Flight Dynamics Principles This Page Intentionally Left Blank Prelims-H6927.Tex 11/7/2007 11: 13 Page Iii

Total Page:16

File Type:pdf, Size:1020Kb

Flight Dynamics Principles This Page Intentionally Left Blank Prelims-H6927.Tex 11/7/2007 11: 13 Page Iii Prelims-H6927.tex 11/7/2007 11: 13 Page i Flight Dynamics Principles This page intentionally left blank Prelims-H6927.tex 11/7/2007 11: 13 Page iii Flight Dynamics Principles M.V. Cook BSc, MSc, CEng, FRAeS, CMath, FIMA Senior Lecturer in the School of Engineering Cranfield University AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Butterworth-Heinemann is an imprint of Elsevier Prelims-H6927.tex 11/7/2007 11: 13 Page iv Butterworth-Heinemann is an imprint of Elsevier Linacre House, Jordan Hill, Oxford OX2 8DP 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA First edition 1997 Second edition 2007 Copyright © 2007, M.V.Cook. Published by Elsevier Ltd. All rights reserved The right of Michael Cook to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988 No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: [email protected]. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloguing in Publication Data A catalogue record for this book is available from the Library of Congress ISBN: 978-0-7506-6927-6 For information on all Butterworth-Heinemann publications visit our web site at http://books.elsevier.com Typeset by Charontec Ltd (A Macmillan Company), Chennai, India www.charontec.com Printed and bound in Great Britain 07080910 10987654321 Prelims-H6927.tex 11/7/2007 11: 13 Page v Contents Preface to the first edition ix Preface to the second edition xi Acknowledgements xiii Nomenclature xv 1. Introduction 1 1.1 Overview 1 1.2 Flying and handling qualities 3 1.3 General considerations 4 1.4 Aircraft equations of motion 7 1.5 Aerodynamics 7 1.6 Computers 8 1.7 Summary 10 References 11 2. Systems of axes and notation 12 2.1 Earth axes 12 2.2 Aircraft body fixed axes 13 2.3 Euler angles and aircraft attitude 18 2.4 Axes transformations 18 2.5 Aircraft reference geometry 24 2.6 Controls notation 27 2.7 Aerodynamic reference centres 28 References 30 Problems 30 3. Static equilibrium and trim 32 3.1 Trim equilibrium 32 3.2 The pitching moment equation 40 3.3 Longitudinal static stability 44 3.4 Lateral static stability 53 3.5 Directional static stability 54 3.6 Calculation of aircraft trim condition 57 References 64 Problems 64 4. The equations of motion 66 4.1 The equations of motion of a rigid symmetric aircraft 66 4.2 The linearised equations of motion 73 v Prelims-H6927.tex 11/7/2007 11: 13 Page vi vi Contents 4.3 The decoupled equations of motion 79 4.4 Alternative forms of the equations of motion 82 References 95 Problems 96 5. The solution of the equations of motion 98 5.1 Methods of solution 98 5.2 Cramer’s rule 99 5.3 Aircraft response transfer functions 101 5.4 Response to controls 108 5.5 Acceleration response transfer functions 112 5.6 The state space method 114 5.7 State space model augmentation 128 References 134 Problems 134 6. Longitudinal dynamics 138 6.1 Response to controls 138 6.2 The dynamic stability modes 144 6.3 Reduced order models 147 6.4 Frequency response 158 6.5 Flying and handling qualities 165 6.6 Mode excitation 167 References 170 Problems 171 7. Lateral–directional dynamics 174 7.1 Response to controls 174 7.2 The dynamic stability modes 183 7.3 Reduced order models 188 7.4 Frequency response 195 7.5 Flying and handling qualities 200 7.6 Mode excitation 202 References 206 Problems 206 8. Manoeuvrability 210 8.1 Introduction 210 8.2 The steady pull-up manoeuvre 212 8.3 The pitching moment equation 214 8.4 Longitudinal manoeuvre stability 216 8.5 Aircraft dynamics and manoeuvrability 222 References 223 9. Stability 224 9.1 Introduction 224 9.2 The characteristic equation 227 9.3 The Routh–Hurwitz stability criterion 227 Prelims-H6927.tex 11/7/2007 11: 13 Page vii Contents vii 9.4 The stability quartic 231 9.5 Graphical interpretation of stability 234 References 238 Problems 238 10. Flying and handling qualities 240 10.1 Introduction 240 10.2 Short term dynamic models 241 10.3 Flying qualities requirements 249 10.4 Aircraft role 251 10.5 Pilot opinion rating 255 10.6 Longitudinal flying qualities requirements 256 10.7 Control anticipation parameter 260 10.8 Lateral–directional flying qualities requirements 263 10.9 Flying qualities requirements on the s-plane 266 References 271 Problems 272 