Karst and Sinkhole Hazards

Total Page:16

File Type:pdf, Size:1020Kb

Karst and Sinkhole Hazards Karst and Sinkhole Hazards Definitions and Description Derived from a Slavic word meaning “barren, stony ground,” the term karst has been variously used to describe a landscape (terrain), a geologic setting (terrane), and a type of aquifer (or hydrology) characterized by features formed by the dissolution of soluble bedrock: “A terrain, generally underlain by limestone or dolomite, in which the topography is chiefly formed by the dissolving of rock and which may be characterized by sinkholes, sinking streams, closed depressions, subterranean drainage, and caves (Monroe, 1970). A terrane underlain by soluble rock in which the topography is chiefly formed by dissolving of rock … and may be characterized by sinkholes, sinking streams, closed depressions, subterranean drainage, and caves … (Field, 1999). “Karst is a unique hydrogeologic terrane in which the surface water and ground water regimes are highly interconnected and often constitute a single, dynamic flow system.” (Taylor and Greene, 2008). “An aquifer in which the flow of water is or can be appreciable through one or more of the following: joints, faults, bedding-plane partings, and cavities — any or all of which have been enlarged by dissolution (Quinlan and others, 1991). Karst has a wide geographic distribution, covering approximately 13 percent of Earth’s land surface, and is present on almost every continent underlain by carbonate rocks of various geologic age (Ford and Williams, 2007). In the United States, approximately 18 percent of all exposed or shallow bedrock exhibits, or has the potential for forming, karst or karst-like features (Weary and Doctor, 2014). Many geologic, topographic, and climatologic factors influence the development of karst, and not all karst features—such as sinkholes, caves, and springs—are present to the same extent or develop in the same way in every karst area. For example, although the occurrence and formation of sinkholes in Florida are often used for conceptual and comparative purposes, karst features there have formed in bedrock and under very different geologic and hydrogeologic conditions from karst features in Kentucky. Although comparing karst characteristics in the various states can be useful and informative, karst features are also locally to regionally unique, so that karst features in one state may not be completely analogous to those in another (Fig. 3-1). In Kentucky, approximately 50 to 60 percent of the state has karst or potential for karst, as indicated by maps showing areas where limestone crops out. About 38 percent of the state has at least some karst development that can be recognized on topographic maps, and 25 percent of the state is known to have well-developed karst features. Data obtained from the 2010 U.S. Census indicate that 2,894,115 people, or about 67 percent of the state’s population, live in a karst region (Cecil, 2015). Some of the larger Kentucky cities and towns located on karst are Frankfort, Louisville, Lexington, Lawrenceburg, Georgetown, Winchester, Paris, Versailles, and Nicholasville (all located in the Inner Bluegrass Region); Fort Knox, Bowling Green, KGS - 36 Elizabethtown, Munfordville, Russellville, Hopkinsville, and Princeton (in the Western Pennyroyal Region); and Somerset, Monticello, and Mount Vernon (in the Eastern Pennyroyal Region). (a) (b) Figure 3-1. Comparison of typical surface and subsurface karst features in the Inner Bluegrass (a) and Western Kentucky Pennyroyal (b) karst regions of Kentucky. Facts • Approximately 20 percent of the conterminous United States and 50 percent of the U.S. east of the Mississippi River is underlain by soluble and potentially karstic bedrock (Weary and Doctor, 2014). • Much of Kentucky‘s prime farmland is underlain by karst, as is a substantial amount of the Daniel Boone National Forest, with its important recreational and timber resources. • Caves are important karst features, providing recreation and unique ecosystems. Mammoth Cave is the longest surveyed cave in the world, with more than 400 miles of passages. Two other caves in the state are known to extend more than 30 miles, and seven mapped Kentucky caves are among the 50 longest in the United States (Gulden, 2018). • Kentucky is ranked fifth nationally among states affected by sinkhole hazards. KGS - 37 • Karst aquifers and springs supply