Are There Risks from Low Level Radiation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  The Overestimation of Medical Consequences of Low-Dose Exposure to Ionizing RadiationThe Overestimation of Medical Consequences of Low-Dose Exposure to Ionizing Radiation The Overestimation of Medical Consequences of Low-Dose Exposure to Ionizing Radiation By Sergei V. Jargin The Overestimation of Medical Consequences of Low-Dose Exposure to Ionizing Radiation By Sergei V. Jargin This book first published 2019 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2019 by Sergei V. Jargin All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-5275-2672-0 ISBN (13): 978-1-5275-2672-3 In memory of my father Vadim S. Yargin (1923-2012), co-author of the “Handbook of Physical Properties of Liquids and Gases” edited by Begell House. TABLE OF CONTENTS Introduction ................................................................................................ 1 Chapter One ................................................................................................ 3 Hormesis and Radiation Safety Norms Chapter Two ............................................................................................. 23 Dose and Dose Rate Effectiveness Factor (DDREF) Chapter Three ..........................................................................................
- 
												  NUCLEAR ENERGY and HEALTH and the Benefits of Low-Dose Radiation Hormesis Jerry M Cuttler Cuttler & Associates Inc., Mississauga, ON, CanadaDose-Response: An International Journal Volume 7 | Issue 1 Article 3 3-2009 NUCLEAR ENERGY AND HEALTH And the Benefits of Low-Dose Radiation Hormesis Jerry M Cuttler Cuttler & Associates Inc., Mississauga, ON, Canada Myron Pollycove University of California San Francisco, San Francisco, CA Follow this and additional works at: https://scholarworks.umass.edu/dose_response Recommended Citation Cuttler, Jerry M and Pollycove, Myron (2009) "NUCLEAR ENERGY AND HEALTH And the Benefits of Low-Dose Radiation Hormesis," Dose-Response: An International Journal: Vol. 7 : Iss. 1 , Article 3. Available at: https://scholarworks.umass.edu/dose_response/vol7/iss1/3 This Article is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Dose-Response: An International Journal by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Cuttler and Pollycove: Nuclear energy and health Dose-Response, 7:52–89, 2009 InternationalDOSE-RESPONSESociety Formerly Nonlinearity in Biology, Toxicology, and Medicine www.Dose-Response.org Copyright © 2009 University of Massachusetts ISSN: 1559-3258 DOI: 10.2203/dose-response.08-024.Cuttler NUCLEAR ENERGY AND HEALTH And the Benefits of Low-Dose Radiation Hormesis Jerry M. Cuttler ᮀ Cuttler & Associates Inc., Mississauga, ON, Canada Myron Pollycove ᮀ School of Medicine, University of California San Francisco, San Francisco, CA ᮀ Energy needs worldwide are expected to increase for the foreseeable future, but fuel supplies are limited. Nuclear reactors could supply much of the energy demand in a safe, sustainable manner were it not for fear of potential releases of radioactivity.
- 
												  Estimation of the Collective Effective Dose to the Population from Medical X-Ray Examinations in FinlandEstimation of the collective effective dose to the population from medical x-ray examinations in Finland Petra Tenkanen-Rautakoskia, Hannu Järvinena, Ritva Blya aRadiation and Nuclear Safety Authority (STUK), PL 14, 00880 Helsinki, Finland Abstract. The collective effective dose to the population from all x-ray examinations in Finland in 2005 was estimated. The numbers of x-ray examinations were collected by a questionnaire to the health care units (response rate 100 %). The effective doses in plain radiography were calculated using a Monte Carlo based program (PCXMC), as average values for selected health care units. For computed tomography (CT), weighted dose length product (DLPw) in a standard phantom was measured for routine CT protocols of four body regions, for 80 % of CT scanners including all types. The effective doses were calculated from DPLw values using published conversion factors. For contrast-enhanced radiology and interventional radiology, the effective dose was estimated mainly by using published DAP values and conversion factors for given body regions. About 733 examinations per 1000 inhabitants (excluding dental) were made in 2005, slightly less than in 2000. The proportions of plain radiography, computed tomography, contrast-enhanced radiography and interventional procedures were about 92, 7, 1 and 1 %, respectively. From 2000, the frequencies (number of examinations per 1000 inhabitants) of plain radiography and contrast-enhanced radiography have decreased about 8 and 33 %, respectively, while the frequencies of CT and interventional radiology have increased about 28 and 38 %, respectively. The population dose from all x-ray examinations is about 0,43 mSv per person (in 1997 0,5 mSv).
