Collective Excitations of Composite Fermions Across Multiple Lambda

Total Page:16

File Type:pdf, Size:1020Kb

Collective Excitations of Composite Fermions Across Multiple Lambda LETTERS PUBLISHED ONLINE: 10 MAY 2009 | DOI: 10.1038/NPHYS1275 Collective excitations of composite fermions across multiple 3 levels Dwipesh Majumder1, Sudhansu S. Mandal1 and Jainendra K. Jain2* The fractional quantum Hall state1 is a quintessential system kinetic energy levels in this reduced magnetic field, called 3 for the study of collective quantum behaviour. In such levels, and their filling factor ν∗ is related to the electron filling a system, the collective behaviour results in the creation factor ν through the relation ν D ν∗=(2pν∗ C 1). In particular, at of so-called composite fermions, quasi-particles formed by ν D n=(2pn C 1), the ground state consists of n filled 3 levels. In electrons attached to magnetic flux quanta. Recently, a the composite-fermion theory, the lowest-energy neutral excitation new collective mode was unexpectedly observed in Raman is a particle–hole pair, or an exciton, of composite fermions, scattering experiments2 on such a system as it was found to wherein a single composite fermion from the topmost occupied split off from the familiar ‘fundamental’ long-wavelength mode 3 level is excited into the lowest unoccupied 3 level (Fig. 1b on increase of the wave vector. Here, we present results from shows the fundamental composite-fermion exciton at ν D 2=5). extensive theoretical calculations that make a compelling case The validity of this description has been confirmed for fractions of that this mode corresponds to an excitation of a composite the form ν D n=(2pn C 1) by comparison to exact diagonalization fermion across two 3 levels—effective kinetic energy levels results as well as to experiment11,12. This physical explanation for resembling Landau levels for such particles. In addition to the neutral collective excitations is distinct from the single-mode explaining why this excitation merges with the fundamental approximation, and, in particular, suggests the possibility of extra mode in the long-wavelength limit, our theory also provides collective modes, in which a composite fermion is excited across a good quantitative account of the amount of splitting, and two or more 3 levels, as shown schematically in Fig. 1c, in complete makes several experimentally verifiable predictions. analogy to the collective modes of an integral quantum Hall Unlike the well-known quantum phenomena of superfluidity state13. However, it is far from obvious that the composite-fermion and superconductivity, the fractional quantum Hall effect1 does collective modes across different 3 levels should merge in the long- not entail any Bose–Einstein condensation but occurs as a wavelength limit. In fact, a model that takes composite fermions as result of the formation of topological electron–vortex bound non-interacting produces collective modes spaced by the effective states called composite fermions3. Transport4, light scattering5,6 cyclotron energy in the long-wavelength limit, as also found for and phonon scattering7,8 have been extensively used during the the dispersions obtained in the composite-fermion Chern–Simons past quarter of a century to probe its numerous excitations. approach14,15; if correct, this would make such physics irrelevant to Of particular significance is the neutral collective mode, which the new collective mode discovered in ref. 2. For a more definitive was first studied theoretically at Landau-level filling ν D 1=3 test, however, the composite-fermion exciton-mode spectrum must in a single-mode approximation9, wherein, following Feynman's be evaluated in a microscopic approach that includes effects of theory of the phonon–roton mode of helium superfluid, the inter-composite-fermion interactions. excitation is modelled as a density wave. The neutral collective Exact diagonalization studies of the FQHE state do not by mode was detected by Raman scattering5, with the observations themselves provide an understanding of the underlying physics, generally consistent with the predictions of the single-mode and are not useful in the present context, because, as seen below, approximation in the long-wavelength limit. More recently, systems as large as 200 particles are required for investigating however, Hirjibehedin et al.2 have discovered that this mode is not the experimentally relevant wave vectors; the Fock space increases a single mode, as believed earlier, but splits into two as the wave exponentially with the number of particles, and at present exact vector is increased. By definition, the