric elements are present, we can add a numeric subscript to denote the chronological sequence in which they were developed and superimposed- • Deformational events: D1 D2 D3 … • Metamorphic events: M1 M2 M3 … • Foliations: So S1 S2 S3 … • Lineations: Lo L1 L2 L3 … • Plot on a metamorphism-deformation-time plot showing the crystallization of each mineral 7 Deformation vs.
    [Show full text]
  • Megaliths and Geology: a Journey Through Monuments, Landscapes and Peoples
    Megaliths and Geology Megálitos e Geologia MEGA-TALKS 2 19-20 November 2015 (Redondo, Portugal) Edited by Rui Boaventura, Rui Mataloto and André Pereira Access Archaeology aeopr ch es r s A A y c g c e o l s o s e A a r c Ah Archaeopress Publishing Ltd Summertown Pavilion 18-24 Middle Way Summertown Oxford OX2 7LG www.archaeopress.com ISBN 978-1-78969-641-7 ISBN 978-1-78969-642-4 (e-Pdf) © the individual authors and Archaeopress 2020 Financial support for the meeting Mega-Talks 2 has been provided by the project Moving megaliths in the Neolithic (PTDC/EPH-ARQ/3971/2012), funded by FCT (Fundação para a Ciência e a Tecnologia, Portugal) and the Municipality of Redondo (Portugal). All rights reserved. No part of this book may be reproduced, stored in retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior written permission of the copyright owners. This book is available direct from Archaeopress or from our website www.archaeopress.com Contents Introduction: Megaliths and Geology: a journey through monuments, landscapes and peoples ........................... iii Moving megaliths in the Neolithic - a multi analytical case study of dolmens in Freixo-Redondo (Alentejo, Portugal). Rui Boaventura, Patrícia Moita, Jorge Pedro, Rui Mataloto, Luis Almeida, Pedro Nogueira, Jaime Máximo, André Pereira, José Francisco Santos & Sara Ribeiro ............................................................... 1 Funerary megalithism in the south of Beira Interior: architectures, spoils and cultural sequences. João Luís Cardoso .................................................................................................................................................................. 25 A look at Proença-a-Nova’s Megalithism (Beira Baixa Intermunicipal Community, UNESCO Global Geopark Naturtejo, Portugal).
    [Show full text]
  • Optical Mineralogy in a Nutshell
    Optical Mineralogy in a Nutshell Use of the petrographic microscope Slides borrowed/adapted from Jane Selverstone (University of New Mexico) and John Winter (Whitman College) Why use the petrographic microscope? • Identify minerals (no guessing!) • Determine rock type • Determine crystallization sequence • Document deformation history • Observe frozen-in reactions • Constrain P-T history • Note weathering/alteration • Fun, powerful, and cheap! The petrographic microscope Also called a polarizing microscope In order to use the scope, we need to understand a little about the physics of light, and then learn some tools and tricks… Polarized Light Microscopy Isotropic materials, which include gases, liquids, unstressed glasses and cubic crystals, demonstrate the same From Nikon optical properties in all directions. They have only one refractive index and no restriction on the vibration direction of light passing through them. Anisotropic materials, in contrast, which include 90 percent of all solid substances, have optical properties that vary with the orientation of incident light with the crystallographic axes. Anisotropic materials act as beam splitters and divide light rays into two parts. The technique of polarizing microscopy exploits the interference of the split light rays, as they are re-united along the same optical path to extract information about these materials. What happens as light moves through the scope? plane polarised light (single vibration direction) unpolarised light (all possible vibration directions) 1) Light passes