11. Stability augmentation 274 11.1 Introduction 274 11.2 Augmentation system design 280 11.3 Closed loop system analysis 283 11.4 The root locus plot 287 11.5 Longitudinal stability augmentation 293 11.6 Lateral–directional stability augmentation 300 11.7 The pole placement method 311 References 316 Problems 316 12. Aerodynamic modelling 320 12.1 Introduction 320 12.2 Quasi-static derivatives 321 12.3 Derivative estimation 323 12.4 The effects of compressibility 327 12.5 Limitations of aerodynamic modelling 335 References 336 13. Aerodynamic stability and control derivatives 337 13.1 Introduction 337 13.2 Longitudinal aerodynamic stability derivatives 337 13.3 Lateral–directional aerodynamic stability derivatives 350 13.4 Aerodynamic control derivatives 371 13.5 North American derivative coefficient notation 377 References 385 Problems 385 Prelims-H6927.tex 11/7/2007 11: 13 Page viii viii Contents 14. Coursework Studies 390 14.1 Introduction 390 14.2 Working the assignments 390 14.3 Reporting 390 Assignment 1. Stability augmentation of the North American X-15 hypersonic research aeroplane 391 Assignment 2. The stability and control characteristics of a civil transport aeroplane with relaxed longitudinal static stability 392 Assignment 3. Lateral–directional handling qualities design for the Lockheed F-104 Starfighter aircraft. 396 Assignment 4. Analysis of the effects of Mach number on the longitudinal stability and control characteristics of the LTV A7-A Corsair aircraft 401 Appendices 1 AeroTrim – A Symmetric Trim Calculator for Subsonic Flight Conditions 405 2 Definitions of Aerodynamic Stability and Control Derivatives 412 3 Aircraft Response Transfer Functions Referred to Aircraft Body Axes 419 4 Units, Conversions and Constants 425 5 A Very Short Table of Laplace Transforms 426 6 The Dynamics of a Linear Second Order System 427 7 North American Aerodynamic Derivative Notation 431 8 Approximate Expressions for the Dimensionless Aerodynamic Stability and Control Derivatives 434 9 The Transformation of Aerodynamic Stability Derivatives from a Body Axes Reference to a Wind Axes Reference 438 10 The Transformation of the Moments and Products of Inertia from a Body Axes Reference to a Wind Axes Reference 448 11 The Root Locus Plot 451 Index 457 Prelims-H6927.tex 11/7/2007 11: 13 Page ix Preface to the first edition When I joined the staff of the College of Aeronautics some years ago I was presented with a well worn collection of lecture notes and invited to teach Aircraft Stability and Control to postgraduate students. Inspection of the notes revealed the unmistakable signs that their roots reached back to the work of W.J. Duncan, which is perhaps not surprising since Duncan was the first Professor of Aerodynamics at Cranfield some 50 years ago. It is undoubtedly a privilege and, at first, was very daunting to be given the opportunity to follow in the footsteps of such a distinguished academic. From that humble beginning my interpretation of the subject has continuously evolved to its present form which provided the basis for this book. The classical linearised theory of the stability and control of aircraft is timeless, it is brilliant in its relative simplicity and it is very securely anchored in the domain of the aerodynamicist. So what is new? The short answer is; not a great deal. However, today the material is used and applied in ways that have changed considerably, due largely to the advent of the digital computer. The computer is used as the principal tool for analysis and design, and it is also the essential component of the modern flight control system on which all advanced technology aeroplanes depend. It is the latter development in particular which has had, and continues to have, a major influence on the way in which the material of the subject is now used. It is no longer possible to guarantee good flying and handling qualities simply by tailoring the stability and control characteristics of an advanced technology aeroplane by aerodynamic design alone. Flight control systems now play an equally important part in determining the flying and handling qualities of an aeroplane by augmenting the stability and control characteristics of the airframe in a beneficial way. Therefore the subject has had to evolve in order to facilitate integration with flight control and, today, the integrated subject is much broader in scope and is more frequently referred to as Flight Dynamics.