single-mode approximation diagonalization is possible only for 10–12 particles for the filling cannot accommodate a doublet. A hydrodynamic approach has factors of interest here. Our quantitative investigations below been proposed10 to account for the experimental observation, exploit accurate trial wavefunctions for composite fermions3. The but does not take into account the microscopic physics of the standard spherical geometry is used in our calculations, which fractional quantum Hall effect (FQHE), does not naturally explain considers electrons moving on the surface of a sphere, subjected the merging of the two modes in the long-wavelength limit and also to a radial magnetic field. The magnetic field can be thought greatly underestimates the splitting. to emanate from a `magnetic monopole' of strength Q at the We show here that this new mode finds a natural explanation centre, which produces a total magnetic flux of 2Qφ0 through within the composite-fermion theory3. Composite fermions are the surface of the sphere. This maps into a system of composite bound states of electrons and an even number (2p) of quantized fermions at an effective flux Q∗ D Q − N C 1, with Q chosen vortices. Because of the Berry phases produced by the bound so that the state at Q∗ is an integral quantum Hall state at vortices, composite fermions effectively experience a much reduced filling ν∗ D n. The wavefunction 9CF-g for the FQHE ground ∗ magnetic field B D B − 2pρφ0 (B is the external magnetic field, state at ν D n=(2n C 1) is obtained by composite-fermionizing the ∗ g ρ is the two-dimensional density and φ0 D hc=e is called the ν D n integral quantum Hall state 8 . To model neutral collective flux quantum). Composite fermions form their own Landau-like excitations, we first construct wavefunctions of the excitons of the 1Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India, 2104 Davey Laboratory, Physics Department, Pennsylvania State University, University Park, Pennsylvania 16802, USA. *e-mail: [email protected]. NATURE PHYSICS j VOL 5 j JUNE 2009 j www.nature.com/naturephysics 403 © 2009 Macmillan Publishers Limited. All rights reserved. LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS1275 Λ abc 2 1 0 2/5 ground state 1 2 composite-fermion exciton 0 2 composite-fermion exciton Figure 1 j Schematic diagram of composite-fermion excitons. Each composite fermion is shown as an electron carrying vortices represented by arrows. a, Representation of the ground state at ν D 2=5 as two filled 3 levels. b,c, 1 ! 2 (b) and 0 ! 2 (c) composite-fermion excitons. a b 0.20 0.18 0.18 0.16 0.16 0.14 ) ) l l ε ε 0.12 / / 0.14 2 2 e e ( ( Δ Δ 0.12 0.10 0.10 0.08 0.08 0.06 0.06 0.04 0 0.5 1.0 1.5 2.0 2.5 3.0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 ql ql c d 0.010 0.03 N = 100 N = 50 0.008 0.02 0.006 0.004 0.01 Spectral weight Spectral Spectral weight Spectral 0.002 0 0 0 0.5 1.0 1.5 2.0 2.5 3.0 0 0.1 0.2 0.3 0.4 0.5 ql (ql)4 Figure 2 j Dispersions of several composite-fermion excitons and their spectral weights. a, The three lowest composite-fermion exciton modes at ν D 1=3, obtained from 0 ! 1, 0 ! 2 and 0 ! 3 excitons. The error bar at the end of each curve represents the typical statistical error in the energy 2/` determinedp by the Monte Carlo method. The energies are quoted in units of e , where is the dielectric constant of the background semiconductor and ` D hcN =eB is the magnetic length. b, The three lowest composite-fermion exciton modes at ν D 2=5, obtained from 1 ! 2, 0 ! 2 and 1 ! 3 excitons. c, Spectral weights for the three modes at ν D 1=3 for N D 100. The curves from top to bottom correspond to the three modes shown in a respectively from bottom to top. d, The spectral weight for the lowest-energy composite-fermion exciton at ν D 1=3 at small q` for N D 50 and N D 100. All results in this CF-ex figure are for the Coulomb eigenstates χλ . f8ex g integral quantum Hall state, denoted by λ,L , where L is the total Even though our immediate interest is in understanding the orbital angular momentum of the exciton and λ labels different splitting of the collective mode at ν D 1=3, we consider, for excitons of the type shown in Fig. 1. We composite-fermionize completeness, the three lowest collective modes at two filling f9CF-exg ! ! ! ν D = ! this basis to obtain λ,L , which gives a set of basis functions factors: 0 1, 0 2 and 0 3 modes at 1 3, and 1 2, for composite-fermion excitons. We orthonormalize this basis and 1 ! 3 and 0 ! 2 modes at ν D 2=5. We have studied systems diagonalize the Coulomb Hamiltonian to obtain the energies of with 50, 100 and 200 particles at both ν D 1=3 and ν D 2=5.