    [Show full text]
  • Petrographic Descriptions of Thin Sections of Drill Cuttings from KCM No
    Petrographic descriptions of thin sections of drill cuttings from KCM No. 1 Forest Federal well, Hidalgo County, New Mexico 6f ?s Antonius J. Budding and Ronald F. Broadhead New Mexico Institute of Nining and Technology 1977 Open File Report of the Neb7 Mexico Bureau of Mines and Mineral Resources Socorro, Neb7 Mexico ~ ' Open-file ~ =Port 75 Introduction. This report contains petrographic descripdons of thin sections prepared from drill cuttings of the KCM No. 1 ForestFederal well, . Hidalgo County, New Mexico. The descriptionsare intended to be used in conjunction with the thin sections and can serve as a guide to their study. Each description is accompanied by a photomicrograph and sketches of pertinent parts of the thin section. The reader is referred to Circular 152 of the New Mexico Bureau of Mines andMineral Resources, entitled "Geology, PetroleumSource Rocks, andThermal Metamorphism in KCM No. 1 Forest Federal Well, Hidalgo County, New I.Iexico", compiled by SamThompson 111, for addi- tionalinformation. Thin sections prepared from drill cuttings of KCM No. 1 FF-well. Depth ft.in NameRock 50 micriticlimestoneSilty 210 Quartz Latite 230 Quartz Latite 270a Sandy dolomitic Limestone 270b Sandy dolomitic Limestone 320 Argillaceous Limestone 380 Limestone 450 Biomicritic Limestone 480 Biomicritic Limestone 5 20 Micritic Limestone 640 Limestone 760 Dolomitic Limes tone 800 Calcareous Mudstone 1080 Calcareous Mudstone 1210 Calcareous Mudstone 1230 Sandy, Calcareous Mudstone 1810 Argillaceous Limestone 1920 Micritic Limestone 2010 Tremolite-bearing Limestone 2280 Diopside Marble 2360 Diopside-wollastonite Marble 2460 Wollastonite hornfels and Quartz Monzonite 2640 Wollastonite Marble 2660 Cherty Limestone 2820a Wollastonite' MazbTe 2820b Wollastonite Marble 2960 Quartz Monzonite 3130a Quartz Monzonite 3130b Quartz Monzonite 3380 Diopside Marble 3680a Diopside Marble 3680b Wollastonite Marble 3740a Marble .
    [Show full text]
  • Data of Geochemistry
    Data of Geochemistry ' * Chapter W. Chemistry of the Iron-rich Sedimentary Rocks GEOLOGICAL SURVEY PROFESSIONAL PAPER 440-W Data of Geochemistry MICHAEL FLEISCHER, Technical Editor Chapter W. Chemistry of the Iron-rich Sedimentary Rocks By HAROLD L. JAMES GEOLOGICAL SURVEY PROFESSIONAL PAPER 440-W Chemical composition and occurrence of iron-bearing minerals of sedimentary rocks, and composition, distribution, and geochemistry of ironstones and iron-formations UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 45 cents (paper cover) CONTENTS Page Face Abstract. _ _______________________________ Wl Chemistry of iron-rich rocks, etc. Continued Introduction. _________ ___________________ 1 Oxide facies Continued Iron minerals of sedimentary rocks __ ______ 2 Hematitic iron-formation of Precambrian age__ W18 Iron oxides __ _______________________ 2 Magnetite-rich rocks of Mesozoic and Paleozoic Goethite (a-FeO (OH) ) and limonite _ 2 age___________-__-._____________ 19 Lepidocrocite (y-FeO(OH) )________ 3 Magnetite-rich iron-formation of Precambrian Hematite (a-Fe2O3) _ _ _ __ ___. _ _ 3 age._____-__---____--_---_-------------_ 21 Maghemite (7-Fe203) __ __________ 3 Silicate facies_________________________________ 21 Magnetite (Fe3O4) ________ _ ___ 3 Chamositic ironstone____--_-_-__----_-_---_- 21 3 Silicate iron-formation of Precambrian age_____ 22 Iron silicates 4 Glauconitic rocks__-_-____--------__-------- 23 4 Carbonate facies______-_-_-___-------_---------- 23 Greenalite. ________________________________ 6 Sideritic rocks of post-Precambrian age._______ 24 Glauconite____ _____________________________ 6 Sideritic iron-formation of Precambrian age____ 24 Chlorite (excluding chamosite) _______________ 7 Sulfide facies___________________________ 25 Minnesotaite.