drinking water and water used for agricultural, industrial, and recreational purposes to an estimated 20 to 25 percent of the global population (Ford and Williams, 2007). Karst aquifers and karst springs provide much of the base flow to surface streams worldwide, and the caves, aquifers, and springs present in karst areas provide critical habitat for a variety of rare, threated, or endangered aquatic and terrestrial organisms (Culver and White, 2004). • About 40 percent of groundwater used for drinking water in the U.S. comes from karst aquifers. • According to the Kentucky Division of Water, springs and wells in karst areas supply water to tens of thousands of private homes, and are also used by five public water suppliers serving more than 164,000 citizens in total: Hardin County Water District No. 1, Hardin County Water District No. 2, Georgetown Municipal, Cadiz Municipal, and Green River Valley Water District (Rob Blair, Source Water Protection Program, Kentucky Division of Water, written communication, April 9, 2018). Karst hazards that could have an impact on Kentucky’s citizens and infrastructure include sinkholes, flooding, and groundwater and surface-water contamination. Sinkholes are by far the largest and most frequently encountered karst hazards. Sinkholes Subsidence—a natural or human-induced process that results in progressive lowering of local or regional land-surface elevations—is a consequence of karst development and may occur over long-term (including geologic) and short-term timescales. Sinkholes, also called dolines in the scientific literature, are arguably the most distinctive and abundant type of subsidence-related feature (Ford and Williams, 1989). Sinkholes are physically manifested as closed and internally drained topographic depressions, of generally circular shape, that develop where soil or other overburden material subsides or collapses into subsurface voids. Sinkholes can form as a result of both natural (karst-related) processes and as a direct or indirect consequence of human activities. Human activities that can cause sinkholes include groundwater withdrawals, alteration or diversion of surface runoff, subsurface mining; subsurface erosion, piping, or compaction of unconsolidated soils or sediments along buried pipelines or beneath highways and roads; and decaying buried organic debris (e.g., tree roots, buried trash, and other debris). Sinkholes also form in nonkarst areas where leaking water or sewer pipes and other human activities create or result in subsidence, compaction, or subsurface erosion (i.e., piping) of soil, gravel, or other fill materials. Pipeline leakage and flooding affect highway roadbeds, pipelines, and other utility trenches, and often confuse nongeologists because the “sinkholes” created by these localized collapses may not be, and often are not, related in any way to karst or karst processes (Kuniansky and others, 2016). Sinkholes are classified by geologists using numerous descriptive terms depending on the types of geologic materials and processes or sequence of processes involved in their formation. Waltham and others (2005), for example, defined six classes of karst-related sinkholes. For simplicity, sinkholes may be grouped into two broad categories: subsidence and collapse. Subsidence and collapse sinkholes often occur together in the same karst area, and many sinkholes form as a combination of the two processes. Subsidence sinkholes form by the relatively slow and gradual subsurface dissolution of soluble bedrock and piping of unconsolidated cover materials (soil, alluvium) into fractures and conduits enlarged by solution in the epikarst, a zone of intensified weathering and dissolution at the soil-bedrock interface. Subsidence sinkholes in Kentucky are generally recognizable as broad, shallow, bowl-shaped depressions (Fig. 3-2a, b). These sinkholes are largely responsible for the rolling topography that characterizes much KGS - 38 of the Bluegrass and Western Pennyroyal Regions. Diameters can range from several tens to hundreds of feet, and shapes can be circular, elongate or irregular and complex. Figure 3-2. Examples of common subsidence sinkholes formed in a rural agricultural setting (a) and a suburban setting (b). Collapse sinkholes form suddenly by failure of the roof or arch of soil, bedrock, or other surface and subsurface materials located above subsurface karst voids and caves (Waltham and others, 