Recommended publications
  • Composite Fermion Theory of Excitations in the Fractional Quantum Hall Effect
    Solid State Communications 135 (2005) 602–609 www.elsevier.com/locate/ssc Composite fermion theory of excitations in the fractional quantum Hall effect J.K. Jaina,*, K. Parkb, M.R. Petersona, V.W. Scarolab a104 Davey Laboratory, Physics Department, The Pennsylvania State University, University Park, PA 16802, USA bPhysics Department, Condensed Matter Theory Center, University of Maryland, College Park, MD 20742, USA Received 28 February 2005; accepted 1 May 2005 by the guest editors Available online 13 May 2005 Abstract Transport experiments are sensitive to charged ‘quasiparticle’ excitations of the fractional quantum Hall effect. Inelastic Raman scattering experiments have probed an amazing variety of other excitations: excitons, rotons, bi-rotons, trions, flavor altering excitons, spin waves, spin-flip excitons, and spin-flip rotons. This paper reviews the status of our theoretical understanding of these excitations. q 2005 Elsevier Ltd. All rights reserved. PACS: 71.10.Pm; 73.43.Kf Keywords: A. Composite fermion; D. Fractional quantum Hall effects 1. Introduction have revealed a strikingly rich structure with many kinds of excitations. Transport experiments told us quite early on that there is There has also been substantial theoretical progress on a gap to charged excitations in the fractional quantum Hall this issue, and an excellent description of the neutral effect (FQHE) [1]. The longitudinal resistance was seen to excitations has been achieved in terms of a particle hole pair behave like rxxZexp(KD/2kBT) in a range of temperature, of composite fermions (CFs), which dovetails nicely with and the quantity D is interpreted as the minimum energy our understanding of the incompressible ground states as an required to create a charged excitation.
    [Show full text]
  • 25 Years of Quantum Hall Effect
    S´eminaire Poincar´e2 (2004) 1 – 16 S´eminaire Poincar´e 25 Years of Quantum Hall Effect (QHE) A Personal View on the Discovery, Physics and Applications of this Quantum Effect Klaus von Klitzing Max-Planck-Institut f¨ur Festk¨orperforschung Heisenbergstr. 1 D-70569 Stuttgart Germany 1 Historical Aspects The birthday of the quantum Hall effect (QHE) can be fixed very accurately. It was the night of the 4th to the 5th of February 1980 at around 2 a.m. during an experiment at the High Magnetic Field Laboratory in Grenoble. The research topic included the characterization of the electronic transport of silicon field effect transistors. How can one improve the mobility of these devices? Which scattering processes (surface roughness, interface charges, impurities etc.) dominate the motion of the electrons in the very thin layer of only a few nanometers at the interface between silicon and silicon dioxide? For this research, Dr. Dorda (Siemens AG) and Dr. Pepper (Plessey Company) provided specially designed devices (Hall devices) as shown in Fig.1, which allow direct measurements of the resistivity tensor. Figure 1: Typical silicon MOSFET device used for measurements of the xx- and xy-components of the resistivity tensor. For a fixed source-drain current between the contacts S and D, the potential drops between the probes P − P and H − H are directly proportional to the resistivities ρxx and ρxy. A positive gate voltage increases the carrier density below the gate. For the experiments, low temperatures (typically 4.2 K) were used in order to suppress dis- turbing scattering processes originating from electron-phonon interactions.