Recommended publications
  • Propulsion and Flight Controls Integration for the Blended Wing Body Aircraft
    Cranfield University Naveed ur Rahman Propulsion and Flight Controls Integration for the Blended Wing Body Aircraft School of Engineering PhD Thesis Cranfield University Department of Aerospace Sciences School of Engineering PhD Thesis Academic Year 2008-09 Naveed ur Rahman Propulsion and Flight Controls Integration for the Blended Wing Body Aircraft Supervisor: Dr James F. Whidborne May 2009 c Cranfield University 2009. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner. Abstract The Blended Wing Body (BWB) aircraft offers a number of aerodynamic perfor- mance advantages when compared with conventional configurations. However, while operating at low airspeeds with nominal static margins, the controls on the BWB aircraft begin to saturate and the dynamic performance gets sluggish. Augmenta- tion of aerodynamic controls with the propulsion system is therefore considered in this research. Two aspects were of interest, namely thrust vectoring (TVC) and flap blowing. An aerodynamic model for the BWB aircraft with blown flap effects was formulated using empirical and vortex lattice methods and then integrated with a three spool Trent 500 turbofan engine model. The objectives were to estimate the effect of vectored thrust and engine bleed on its performance and to ascertain the corresponding gains in aerodynamic control effectiveness. To enhance control effectiveness, both internally and external blown flaps were sim- ulated. For a full span internally blown flap (IBF) arrangement using IPC flow, the amount of bleed mass flow and consequently the achievable blowing coefficients are limited. For IBF, the pitch control effectiveness was shown to increase by 18% at low airspeeds.
    [Show full text]
  • Aerospace Facts and Figures 1983/84
    Aerospace Facts and Figures 1983/84 AEROSPACE INDUSTRIES ASSOCIATION OF AMERICA, INC. 1725 DeSales Street, N.W., Washington, D.C. 20036 Published by Aviation Week & Space Technology A MCGRAW-HILL PUBLICATION 1221 Avenue of the Americas New York, N.Y. 10020 (212) 997-3289 $9.95 Per Copy Copyright, July 1983 by Aerospace Industries Association o' \merica, Inc. · Library of Congress Catalog No. 46-25007 2 Compiled by Economic Data Service Aerospace Research Center Aerospace Industries Association of America, Inc. 1725 DeSales Street, N.W., Washington, D.C. 20036 (202) 429-4600 Director Research Center Virginia C. Lopez Manager Economic Data Service Janet Martinusen Editorial Consultant James J. Haggerty 3 ,- Acknowledgments Air Transport Association of America Battelle Memorial Institute Civil Aeronautics Board Council of Economic Advisers Export-Import Bank of the United States Exxon International Company Federal Trade Commission General Aviation Manufacturers Association International Civil Aviation Organization McGraw-Hill Publications Company National Aer~mautics and Space Administration National Science Foundation Office of Management and Budget U.S. Departments of Commerce (Bureau of the Census, Bureau of Economic Analysis, Bureau of Industrial Economics) Defense (Comptroller; Directorate for Information, Operations and Reports; Army, Navy, Air Force) Labor (Bureau of Labor Statistics) Transportation (Federal Aviation Administration The cover and chapter art throughout this edition of Aerospace Facts and Figures feature computer-inspired graphics-hot an original theme in the contemporary business environment, but one particularly relevant to the aerospace industry, which spawned the large-scale development and application of computers, and conti.nues to incorpora~e computer advances in all aspects of its design and manufacture of aircraft, mis­ siles, and space products.