2005). Their seemingly unpredictable occurrence makes them a hazard of particular concern in karst areas. Collapse sinkholes that form over voids in unconsolidated materials—soil, sediment, or brecciated bedrock—are common and are referred to as cover-collapse sinkholes (Currens, 2012. Cover-collapse sinkholes are typically steep-walled circular or funnel-shaped depressions (Fig. 3-3) having diameters that range from a few feet to hundreds of feet. Depths may vary, and may be somewhat dependent on the thickness of soil or unconsolidated material above karstified bedrock. The Kentucky Geological Survey began developing a catalog of case histories of cover-collapse occurrences in 1997 and has documented 354 occurrences throughout the state; an average of 24 new reports are received
Recommended publications
  • Introduction to Virginia's Karst
    Introduction to Virginia’s Karst A presentation of The Virginia Department of Conservation and Recreation’s Karst Program & Project Underground Karst - A landscape developed in limestone, dolomite, marble, or other soluble rocks and characterized by subsurface drainage systems, sinking or losing streams, sinkholes, springs, and caves. Cross-section diagram by David Culver, American University. Karst topography covers much of the Valley and Ridge Province in the western third of the state. Aerial photo of karst landscape in Russell County. Smaller karst areas also occur in the Cumberland Plateau, Piedmont, and Coastal Plain provinces. At least 29 counties support karst terrane in western Virginia. In western Virginia, karst occurs along slopes and in valleys between mountain ridges. There are few surface streams in these limestone valleys as runoff from mountain slopes disappears into the subsurface upon contact with the karst bedrock. Water flows underground, emerging at springs on the valley floor. Thin soils over fractured, cavernous limestone allow precipitation to enter the subsurface directly and rapidly, with a minimal amount of natural filtration. The purer the limestone, the less soil develops on the bedrock, leaving bare pinnacles exposed at the ground surface. Rock pinnacles may also occur where land use practices result in massive soil loss. Precipitation mixing with carbon dioxide becomes acidic as it passes through soil. Through geologic time slightly acidic water dissolves and enlarges the bedrock fractures, forming caves and other voids in the bedrock. Water follows the path of least resistance, so it moves through voids in rock layers, fractures, and boundaries between soluble and insoluble bedrock.
    [Show full text]
  • 5.4.5 Geological Hazards
    Section 5.4.5: Risk Assessment – Geological Hazards 5.4.5 Geological Hazards The following section provides the hazard profile (hazard description, location, extent, previous occurrences and losses, probability of future occurrences, and impact of climate change) and vulnerability assessment for the geological hazards in Sussex County. 2016 Plan Update Changes The hazard profile has been significantly enhanced to include a detailed hazard description, location, extent, previous occurrences, probability of future occurrence, and potential change in climate and its impacts on the geological hazards is discussed. The geological hazards is now located in Section 5 of the plan update. It includes landslide, land subsidence and sinkholes, all of which were profiled separately in the 2011 HMP. New and updated figures from federal and state agencies are incorporated. U.S. 2010 Census data was incorporated, where appropriate. Previous occurrences were updated with events that occurred between 2008 and 2015. A vulnerability assessment was conducted for the geological hazards and it now directly follows the hazard profile. 5.4.5.1 Profile Hazard Description Geological hazards are any geological or hydrological processes that pose a threat to humans and natural properties. Every year, severe natural events destroy infrastructure and cause injuries and deaths. Geologic hazards may include volcanic eruptions and other geothermal related features, earthquakes, landslides and other slope failures, mudflows, sinkhole collapses, snow avalanches, flooding, glacial surges and outburst floods, tsunamis, and shoreline movements. For the purpose of this HMP update, only landslides and land subsidence/sinkholes will be discussed in the Geological Hazard profile. Landslides According to the U.S.