    [Show full text]
  • SKYRMIONS and the V = 1 QUANTUM HALL FERROMAGNET
    o 9 (1997 ACA YSICA OŁOICA A Νo oceeigs o e I Ieaioa Scoo o Semicoucig Comous asowiec 1997 SKYMIOS A E v = 1 QUAUM A EOMAGE M MAA GOEG e o ysics oso Uiesiy oso MA 15 USA EIE A K WES e aoaoies uce ecoogies Muay i 797 USA ece eeimea a eoeica iesigaios ae esue i a si i ou uesaig o e v = 1 quaum a sae ee ow eiss a wea o eiece a e eciaio ga a e esuig quasiaice secum a v = 1 ae ue prdntl o e eomageic may-oy ecage ieacio A gea aiey o eeimeay osee coeaios a v = 1 nnt e icooae io a euaie easio aou e sige-aice moe a sceme og oug o escie e iega qua- um a eec a iig aco 1 eoiss ow ee o e v = 1 sae as e quaum a eomage I is ae we eiew ece eoei- ca a eeimea ogess a eai ou ow oica iesigaios o e v = 1 quaum a egime e ecique o mageo-asoio sec- oscoy as oe o e oweu a oe o e occuacy o e owes aau ee i e egime o 7 v 13 aou e si ga Aiioay we ae eome simuaeous measuemes o e asoio oou- miescece a ooumiescece eciaio seca o e v = 1 sae i oe o euciae e oe o ecioic a eaaio eecs i oica secoscoy i e quaum a egime ACS umes 73Ηm 7-w 73Mí 717Gm 73 1 Ioucio Some iee yeas ae e iscoey o e acioa quaum a e- ec [1] e suy o woimesioa eeco sysems (ES coie o e owes aau ee ( coiues o e a eie aoaoy o e iesiga- io o may-oy ieacios e oieaio o eeimeay osee ac- ioa a saes [] e iscoey o comosie emios a a-iig [3] a e ossiiiy o eoic si-uoaie acioa gou saes [] ae u a ew eames o e aomaies a coiue o caege ou uesaig o sog eeco—eeco coeaios i e eeme mageic quaum imi ecey e v = 1 quaum a sae a egio oug o e we-uesoo wii e (1 622 M.J.
    [Show full text]
  • Recent Experimental Progress of Fractional Quantum Hall Effect: 5/2 Filling State and Graphene
    Recent Experimental Progress of Fractional Quantum Hall Effect: 5/2 Filling State and Graphene X. Lin, R. R. Du and X. C. Xie International Center for Quantum Materials, Peking University, Beijing, People’s Republic of China 100871 ABSTRACT The phenomenon of fractional quantum Hall effect (FQHE) was first experimentally observed 33 years ago. FQHE involves strong Coulomb interactions and correlations among the electrons, which leads to quasiparticles with fractional elementary charge. Three decades later, the field of FQHE is still active with new discoveries and new technical developments. A significant portion of attention in FQHE has been dedicated to filling factor 5/2 state, for its unusual even denominator and possible application in topological quantum computation. Traditionally FQHE has been observed in high mobility GaAs heterostructure, but new materials such as graphene also open up a new area for FQHE. This review focuses on recent progress of FQHE at 5/2 state and FQHE in graphene. Keywords: Fractional Quantum Hall Effect, Experimental Progress, 5/2 State, Graphene measured through the temperature dependence of I. INTRODUCTION longitudinal resistance. Due to the confinement potential of a realistic 2DEG sample, the gapped QHE A. Quantum Hall Effect (QHE) state has chiral edge current at boundaries. Hall effect was discovered in 1879, in which a Hall voltage perpendicular to the current is produced across a conductor under a magnetic field. Although Hall effect was discovered in a sheet of gold leaf by Edwin Hall, Hall effect does not require two-dimensional condition. In 1980, quantum Hall effect was observed in two-dimensional electron gas (2DEG) system [1,2].