    [Show full text]
  • B-162897 Aircraft Owned Or Leased By
    Dear Mr, Thompson: Reference is made to your letter of February 10, 1970, requesting that we update information which we furnished to you in a report dated March 4, 1968, relative to aircraft owned or leased by the Federal Avia- 1 tion Administration (FAA). In accordance with this request, we are fur- nishing you the following information. 1. Inventory of active aircraft owned as of June 30, 1967, 1968, 1969, and January 1, 1970 (enclosure I). 2. Installed passenger capacity and cost of aircraft owned as of June 30, 1967, and January 1, 1970 (enclosure II). 3. Aircraft leased or on loan during the period July 1, 1967, through June 30, 1969 (enclosure III). 4. Aircraft mazntenance, maJor overhaul, and modification costs by aircraft type, for fiscal years 1968 and 1969 (enclosure IV). 5. Average cost per flxght hour by aircraft type, fiscal years 1968 and 1969 (enclosure V>. 6. Aircraft utilization by aircraft type and maJor cate- gories, fiscal years 1968 and 1969 (enclosure VI). 7. Utilization and cost of open market rental aircraft, fiscal years 1968 and 1969 (enclosure VII). In addition, you requested that we advise you of the progress that has been made in establishing a uniform maintenance and operating cost re- porting system for all FAA owned and leased aircraft. As shown zn our March 4, 1968, report, FhCl had 101 aircraft which cost approximately $46 mzlllon 1n its inventory of active aircraft as of June 30, 1967. On January 1, 1970, the number of active air craft had decreased Co 98; however, the cost of the aircraft in the inventory was approximately $52 million, This increase was the net result of.
    [Show full text]
  • General Files Series, 1932-75
    GENERAL FILE SERIES Table of Contents Subseries Box Numbers Subseries Box Numbers Annual Files Annual Files 1933-36 1-3 1957 82-91 1937 3-4 1958 91-100 1938 4-5 1959 100-110 1939 5-7 1960 110-120 1940 7-9 1961 120-130 1941 9-10 1962 130-140 1942-43 10 1963 140-150 1946 10 1964 150-160 1947 11 1965 160-168 1948 11-12 1966 168-175 1949 13-23 1967 176-185 1950-53 24-53 Social File 186-201 1954 54-63 Subject File 202-238 1955 64-76 Foreign File 239-255 1956 76-82 Special File 255-263 JACQUELINE COCHRAN PAPERS GENERAL FILES SERIES CONTAINER LIST Box No. Contents Subseries I: Annual Files Sub-subseries 1: 1933-36 Files 1 Correspondence (Misc. planes) (1)(2) [Miscellaneous Correspondence 1933-36] [memo re JC’s crash at Indianapolis] [Financial Records 1934-35] (1)-(10) [maintenance of JC’s airplanes; arrangements for London - Melbourne race] Granville, Miller & DeLackner 1934 (1)-(7) 2 Granville, Miller & DeLackner 1935 (1)(2) Edmund Jakobi 1934 Re: G.B. Plane Return from England Just, G.W. 1934 Leonard, Royal (Harlan Hull) 1934 London Flight - General (1)-(12) London - Melbourne Air Race 1934 Cables General (1)-(5) [cable file of Royal Leonard, FBO’s London agent, re preparations for race] 3 London - Melbourne Air Race 1934 Cables Fueling Arrangements London - Melbourne Air Race 1934 Cables Hangar Arrangements London - Melbourne Air Race 1934 Cables Insurance [London - Melbourne Flight Instructions] (1)(2) McLeod, Fred B. [Fred McLeod Correspondence July - August 1934] (1)-(3) Joseph B.