    [Show full text]
  • Living with Karst Booklet and Poster
    Publishing Partners AGI gratefully acknowledges the following organizations’ support for the Living with Karst booklet and poster. To order, contact AGI at www.agiweb.org or (703) 379-2480. National Speleological Society (with support from the National Speleological Foundation and the Richmond Area Speleological Society) American Cave Conservation Association (with support from the Charles Stewart Mott Foundation and a Section 319(h) Nonpoint Source Grant from the U.S. Environmental Protection Agency through the Kentucky Division of Water) Illinois Basin Consortium (Illinois, Indiana and Kentucky State Geological Surveys) National Park Service U.S. Bureau of Land Management USDA Forest Service U.S. Fish and Wildlife Service U.S. Geological Survey AGI Environmental Awareness Series, 4 A Fragile Foundation George Veni Harvey DuChene With a Foreword by Nicholas C. Crawford Philip E. LaMoreaux Christopher G. Groves George N. Huppert Ernst H. Kastning Rick Olson Betty J. Wheeler American Geological Institute in cooperation with National Speleological Society and American Cave Conservation Association, Illinois Basin Consortium National Park Service, U.S. Bureau of Land Management, USDA Forest Service U.S. Fish and Wildlife Service, U.S. Geological Survey ABOUT THE AUTHORS George Veni is a hydrogeologist and the owner of George Veni and Associates in San Antonio, TX. He has studied karst internationally for 25 years, serves as an adjunct professor at The University of Ernst H. Kastning is a professor of geology at Texas and Western Kentucky University, and chairs Radford University in Radford, VA. As a hydrogeolo- the Texas Speleological Survey and the National gist and geomorphologist, he has been actively Speleological Society’s Section of Cave Geology studying karst processes and cavern development for and Geography over 30 years in geographically diverse settings with an emphasis on structural control of groundwater Harvey R.
    [Show full text]
  • Coastal and Other Hazards (Se)
    Goleta General Plan /Coastal Land Use Plan 5.0 Safety Element CHAPTER 5.0 SAFETY ELEMENT: COASTAL AND OTHER HAZARDS (SE) 5.1 INTRODUCTION General Plan Law Requirements [GP] The Safety Element is one of seven general Safety Element Policies plan elements mandated by state law. The SE 1: Safety in General scope of the Safety Element is specified in SE 2: Bluff Erosion and Retreat Section 65302 (g) of the California SE 3: Beach Erosion and Shoreline Hazards SE 4: Seismic and Seismically Induced Hazards Government Code as follows: SE 5: Soil and Slope Stability Hazards SE 6: Flood Hazards The general plan shall include a safety SE 7: Urban and Wildland Fire Hazards element for the protection of the SE 8: Oil and Gas Industry Hazards community from any unreasonable SE 9: Airport-Related Hazards. SE 10: Hazardous Materials and Facilities risks associated with the effects of SE 11: Emergency Preparedness seismically induced surface rupture, ground shaking, ground failure, tsunami, seiche, and dam failure; slope instability leading to mudslides and landslides; subsidence and other geologic hazards known to the legislative body; flooding; and wild land and urban fires. The safety element shall include mapping of known seismic and other geologic hazards. It shall also address evacuation routes, peak-load water supply requirements, and minimum road widths and clearances around structures, as those items relate to identified fire and geologic hazards. Coastal hazards such as bluff retreat and shoreline erosion are also addressed in this element, as are hazards associated with oil and gas production, processing, and transport. California Coastal Act Requirements [CP] The California Coastal Act (Coastal Act) requires new development to be sited and designed to minimize risks, ensure stability and structural integrity, and neither create nor contribute significantly to erosion or require the construction of new shoreline protective devices that would substantially alter natural landforms along coastal bluffs and cliffs.