    [Show full text]
  • From Rotating Atomic Rings to Quantum Hall States SUBJECT AREAS: M
    From rotating atomic rings to quantum Hall states SUBJECT AREAS: M. Roncaglia1,2, M. Rizzi2 & J. Dalibard3 QUANTUM PHYSICS THEORETICAL PHYSICS 1Dipartimento di Fisica del Politecnico, corso Duca degli Abruzzi 24, I-10129, Torino, Italy, 2Max-Planck-Institut fu¨r Quantenoptik, ATOMIC AND MOLECULAR Hans-Kopfermann-Str. 1, D-85748, Garching, Germany, 3Laboratoire Kastler Brossel, CNRS, UPMC, E´cole normale supe´rieure, PHYSICS 24 rue Lhomond, 75005 Paris, France. APPLIED PHYSICS Considerable efforts are currently devoted to the preparation of ultracold neutral atoms in the strongly Received correlated quantum Hall regime. However, the necessary angular momentum is very large and in experiments 15 March 2011 with rotating traps this means spinning frequencies extremely near to the deconfinement limit; consequently, the required control on parameters turns out to be too stringent. Here we propose instead to follow a dynamic Accepted path starting from the gas initially confined in a rotating ring. The large moment of inertia of the ring-shaped 4 July 2011 fluid facilitates the access to large angular momenta, corresponding to giant vortex states. The trapping potential is then adiabatically transformed into a harmonic confinement, which brings the interacting atomic Published gas in the desired quantum-Hall regime. We provide numerical evidence that for a broad range of initial 22 July 2011 angular frequencies, the giant-vortex state is adiabatically connected to the bosonic n 5 1/2 Laughlin state. hile coherence between atoms finds its realization in Bose–Einstein condensates1–3, quantum Hall Correspondence and states4 are emblematic representatives of the strongly correlated regime. The fractional quantum Hall requests for materials effect (FQHE) has been discovered in the early 1980s by applying a transverse magnetic field to a two- W 5 should be addressed to dimensional (2D) electron gas confined in semiconductor heterojunctions .
    [Show full text]
  • Quantum Hall Drag of Exciton Superfluid in Graphene
    1 Quantum Hall Drag of Exciton Superfluid in Graphene Xiaomeng Liu1, Kenji Watanabe2, Takashi Taniguchi2, Bertrand I. Halperin1, Philip Kim1 1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA 2National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan Excitons are pairs of electrons and holes bound together by the Coulomb interaction. At low temperatures, excitons can form a Bose-Einstein condensate (BEC), enabling macroscopic phase coherence and superfluidity1,2. An electronic double layer (EDL), in which two parallel conducting layers are separated by an insulator, is an ideal platform to realize a stable exciton BEC. In an EDL under strong magnetic fields, electron-like and hole-like quasi-particles from partially filled Landau levels (LLs) bind into excitons and condense3–11. However, in semiconducting double quantum wells, this magnetic-field- induced exciton BEC has been observed only in sub-Kelvin temperatures due to the relatively strong dielectric screening and large separation of the EDL8. Here we report exciton condensation in bilayer graphene EDL separated by a few atomic layers of hexagonal boron nitride (hBN). Driving current in one graphene layer generates a quantized Hall voltage in the other layer, signifying coherent superfluid exciton transport4,8. Owing to the strong Coulomb coupling across the atomically thin dielectric, we find that quantum Hall drag in graphene appears at a temperature an order of magnitude higher than previously observed in GaAs EDL. The wide-range tunability of densities and displacement fields enables exploration of a rich phase diagram of BEC across Landau levels with different filling factors and internal quantum degrees of freedom.