    [Show full text]
  • 05 Longitudinal Stability Derivatives
    Flight Dynamics and Control Lecture 5: Longitudinal stability Derivatives G. Dimitriadis University of Liege 1 Previously on AERO0003-1 • We developed linearized equations of motion Longitudinal direction " % "m 0 0 0 0% " v % −Yv −(Yp + mWe ) −(Yr − mUe ) −mgcosθe −mgsinθe " v % " Yξ Yς % $ ' $ ' $ ' $ ' $ ' 0 I x −I xz 0 0 p $ −L −L −L 0 0 ' p Lξ Lς $ ' $ ' v p r $ ' $ ' "ξ% $ ' $ ' $ ' $ ' $ ' 0 −I xz Iz 0 0 r + −N −N −N 0 0 r = Nξ Nς $ ' $ ' $ ' $ v p r ' $ ' $ ' #ς & $ 0 0 0 1 0' $ϕ ' $ 0 −1 0 0 0 ' $ϕ ' $ 0 0 ' $ ' #$ 0 0 0 0 1&' #$ψ &' − #$ψ &' $ 0 0 ' # 0 Lateral0 direction1 0 0 & # & " % " − − − − θ % m −Xw 0 0 "u % Xu Xw (Xq mWe ) mgcos e "u % " X X % $ ' $ ' η τ $ ' $ ' $ ' $ 0 m − Z 0 0' w $ − − − + θ ' w Zη Zτ "η% ( w ) $ ' + Zu Zw (Zq mUe ) mgsin e $ ' = $ ' $ ' $ ' $ ' $ ' − $ q ' $ q ' Mη Mτ #τ & $ 0 M w I y 0' $−M u −M w −M q 0 ' $ ' $ ' $ ' $ 0 0 0 1' #θ & $ − ' #θ & # 0 0 & 2 # & # 0 0 1 0 & Longitudinal stability derivatives • It has already been stated that the best way to obtain the values of the stability derivatives is to measure them. • However, it is still useful to discuss simplified methods of estimating these coefficients. • Such estimates can be used, for example, in the preliminary design of aircraft. • This lecture will treat longitudinal stability derivatives. 3 Simple example • We keep the quasi-steady aerodynamic assumption. • Assume that the lift of an aircraft lies entirely in the z direction: 1 2 Z = ρU SCL 2 • where CL is the lift coefficient, assumed to be constant in this simple example.
    [Show full text]
  • 7. Transonic Aerodynamics of Airfoils and Wings
    W.H. Mason 7. Transonic Aerodynamics of Airfoils and Wings 7.1 Introduction Transonic flow occurs when there is mixed sub- and supersonic local flow in the same flowfield (typically with freestream Mach numbers from M = 0.6 or 0.7 to 1.2). Usually the supersonic region of the flow is terminated by a shock wave, allowing the flow to slow down to subsonic speeds. This complicates both computations and wind tunnel testing. It also means that there is very little analytic theory available for guidance in designing for transonic flow conditions. Importantly, not only is the outer inviscid portion of the flow governed by nonlinear flow equations, but the nonlinear flow features typically require that viscous effects be included immediately in the flowfield analysis for accurate design and analysis work. Note also that hypersonic vehicles with bow shocks necessarily have a region of subsonic flow behind the shock, so there is an element of transonic flow on those vehicles too. In the days of propeller airplanes the transonic flow limitations on the propeller mostly kept airplanes from flying fast enough to encounter transonic flow over the rest of the airplane. Here the propeller was moving much faster than the airplane, and adverse transonic aerodynamic problems appeared on the prop first, limiting the speed and thus transonic flow problems over the rest of the aircraft. However, WWII fighters could reach transonic speeds in a dive, and major problems often arose. One notable example was the Lockheed P-38 Lightning. Transonic effects prevented the airplane from readily recovering from dives, and during one flight test, Lockheed test pilot Ralph Virden had a fatal accident.