    [Show full text]
  • Karst Development Mechanism and Characteristics Based on Comprehensive Exploration Along Jinan Metro, China
    sustainability Article Karst Development Mechanism and Characteristics Based on Comprehensive Exploration along Jinan Metro, China Shangqu Sun 1,2, Liping Li 1,2,*, Jing Wang 1,2, Shaoshuai Shi 1,2 , Shuguang Song 3, Zhongdong Fang 1,2, Xingzhi Ba 1,2 and Hao Jin 1,2 1 Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan 250061, China; [email protected] (S.Sun); [email protected] (J.W.); [email protected] (S.Shi); [email protected] (Z.F.); [email protected] (X.B.); [email protected] (H.J.) 2 School of Qilu Transportation, Shandong University, Jinan 250061, China 3 School of Transportation Engineering, Shandong Jianzhu University, Jinan 250101, China; [email protected] * Correspondence: [email protected] Received: 28 August 2018; Accepted: 19 September 2018; Published: 21 September 2018 Abstract: Jinan is the capital of Shandong Province and is famous for its spring water. Water conservation has become the consensus of Jinan citizens and the government and the community. The construction of metro engineering in Jinan has lagged behind other cities of the same scale for a long time. The key issue is the protection of spring water. When metro lines are constructed in Jinan karst area, the water-inrushing, quicksand, and piping hazards can easily occur, which can change the groundwater seepage environment and reduce spring discharge. Therefore, we try to reveal the development conditions, mechanism, and mode of karst area in Jinan. In addition, we propose the comprehensive optimizing method of “shallow-deep” and “region-target” suitable for exploration of karst areas along Jinan metro, and systematically study the development characteristics of the karst areas along Jinan metro, thus providing the basis for the shield tunnel to go through karst areas safely and protecting the springs in Jinan.
    [Show full text]
  • BAER) Assessment Specialist Report, Phase 2 – GEOLOGIC HAZARDS
    Burned Area Emergency Response (BAER) Assessment Specialist Report, Phase 2 – GEOLOGIC HAZARDS Thomas Fire, Los Padres National Forest January 2018 Allen King – Geologist, Los Padres NF (retired) Dennis Veich – Forest Geologist, Shasta-Trinity NF Fire-damaged Tree near Chismahoo Mountain “When rain starts to fall, people in higher risk basins should be prepared to evacuate. Do not remain in, near or below burned areas at the base of canyons, even during light rain. Stay away from small streams that could become raging rivers in the blink of an eye. If the forecast calls for heavy rains through the night, homes may not be safe places if they are located in or near drainage areas and within a mile of the mountain front. Roads can suddenly become blocked with mud and debris, and can wash out at stream crossings. It is important to pay strong attention to warnings from local emergency responders and weather advisories.” -Sue Cannon, USGS Landslide Hazards Program, 2003 INTRODUCTION The Thomas Fire started on December 4, 2017, near the Thomas Aquinas College (east end of Sulphur Mountain), Ventura County, California. The fire is still considered to be active and as of January 12th, 2018, it is estimated to have burned 281,900 acres and is 92% contained. Approximately 181,300 acres within the burn area are National Forest lands (~64%); 98,200 acres are private (~35%); and 2,400 acres (~1%) are a combination of state and county properties. Although tremendous down-slope/down-drainage resources and values and lives are recognized and kept in mind during our analysis, this report addresses the effects of the Thomas Fire and the associated Values At Risk (VARs) ONLY on Forest Service lands, since the other lands are being evaluated by teams of Cal Fire scientists and other agencies.