- 
												  Overview of Biological, Epidemiological, and Clinical Evidence of Radiation HormesisReview Overview of Biological, Epidemiological, and Clinical Evidence of Radiation Hormesis Yuta Shibamoto 1,* and Hironobu Nakamura 2,3 1 Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan 2 Department of Radiology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan; [email protected] 3 Department of Radiology, Saito Yukokai Hospital, Osaka 567-0085, Japan * Correspondence: [email protected]; Tel.: +81-52-853-8274 Received: 2 July 2018; Accepted: 9 August 2018; Published: 13 August 2018 Abstract: The effects of low-dose radiation are being increasingly investigated in biological, epidemiological, and clinical studies. Many recent studies have indicated the beneficial effects of low doses of radiation, whereas some studies have suggested harmful effects even at low doses. This review article introduces various studies reporting both the beneficial and harmful effects of low-dose radiation, with a critique on the extent to which respective studies are reliable. Epidemiological studies are inherently associated with large biases, and it should be evaluated whether the observed differences are due to radiation or other confounding factors. On the other hand, well-controlled laboratory studies may be more appropriate to evaluate the effects of low-dose radiation. Since the number of such laboratory studies is steadily increasing, it will be concluded in the near future whether low-dose radiation is harmful or beneficial and whether the linear-no-threshold (LNT) theory is appropriate. Many recent biological studies have suggested the induction of biopositive responses such as increases in immunity and antioxidants by low-dose radiation.
- 
												  Cuttler – Risk Vs HormesisProceedings of the 25th Annual Conference of the Canadian Nuclear Society, Toronto, June 6-9, 2004 What Becomes of Nuclear Risk Assessment in Light of Radiation Hormesis? Jerry M. Cuttler Cuttler & Associates Inc. [email protected] Abstract – A nuclear probabilistic risk or safety assessment (PRA or PSA) is a scientific calculation that uses assumptions and models to determine the likelihood of plant or fuel repository failures and the corresponding releases of radioactivity. Estimated radiation doses to the surrounding population are linked inappropriately to risks of cancer death and congenital malformations. Even though PRAs use very pessimistic assumptions, they demonstrate that nuclear power plants and fuel repositories are very safe compared with the health risks of other generating options or other risks that people readily accept. Because of the frightening negative images and the exaggerated safety and health concerns that are communicated, many people judge nuclear risks to be unacceptable and do not favour nuclear plants. Large-scale tests and experience with nuclear accidents demonstrate that even severe accidents expose the public to only low doses of radiation, and a century of research has demonstrated that such exposures are beneficial to health. A scientific basis for this phenomenon now exists. PRAs are valuable tools for improving plant designs, but if nuclear power is to play a significant role in meeting future energy needs, we must communicate its many real benefits and dispel the negative images formed by unscientific extrapolations of harmful effects at high doses. 1. NUCLEAR RISK ASSESSMENT Nuclear engineers calculate the likelihood of all possible accidents at a nuclear power plant and the resulting probability that people nearby might be harmed by such accidents.
- 
												  It's Time for a New Low-Dose-Radiation Risk Assessment Paradigm—One That Acknowledges HormesisView metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarWorks@UMass Amherst Dose-Response: An International Journal Volume 6 | Issue 4 Article 4 12-2008 IT’S TIME FOR A NEW LOW-DOSE- RADIATION RISK ASSESSMENT PARADIGM—ONE THAT ACKNOWLEDGES HORMESIS Bobby R Scott Lovelace Respiratory Research Institute, Albuquerque, NM Follow this and additional works at: https://scholarworks.umass.edu/dose_response Recommended Citation Scott, Bobby R (2008) "IT’S TIME FOR A NEW LOW-DOSE-RADIATION RISK ASSESSMENT PARADIGM—ONE THAT ACKNOWLEDGES HORMESIS," Dose-Response: An International Journal: Vol. 6 : Iss. 4 , Article 4. Available at: https://scholarworks.umass.edu/dose_response/vol6/iss4/4 This Article is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Dose-Response: An International Journal by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Scott: New low-dose-radiation risk assessment paradigm Dose-Response, 6:333–351, 2008 InternationalDOSE-RESPONSESociety Formerly Nonlinearity in Biology, Toxicology, and Medicine www.Dose-Response.org Copyright © 2007 University of Massachusetts ISSN: 1559-3258 DOI: 10.2203/dose-response.07-005.Scott IT’S TIME FOR A NEW LOW-DOSE-RADIATION RISK ASSESSMENT PARADIGM—ONE THAT ACKNOWLEDGES HORMESIS Bobby R. Scott, PhD h Lovelace Respiratory Research Institute h The current system of radiation protection for humans is based on the linear-no- threshold (LNT) risk-assessment paradigm. Perceived harm to irradiated nuclear workers and the public is mainly reflected through calculated hypothetical increased cancers.