    [Show full text]
  • Quantum Hall Transport in Graphene and Its Bilayer
    Quantum Hall Transport in Graphene and its Bilayer Yue Zhao Submitted in partial fulfillment of the Requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2012 c 2011 Yue Zhao All Rights Reserved Abstract Quantum Hall Transport in Graphene and its Bilayer Yue Zhao Graphene has generated great interest in the scientific community since its dis- covery because of the unique chiral nature of its carrier dynamics. In monolayer graphene, the relativistic Dirac spectrum for the carriers results in an unconventional integer quantum Hall effect, with a peculiar Landau Level at zero energy. In bilayer graphene, the Dirac-like quadratic energy spectrum leads to an equally interesting, novel integer quantum Hall effect, with a eight-fold degenerate zero energy Landau level. In this thesis, we present transport studies at high magnetic field on both mono- layer and bilayer graphene, with a particular emphasis on the quantum Hall (QH) effect at the charge neutrality point, where both systems exhibit broken symmetry of the degenerate Landau level at zero energy. We also present data on quantum Hall edge transport across the interface of a graphene monolayer and bilayer junction, where peculiar edge state transport is observed. We investigate the quantum Hall effect near the charge neutrality point in bilayer graphene, under high magnetic fields of up to 35 T using electronic transport mea- surements. In the high field regime, we observe a complete lifting of the eight-fold degeneracy of the zero-energy Landau level, with new quantum Hall states corre- sponding to filling factors ν = 0, 1, 2 & 3.
    [Show full text]
  • Unconventional Quantum Hall Effect in Graphene Abstract
    Unconventional Quantum Hall Effect in Graphene Zuanyi Li Department of Physics, University of Illinois at Urbana-Champaign, Urbana 61801 Abstract Graphene is a new two-dimensional material prepared successfully in experiments several years ago. It was predicted theoretically and then observed experimentally to present unconventional quantum Hall effect due to its unique electronic properties which exists quasi-particle excitations that can be described as massless Dirac Fermions. This feature leads to the presence of a Landau level with zero energy in single layer graphene and hence a shift of ½ in the filling factor of the Hall conductivity. Name: Zuanyi Li PHYS 569: ESM term essay December 19, 2008 I. Introduction The integer Quantum Hall Effect (QHE) was discovered by K. von Klitzing, G. Dorda, and M. Pepper in 1980 [1]. It is one of the most significant phenomena in condensed matter physics because it depends exclusively on fundamental constants and is not affected by irregularities in the semiconductor like impurities or interface effects [2]. The presence of the quantized Hall resistance is the reflection of the properties of two-dimensional electron gases (2DEG) in strong magnetic fields, and is a perfect exhibition of basic physical principles. K. von Klitzing was therefore awarded the 1985 Nobel Prize in physics. Further researches on 2DEG led to the discovery of the fractional quantum Hall effect [3]. These achievements make 2DEG become a very vivid field in condensed matter physics. Since a few single atomic layers of graphite, graphene, was successfully fabricated in experiments recently [4,5], a new two-dimensional electron system has come into physicists’ sight.
    [Show full text]
  • Science Journals
    SCIENCE ADVANCES | RESEARCH ARTICLE PHYSICS Copyright © 2019 The Authors, some Observation of new plasmons in the fractional rights reserved; exclusive licensee quantum Hall effect: Interplay of topological American Association for the Advancement and nematic orders of Science. No claim to original U.S. Government 1 2,3 4 4 5,6 Works. Distributed Lingjie Du *, Ursula Wurstbauer , Ken W. West , Loren N. Pfeiffer , Saeed Fallahi , under a Creative 6,7 5,6,7,8 1,9 Geoff C. Gardner , Michael J. Manfra , Aron Pinczuk Commons Attribution NonCommercial Collective modes of exotic quantum fluids reveal underlying physical mechanisms responsible for emergent quantum License 4.0 (CC BY-NC). states. We observe unexpected new collective modes in the fractional quantum Hall (FQH) regime: intra–Landau-level plasmons measured by resonant inelastic light scattering. The plasmons herald rotational-symmetry-breaking (nematic) phases in the second Landau level and uncover the nature of long-range translational invariance in these phases. The intricate dependence of plasmon features on filling factor provides insights on interplays between topological quantum Hall order and nematic electronic liquid crystal phases. A marked intensity minimum in the plasmon spectrum at Landau level filling factor v = 5/2 strongly suggests that this paired state, which may support non-Abelian excitations, overwhelms competing nematic phases, unveiling the robustness of the 5/2 superfluid state for small tilt angles. At v =7/3,asharpand Downloaded from strong plasmon peak that links to emerging macroscopic coherence supports the proposed model of a FQH nematic state. INTRODUCTION with FQH states that occur in the environment of a nematic phase (FQH The interplay between quantum electronic liquid crystal (QELC) phases nematic phase) (9–12, 14, 27, 28).