    [Show full text]
  • Hydrogeologic Characterization and Methods Used in the Investigation of Karst Hydrology
    Hydrogeologic Characterization and Methods Used in the Investigation of Karst Hydrology By Charles J. Taylor and Earl A. Greene Chapter 3 of Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water Edited by Donald O. Rosenberry and James W. LaBaugh Techniques and Methods 4–D2 U.S. Department of the Interior U.S. Geological Survey Contents Introduction...................................................................................................................................................75 Hydrogeologic Characteristics of Karst ..........................................................................................77 Conduits and Springs .........................................................................................................................77 Karst Recharge....................................................................................................................................80 Karst Drainage Basins .......................................................................................................................81 Hydrogeologic Characterization ...............................................................................................................82 Area of the Karst Drainage Basin ....................................................................................................82 Allogenic Recharge and Conduit Carrying Capacity ....................................................................83 Matrix and Fracture System Hydraulic Conductivity ....................................................................83
    [Show full text]
  • Sinkhole Physical Models to Simulate and Investigate Sinkhole Collapses
    SINKHOLE PHYSICAL MODELS TO SIMULATE AND INVESTIGATE SINKHOLE COLLAPSES Mohamed Alrowaimi Doctoral Student, Civil, Environmental and Construction Engineering, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida, 32816, USA, [email protected] Hae-Bum Yun Assistant professor, Civil, Environmental and Construction Engineering, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida, 32816, USA, [email protected] Manoj Chopra Professor, Civil, Environmental and Construction Engineering, University of Central Florida 4000 Central Florida Blvd., Orlando, Florida, 32816, USA, [email protected] Abstract Introduction Florida is one of the most susceptible states for sinkhole Sinkhole is a ground surface depression that occurs with collapses due to its karst geology. In Florida, sinkholes or without any surface indication. Sinkholes commonly are mainly classified as cover subsidence sinkholes that occur in a very distinctive terrain called karst terrain. result in a gradual collapse with possible surface signs, This terrain mainly has a bedrock of a carbonate rocks and cover collapse sinkholes, which collapse in a sudden such as limestone, dolomite, or gypsum. Sinkholes and often catastrophic manner. The future development develop when the carbonate bedrocks are subjected of a reliable sinkhole prediction system will have to dissolution with time to form cracks, conduits, and the potential to minimize the risk to life, and reduce cavities in the underground bedrock. These features delays in construction due to the need for post-collapse allow the overburden soils (on top of the carbonate remediation. In this study, different versions of small- bedrock) to transport through them to the underground scale sinkhole physical models experimentally used cavities, which results in surface collapse due to the to monitor the water levels in a network of wells.
    [Show full text]
  • Understanding Aquifers: Demonstration Using a Physical Model
    Understanding Aquifers: Demonstration using a Physical Model Part I: Aquifers Explained Geology is the science of planet Earth, its history, and all the processes that act on it. Hydrogeology is the branch of geology which studies how water and rocks interact underground, mainly in aquifers An aquifer is a rock unit that holds enough water to supply water to wells. Aquifers can be found in many types of rocks, such as sandstone, conglomerate, unconsolidated sand and gravel, and fractured rocks composed of limestone or igneous rocks. Here at Barton Springs in Austin, Texas, we are standing on top of the Edward’s Aquifer, composed mostly of fractured limestone. These fractured rocks dissolve overtime and can create large, cave-like systems called Karst aquifers. So when you hear the word Karst, think cave. Some of these caves are big, some of them are small. Karst aquifers are different from sedimentary aquifers, where water flows mostly through the gravel and sand grains similar to a sponge. Hydrogeologists use two terms when investigating aquifers—porosity and permeability. Porosity is all the empty pore space inside a rock given in a percent volume. Porosity represents the volume of water a rock formation can potentially hold. Permeability is how well a fluid can flow within the pore spaces of the rock within the aquifer. For water, we describe this property as hydraulic conductivity. For example, clay and rocks like pumice may have high porosity, but because the pores do not connect with each other, the permeability of these rocks is usually low. Layers of low-permeability material such as clay and shale typically act as barriers to groundwater flow and may often function as an aquitard within a groundwater flow system.