    [Show full text]
  • Introduction to Aircraft Stability and Control Course Notes for M&AE 5070
    Introduction to Aircraft Stability and Control Course Notes for M&AE 5070 David A. Caughey Sibley School of Mechanical & Aerospace Engineering Cornell University Ithaca, New York 14853-7501 2011 2 Contents 1 Introduction to Flight Dynamics 1 1.1 Introduction....................................... 1 1.2 Nomenclature........................................ 3 1.2.1 Implications of Vehicle Symmetry . 4 1.2.2 AerodynamicControls .............................. 5 1.2.3 Force and Moment Coefficients . 5 1.2.4 Atmospheric Properties . 6 2 Aerodynamic Background 11 2.1 Introduction....................................... 11 2.2 Lifting surface geometry and nomenclature . 12 2.2.1 Geometric properties of trapezoidal wings . 13 2.3 Aerodynamic properties of airfoils . ..... 14 2.4 Aerodynamic properties of finite wings . 17 2.5 Fuselage contribution to pitch stiffness . 19 2.6 Wing-tail interference . 20 2.7 ControlSurfaces ..................................... 20 3 Static Longitudinal Stability and Control 25 3.1 ControlFixedStability.............................. ..... 25 v vi CONTENTS 3.2 Static Longitudinal Control . 28 3.2.1 Longitudinal Maneuvers – the Pull-up . 29 3.3 Control Surface Hinge Moments . 33 3.3.1 Control Surface Hinge Moments . 33 3.3.2 Control free Neutral Point . 35 3.3.3 TrimTabs...................................... 36 3.3.4 ControlForceforTrim. 37 3.3.5 Control-force for Maneuver . 39 3.4 Forward and Aft Limits of C.G. Position . ......... 41 4 Dynamical Equations for Flight Vehicles 45 4.1 BasicEquationsofMotion. ..... 45 4.1.1 ForceEquations .................................. 46 4.1.2 MomentEquations................................. 49 4.2 Linearized Equations of Motion . 50 4.3 Representation of Aerodynamic Forces and Moments . 52 4.3.1 Longitudinal Stability Derivatives . 54 4.3.2 Lateral/Directional Stability Derivatives .
    [Show full text]
  • Unusual Attitudes and the Aerodynamics of Maneuvering Flight Author’S Note to Flightlab Students
    Unusual Attitudes and the Aerodynamics of Maneuvering Flight Author’s Note to Flightlab Students The collection of documents assembled here, under the general title “Unusual Attitudes and the Aerodynamics of Maneuvering Flight,” covers a lot of ground. That’s because unusual-attitude training is the perfect occasion for aerodynamics training, and in turn depends on aerodynamics training for success. I don’t expect a pilot new to the subject to absorb everything here in one gulp. That’s not necessary; in fact, it would be beyond the call of duty for most—aspiring test pilots aside. But do give the contents a quick initial pass, if only to get the measure of what’s available and how it’s organized. Your flights will be more productive if you know where to go in the texts for additional background. Before we fly together, I suggest that you read the section called “Axes and Derivatives.” This will introduce you to the concept of the velocity vector and to the basic aircraft response modes. If you pick up a head of steam, go on to read “Two-Dimensional Aerodynamics.” This is mostly about how pressure patterns form over the surface of a wing during the generation of lift, and begins to suggest how changes in those patterns, visible to us through our wing tufts, affect control. If you catch any typos, or statements that you think are either unclear or simply preposterous, please let me know. Thanks. Bill Crawford ii Bill Crawford: WWW.FLIGHTLAB.NET Unusual Attitudes and the Aerodynamics of Maneuvering Flight © Flight Emergency & Advanced Maneuvers Training, Inc.
    [Show full text]
  • Space Flight Dynamics, 2Nd Edition Craig A
    To purchase this product, please visit https://www.wiley.com/en-az/9781119157823 Space Flight Dynamics, 2nd Edition Craig A. Kluever E-Book 978-1-119-15784-7 March 2018 €83.99 Hardcover 978-1-119-15782-3 March 2018 €93.30 DESCRIPTION Thorough coverage of space flight topics with self-contained chapters serving a variety of courses in orbital mechanics, spacecraft dynamics, and astronautics This concise yet comprehensive book on space flight dynamics addresses all phases of a space mission: getting to space (launch trajectories), satellite motion in space (orbital motion, orbit transfers, attitude dynamics), and returning from space (entry flight mechanics). It focuses on orbital mechanics with emphasis on two-body motion, orbit determination, and orbital maneuvers with applications in Earth-centered missions and interplanetary missions. Space Flight Dynamics presents wide-ranging information on a host of topics not always covered in competing books. It discusses relative motion, entry flight mechanics, low-thrust transfers, rocket propulsion fundamentals, attitude dynamics, and attitude control. The book is filled with illustrated concepts and real-world examples drawn from the space industry. Additionally, the book includes a “computational toolbox” composed of MATLAB M-files for performing space mission analysis. Key features: • Provides practical, real-world examples illustrating key concepts throughout the book • Accompanied by a website containing MATLAB M-files for conducting space mission analysis • Presents numerous space flight topics absent in competing titles Space Flight Dynamics is a welcome addition to the field, ideally suited for upper-level undergraduate and graduate students studying aerospace engineering. ABOUT THE AUTHOR Craig A. Kluever is C.