- 
												  THE COLLECTIVE EFFECTIVE DOSE RESULTING from RADIATION EMITTED DURING the FIRST WEEKS of the FUKUSHIMA DAIICHI NUCLEAR ACCIDENT Matthew Mckinzie, Ph.DTHE COLLECTIVE EFFECTIVE DOSE RESULTING FROM RADIATION EMITTED DURING THE FIRST WEEKS OF THE FUKUSHIMA DAIICHI NUCLEAR ACCIDENT Matthew McKinzie, Ph.D. and Thomas B. Cochran, Ph.D., Natural Resources Defense Council April 10, 2011 The Magnitude 9.0 earthquake off Japan’s Pacific Coast, which was the initiating event for accidents at four of the six reactors at the Fukushima Daiichi nuclear power plant, occurred at 14:46 local time on March 11th. At 15:41 a tsunami hit the plant and a station blackout ensued. A reconstruction of the accident progression by Areva1 posited that the final option for cooling the reactors – the reactor core isolation pumps – failed just hours later in Unit 1 (at 16:36), failed in the early morning of March 13th in Unit 3 (at 02:44), and failed early in the afternoon of March 14th in Unit 2 (at 13:25). Radiological releases spiked beginning on March 15th and in the Areva analysis are attributed to the venting of the reactor pressure vessels, explosion in Unit 2, and – significantly – explosion and fire in Unit 4. Fuel had been discharged from the Unit 4 reactor core to the adjacent spent fuel pool on November 30, 2010, raising the possibility of a core melt “on fresh air.” The Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) has posted hourly dose rates by prefecture2 on its website. We do not currently know the geographic coordinates of these radiation monitoring sites. The English language versions of the hourly dose rate measurements by prefecture begin in table form at 17:00 on March 16th, and hourly dose rates are provided as charts3 beginning at 00:00 on March 14th.
- 
												  Individual and Collective Dose Limits and Radionuclide Release LimitsUNITED STATES NUCLEAR REGULATORY COMMISSION ADVISORY COMMITTEE ON NUCLEAR WASTE WASHINGTON, D.C. 20555 April 29, 1991 r' Mr. Robert M. Bernero, Director Office of Nuclear Material Safety and Safeguards u.s. Nuclear Regulatory Commission Washington, DC 20555 Dear Mr. Bernero: SUBJECT: INDIVIDUAL AND COLLECTIVE DOSE LIMITS AND RADIONUCLIDE RELEASE LIMITS The Advisory Committee . on Nuclear waste has been developing comments, thoughts, and suggestions relative to individual and collective dose limits and radionuclide release limits. Since we understand that your staff is reviewing these same topics, we wanted to share our thoughts with you. In formulating these comments, we have had discussions with a number of people, including members of the NRC staff and Committee consultants. The Committee also had the benefit of the documents listed. Basic Definitions As a basic philosophy, individual dose limits are used to place restrictions on the risk to individual members of the public due to operations at a nuclear facility. If the limits have been properly established and compliance is observed, a regulatory agency can be confident that the associated risk to individual members of the pUblic is acceptable. Because the determination of the dose to individual members of the pUblic is difficult, the International Commission on Radiological Protection (ICRP) has developed the concept of the "critical group" and recommends that it be used in assessing doses resulting from environmental releases. As defined by the ICRP, a critical group is a relatively homogeneous group of people whose location and living habits are such that they receive the highest doses as a result of radio nuclide releases.