    [Show full text]
  • Seismic Design Guidelines Appendix B: Geotechnical
    Mandatory Retrofit Program for Non-Ductile Concrete Buildings And Pre-Northridge Steel Moment Frame Buildings Ordinance 17-1011 SEISMIC DESIGN GUIDELINES APPENDIX B ISSUED NOVEMBER 8, 2019 REVISED SEPTEMBER 25, 2020 APPENDIX B: GEOTECHNICAL / GEOLOGICAL REPORT REQUIREMENTS 1.0 INTRODUCTION ASCE 41 geotechnical/geological report requirements for seismic evaluation and retrofit design varies greatly based on the amount of as-built information obtained and type of existing foundation system. The following document is intended to help clarify geotechnical / geological requirements of Ordinance 17-1011 for Non-Ductile Concrete and Pre-Northridge Steel Moment Frames. It is noted that all geotechnical / geological reports shall be signed and stamped by a California licensed Geotechnical Engineer and by a California licensed Geologist (if applicable). 2.0 SEISMIC SITE HAZARD The following frequently asked questions and answers are intended to clarify the scope and requirements of the seismic site hazard requirements of Ordinance 17-1011. 2.1 When is a site-specific seismic hazard determination required? A site-specific seismic hazard procedure is required when: a. The building is located on Site Class E soils and the mapped BSE-2N Sxs>2.0 or b. The building is located on Site Class F soils, unless Ss<0.20. In addition, a site-specific hazard is required to scale records when performing a non- linear dynamic time-history analysis. [Ref. ASCE 41 Section 2.4]. 2.2 When scaling a suite of acceleration records, is there a required or preferred scaling method? A site-specific response spectra shall be developed per ASCE 41 Section 2.4.2.1 requirements.
    [Show full text]
  • Identification and Mitigation of Geologic Hazards
    AIPGprofessional geologists in all specialties of the science Identification and Mitigation of Geologic Hazards An important and practical application of and because earthquakes geology is identifying hazardous natural are of such a scale that phenomena and isolating their causes in they can affect several order to safeguard communities. According communities si-multane- to the USGS, the average economic toll ously, the risk to human life from natural hazards in the United States is is obvious.2 The largest approximately $52 billion per year, while recorded earthquake to hit the average annual death toll is approxi- the North American conti- mately 200.1 The primary causes are nent had a magnitude of earthquakes, landslides, and flooding, but 9.2, which occurred on other events, such as subsidence, volcanic March 27, 1964 in eruptions, and exposure to radon or asbes- Anchorage, Alaska. It dev- tos, also pose considerable danger. astated the town and sur- Awareness of the potential hazards that rounding area, and could persist in areas under consideration for be felt over an area of half Figure 2. Volcano Zones both private and community development a million square miles.2 is critical, and so geological consultants Land-slides caused most of the average global temperature by 2 and engineers are called in to survey land the damage, while a 30-foot high tsunami degrees Fahrenheit for 2 years.3 development sites and assist building con- generated by an underwater quake leveled tractors in designing structures that will coastal villages around the Gulf of Alaska, The role of geologists in mitigating such stand the test of time.
    [Show full text]
  • Type of Services Current Conditions Soils, Geology, and Geologic Hazards Envision San José 2040 General Plan Update
    Type of Services Current Conditions Soils, Geology, and Geologic Hazards Envision San José 2040 General Plan Update Client David J. Powers & Associates Client Address 1885 The Alameda, Suite 204 San José, CA 95126 Project Number 118-13-2 Date March 20, 2009 Prepared Scott E. Fitinghoff, P.E., G.E. by Principal Geotechnical Engineer Philip A. Frame, C.E.G. Senior Engineering Geologist Laura C. Knutson, P.E., G.E. Principal Geotechnical Engineer Quality Assurance Reviewer Table of Contents SECTION 1: INTRODUCTION ......................................................................................... 1 1.1 PURPOSE ......................................................................................................... 1 SECTION 2: SOILS AND GEOLOGIC CONDITIONS ..................................................... 1 2.1 GEOLOGIC OVERVIEW OF SAN JOSÉ ......................................................... 1 2.2 LANDSLIDES ................................................................................................... 2 2.3 WEAK/EXPANSIVE SOILS .............................................................................. 3 2.4 NATURALLY-OCCURRING ABESTOS (NOA) ............................................... 4 2.5 EROSION .......................................................................................................... 4 2.6 ARTIFICIAL FILL .............................................................................................. 4 2.7 GROUND SUBSIDENCE DUE TO GROUND WATER REMOVAL ................. 4 2.8 MINERAL RESOURCES
    [Show full text]