    [Show full text]
  • Petrography, Mineralogy, and Reservoir Characteristics of the Upper Cretaceous Mesaverde Group in the East-Central Piceance Basin, Colorado
    Petrography, Mineralogy, and Reservoir Characteristics of the Upper Cretaceous Mesaverde Group in the East-Central Piceance Basin, Colorado U.S. GEOLOGICAL SURVEY BULLETIN 1 787-G Chapter G Petrography, Mineralogy, and Reservoir Characteristics of the Upper Cretaceous Mesaverde Group in the East-Central Piceance Basin, Colorado By JANET K. PITMAN, CHARLES W. SPENCER, and RICHARD M. POLLASTRO A multidisciplinary approach to research studies of sedimentary rocks and their constituents and the evolution of sedimentary basins, both ancient and modern U.S. GEOLOGICAL SURVEY BULLETIN 1787 EVOLUTION OF SEDIMENTARY BASINS-UINTA AND PICEANCE BASINS DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U. S. GEOLOGICAL SURVEY Dallas L Peck, Director Any use of trade, product, or firm names in tl is publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. UNITED STATES GOVERNMENT PR NTING OFFICE: 1989 For sale by the Books and Open-File Reports Section U.S. Geological Survey Federal Center Box 25425 Denver, CO 80225 Library of Congress Cataloging-in-Publication Data Pitman, Janet K. Petrography, mineralogy, and reservoir characteristics of the Upper Cretaceous Mesaverde Group in the East-Ce tral Piceance Basin, Colorado / by Janet K. Pitman, Charles W. Spencer, and Richard M. Pollastro. p. cm. (Evolution of sedimentary basins-Uinta and Piceance basins ; ch. G) (U.S. Geological Survey bulletin ; 1787-G) Bibliography: p. Supt. of Docs, no.: I 19.3: 1787-G 1. Geology Colorado Piceance Creek Watershed. 2. Gas, Natural Colorado Piceance Creek Watershed. 3. Mesaverde Group. 4. Geology, Stratigraphic Cretaceous. I. Spencer, Charles Winthrop, 1930- . II.
    [Show full text]
  • Microscopic Study of Common Metamorphic Rocks
    EXPERIMENT 10 MICROSCOPIC STUDY OF COMMON METAMORPHIC ROCKS Outline of Experiment____________________________ 10.1 Introduction Gneiss Expected Learning Skills 10.5 Non-foliated Metamorphic 10.2 Requirements Rocks 10.3 Basic Concepts Marble 10.4 Foliated Metamorphic Quartzite Rocks 10.6 Laboratory Exercises Slate 10.7 References Phyllite 10.8 Learning Resources Schist 10.1 INTRODUCTION You have learnt to identify metamorphic rocks in hand specimens in the previous experiment. In this experiment you will learn to identify microscopic characters of metamorphic rocks of foliated metamorphic rocks such as slate, 184 Experiment 9 Megascopic Study of Common Metamorphic Rocks ………………………………………………………………………………………………………………………. phyllite, schist and gneiss and non-foliated metamorphic rocks such as marble and quartzite. Expected Learning Skills__________________________ After performing this experiment, you should be able to: ❖ identify texture and mineral composition of foliated metamorphic rocks such as slate, phyllite, schist and gneiss; ❖ recognise texture and mineral composition of non-foliated metamorphic rocks such as marble and quartzite; and ❖ list the facies and associated protolith of slate, phyllite, schist, gneiss, marble and quartzite. 10.2 REQUIREMENTS To perform this experiment successfully, following are the requirements: • Polarising microscope with light source • Thin sections of slate, phyllite, schist, gneiss, marble and quartzite • Pen, pencil, eraser, scale, sharpener, coloured pencils and drawing compass • Laboratory file • You are instructed to draw the sketch of the hand specimen observed in the laboratory given by your instructor. Instructions: You are required to study Block 3 of BGYCT-135 course (Petrology) before performing this experiment. Bring this practical manual along with Block-3 of BGYCT-133 course while attending the Practical Counselling session.
    [Show full text]
  • Metamorphism and the Origin of Granitic Rocks Northgate District Colorado
    Metamorphism and the Origin of Granitic Rocks Northgate District Colorado GEOLOGICAL SURVEY PROFESSIONAL PAPER 274-M Metamorphism and the Origin of Granitic Rocks Northgate District Colorado By T. A. STEVEN SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 274-M A discussion of the progressive metamorphism, granitixation, and local rheomorphism of a layered sequence of rocks, and of the later emplacement and deuteric alteration of an unrelated granitic stock UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1957 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. CONTENTS Page Page Abstract_________________________________ 335 Pre-Cambrian geology—Continued Introduction-_______________________________________ 335 Dacite porphyry—____ ——— __ —— _____________ 364 Acknowledgments__ ___--_____-____-_____-______-_ 336 Intrusive quartz monzonite_-____--_-__-_--_-_-_. 365 Geologic setting._______ — _________________________ 336 Petrography ________—— —— _______________ 365 Pre-Cambrian geology—___________________________ 337 Main body of the stock____________— 366 Hornblende gneiss___-_________-_-_____-________ 338 Marginal dikes_________-____-__-__——— 366 Quartz monzonite gneiss_________________________ 342 Satellitic dikes___-___.__________ 367 Biotite-garnet gneiss___________________________ 345 Wall-rock alteration_________ _ __——_ 368 Pegmatite_________________________________
    [Show full text]