    [Show full text]
  • A Coupled Lateral/Directional Flight Dynamics and Structural Model for Flight Control Applications
    A Coupled Lateral/Directional Flight Dynamics and Structural Model for Flight Control Applications Ondrej Juhasz∗ San Jose State University Research Foundation, Moffett Field, CA Mark B. Tischlery U.S. Army Aviation Development Directorate-AFDD, Moffett Field, CA Steven G. Hagerott,z David Staples,x and Javier Fuentealba { Cessna Aircraft Company, Wichita, KS A lateral/directional flight dynamics model which includes airframe flexibility is de- veloped in the frequency domain using system-identification methods. At low frequency, the identified model tracks a rigid-body (static-elastic) model. At higher frequencies, the model tracks a finite-element NASTRAN structural model. The identification technique is implemented on a mid-sized business jet to obtain a state-space representation of the air- craft equations of motion including two structural modes. Low frequency structural modes and their associated notch filters impact the flight control frequency range of interest. For a high bandwidth control system, this frequency range may extend up to 30 rad/sec. These modes must be accounted for by the control system designer to ensure aircraft stability is retained when a control system is implemented to help avoid aeroservoelastic coupling. A control system is developed and notch filters are selected for the developed coupled air- craft model to demonstrate the importance of including the structural modes in the design process. Nomenclature β Sideslip angle ζdr Dutch-roll damping ratio ζstrn Damping ratio of structural mode n ηδn Control derivative
    [Show full text]
  • Determination of Static and Dynamic Stability Derivatives Using Beggar
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-12-2008 Determination of Static and Dynamic Stability Derivatives Using Beggar Michael E. Bartowitz Follow this and additional works at: https://scholar.afit.edu/etd Part of the Aerodynamics and Fluid Mechanics Commons Recommended Citation Bartowitz, Michael E., "Determination of Static and Dynamic Stability Derivatives Using Beggar" (2008). Theses and Dissertations. 2673. https://scholar.afit.edu/etd/2673 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. Determination of Static and Dynamic Stability Coefficients Using Beggar THESIS Michael E. Bartowitz, Second Lieutenant, USAF AFIT/GAE/ENY/08-M02 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. AFIT/GAE/ENY/08-M02 Determination of Static and Dynamic Stability Coefficients Using Beggar THESIS Presented to the Faculty Department of Aeronautics and Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Aeronautical Engineering Michael E. Bartowitz, B.S.A.E.
    [Show full text]
  • Flight Dynamics and Control of a Vertical Tailless Aircraft
    cs & Aero ti sp au a n c o e r E e n Bras et al., J Aeronaut Aerospace Eng 2013, 2:4 A g f i o n Journal of Aeronautics & Aerospace l e DOI: 10.4172/2168-9792.1000119 a e r n i r n u g o J Engineering ISSN: 2168-9792 Research Article Open Access Flight Dynamics and Control of a Vertical Tailless Aircraft Bras M1, Vale J1, Lau F1 and Suleman A2* 1Instituto Superior Técnico, Lisbon, Portugal 2University of Victoria, Victoria BC, Canada Abstract The present work aims at studying a new concept of a vertical tailless aircraft provided with a morphing tail solution with the purpose of eliminating the drag and weight created by the vertical tail structure. The solution consists on a rotary horizontal tail with independent left and right halves to serve as control surfaces. Different static scenarios are studied for different tail configurations. The proposed morphing configurations are analyzed in terms of static and dynamic stability and compared with a conventional configuration. The stability derivatives defining the limits of static stability are calculated for the whole range of tail rotation angles. The aircraft’s dynamic model is developed and feedback control systems are implemented. A sideslip suppression system, a heading control system and a speed and altitude hold system are studied for three different configurations, MC1, MC2 and MC3 configurations. Static results show that the aircraft is longitudinally stable for a wide range of tail rotation angles. Variation of tail dihedral and rotation angles are two mechanisms able to maintain directional and lateral stability but only the last is able to produce lateral force and yawing moment.
    [Show full text]