- 
												  Modelling Exposure-Response Relationships for Ionizing and Non-Ionizing RadiationModelling Exposure-response Relationships for Ionizing and Non-ionizing Radiation Daniel Krewski, PhD, MHA Professor and Director McLaughlin Centre for Population Heath Risk Assessment & Risk Sciences International American Association of Physicists in Medicine (AAPM) Denver, Colorado August 2, 2017 Outline • A New Framework for Risk Science • Key Characteristics of Human Carcinogens • Ionizing Radiation – Sources of exposure – Medical uses of radiation – Occupational and environmental radiation exposures – Radiation hormesis: what do the data Indicate? • Non-ionizing Radiation – Sources of exposure – Epidemiological studies of RF fields • Risk Communication, Risk Perception and Risk Decision Making McLaughlin Centre for Population Health Risk Assessment The Next Generation Risk Science McLaughlin Centre for Population Health Risk Assessment Next Generation Risk Assessment McLaughlin Centre for Population Health Risk Assessment Three Cornerstones • New paradigm for toxicity testing (TT21C), based on perturbation of toxicity pathways • Advanced risk assessment methodologies, including those addressed in Science and Decisions • Population health approach: multiple health determinants and multiple interventions McLaughlin Centre for Population Health Risk Assessment Key Characteristics of Human Carcinogens McLaughlin Centre for Population Health Risk Assessment What can we learn about human cancer based on 50 years of cancer research? McLaughlin Centre for Population Health Risk Assessment IARC Scientific Publication No. 165 • Twenty chapters
- 
												  Interim Guidelines for Hospital Response to Mass Casualties from a Radiological Incident December 2003Interim Guidelines for Hospital Response to Mass Casualties from a Radiological Incident December 2003 Prepared by James M. Smith, Ph.D. Marie A. Spano, M.S. Division of Environmental Hazards and Health Effects, National Center for Environmental Health Summary On September 11, 2001, U.S. symbols of economic growth and military prowess were attacked and thousands of innocent lives were lost. These tragic events exposed our nation’s vulnerability to attack and heightened our awareness of potential threats. Further examination of the capabilities of foreign nations indicate that terrorist groups worldwide have access to information on the development of radiological weapons and the potential to acquire the raw materials necessary to build such weapons. The looming threat of attack has highlighted the vital role that public health agencies play in our nation’s response to terrorist incidents. Such agencies are responsible for detecting what agent was used (chemical, biological, radiological), event surveillance, distribution of necessary medical supplies, assistance with emergency medical response, and treatment guidance. In the event of a terrorist attack involving nuclear or radiological agents, it is one of CDC’s missions to insure that our nation is well prepared to respond. In an effort to fulfill this goal, CDC, in collaboration with representatives of local and state health and radiation protection departments and many medical and radiological professional organizations, has identified practical strategies that hospitals can refer
- 
												  Radiation HormesisJAERI-Conf 2005-001 JP0550169 33 Evidence for beneficial low level radiation effects and radiation hormesis L.E. Feinendegen Heinrich-Heine-University Dtisseldorf, Germany; Brookhaven National Laboratory, Upton, NY, USA Abstract Low doses in the mGy range cause a dual effect on cellular DNA. One effect concerns a relatively low probability of DNA damage per energy deposition event and it increases proportional with dose, with possible bystander effects operating. This damage at background radiation exposure is orders of magnitudes lower than that from endogenous sources, such as ROS. The other effect at comparable doses brings an easily observable adaptive protection against DNA damage from any, mainly endogenous sources, depending on cell type, species, and metabolism. Protective responses express adaptive responses to metabolic perturbations and also mimic oxygen stress responses. Adaptive protection operates in terms of DNA damage prevention and repair, and of immune stimulation. It develops with a delay of hours, may last for days to months, and increasingly disappears at doses beyond about 100 to 200 mGy. Radiation-induced apoptosis and terminal cell differentiation occurs also at higher doses and adds to protection by reducing genomic instability and the number of mutated cells in tissues. At low doses, damage reduction by adaptive protection against damage from endogenous sources predictably outweighs radiogenic damage induction. The analysis of the consequences of the particular low-dose scenario shows that the linear-no-threshold (LNT) hypothesis for cancer risk is scientifically unfounded and appears to be invalid in favor of a threshold or hormesis. This is consistent with data both from animal studies and human epidemiological observations on low-dose induced cancer.
- 
												  Background Radiation Impacts Human Longevity and Cancer MortalitybioRxiv preprint doi: https://doi.org/10.1101/832949; this version posted November 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Background radiation impacts human longevity and cancer mortality: Reconsidering the linear no-threshold paradigm Elroei David1*, Ph.D., Marina Wolfson2, Ph.D., Vadim E. Fraifeld2, M.D., Ph.D. 1Nuclear Research Center Negev (NRCN), P.O. Box 9001, Beer-Sheva, 8419001, Israel. 2The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel. *Corresponding author: Elroei David, PhD, e-mail: [email protected] Keywords: background radiation, longevity, cancer, United States Running title: Background Radiation, Human Longevity and Cancer Mortality Number of words (body text + cover page + figure legends): 2302 Number of figures: 3 Number of tables: 1 Number of references: 28 1 bioRxiv preprint doi: https://doi.org/10.1101/832949; this version posted November 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract BACKGROUND The current linear-no-threshold paradigm assumes that any exposure to ionizing radiation carries some risk, thus every effort should be made to maintain the exposures as low as possible. Here, we examined whether background radiation impacts human longevity and cancer mortality. METHODS Our data covered the entire US population of the 3139 US counties, encompassing over 320 million people.