c The Author 2005. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved. For Permissions, please email:
[email protected] doi:10.1093/comjnl/bxh000 Parameterized complexity and approximation algorithms Daniel´ Marx Institut f¨ur Informatik, Humboldt-Universit¨at zu Berlin, Unter den Linden 6, 10099, Berlin, Germany. Email:
[email protected] Approximation algorithms and parameterized complexity are usually considered to be two separate ways of dealing with hard algorithmic problems. In this paper, our aim is to investigate how these two fields can be combined to achieve better algorithms than what any of the two theories could offer. We discuss the different ways parameterized complexity can be extended to approximation algorithms, survey results of this type, and propose directions for future research. 1. INTRODUCTION good as an optimum solution. However, for many ap- proximation algorithms in the literature, the error guar- Many of the computational problems that arise in antee is much higher (50%, 100%, 1000%, 10000%, or practice are optimization problems: the task is to find even worse). In this case we cannot argue that this ap- a solution where the cost, quality, size, profit, or some proximation algorithm is almost as good as an exact other measure is as large or small as possible. The algorithm. Nevertheless, such algorithms are still im- NP-hardness of an optimization problem implies that, portant from the theoretical point of view, as they al- unless P = NP, there is no polynomial-time algorithm low us to better understand and classify problems and that finds the exact value of the optimum.