    [Show full text]
  • Field Theory of Anyons and the Fractional Quantum Hall Effect 30- 50
    NO9900079 Field Theory of Anyons and the Fractional Quantum Hall Effect Susanne F. Viefers Thesis submitted for the Degree of Doctor Scientiarum Department of Physics University of Oslo November 1997 30- 50 Abstract This thesis is devoted to a theoretical study of anyons, i.e. particles with fractional statistics moving in two space dimensions, and the quantum Hall effect. The latter constitutes the only known experimental realization of anyons in that the quasiparticle excitations in the fractional quantum Hall system are believed to obey fractional statistics. First, the properties of ideal quantum gases in two dimensions and in particular the equation of state of the free anyon gas are discussed. Then, a field theory formulation of anyons in a strong magnetic field is presented and later extended to a system with several species of anyons. The relation of this model to fractional exclusion statistics, i.e. intermediate statistics introduced by a generalization of the Pauli principle, and to the low-energy excitations at the edge of the quantum Hall system is discussed. Finally, the Chern-Simons-Landau-Ginzburg theory of the fractional quantum Hall effect is studied, mainly focusing on edge effects; both the ground state and the low- energy edge excitations are examined in the simple one-component model and in an extended model which includes spin effets. Contents I General background 5 1 Introduction 7 2 Identical particles and quantum statistics 10 3 Introduction to anyons 13 3.1 Many-particle description 14 3.2 Field theory description
    [Show full text]
  • Observation of the Fractional Quantum Hall Effect in Graphene
    1 Observation of the Fractional Quantum Hall Effect in Graphene Kirill I. Bolotin*1, Fereshte Ghahari*1, Michael D. Shulman2, Horst L. Stormer1, 2 & Philip Kim1, 2 1Department of Physics, Columbia University, New York, New York 10027, USA 2Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA *These authors contributed equally to this work. 12 When electrons are confined in two dimensions c 0.3T 0.5T a 10 (2D) and subjected to strong magnetic fields, the 1T 8 ) h Coulomb interactions between them become / 6 2 e ( dominant and can lead to novel states of matter 4 G 1 1 μm such as fractional quantum Hall (FQH) liquids . In 2 these liquids electrons linked to magnetic flux -2 0 2 quanta form complex composite quasipartices, n (1011 cm-2) b ρmax~16 kΩ which are manifested in the quantization of the 15 -6 -2 +2 +6 +10 1 Hall conductivity as rational fractions of the d ) Ω 10 conductance quantum. The recent experimental (T) (k 0 ρ B discovery of an anomalous integer quantum Hall (a.u.) effect in graphene has opened up a new avenue in 5 G V =+2V D dG/dV 1 0 the study of correlated 2D electronic systems, in -10 -5 0 5 10 -2 0 2 V (V) 11 -2 which the interacting electron wavefunctions are G n (10 cm ) 2,3 those of massless chiral fermions . However, due Figure 1 Electrical properties of suspended graphene at low to the prevailing disorder, graphene has thus far magnetic field a, False-colour scanning electron micrograph of a exhibited only weak signatures of correlated typical device.
    [Show full text]
  • Energy Relaxation of Two-Dimensional Electrons in the Quantum Hall Effect Regime K
    JETP Letters, Vol. 71, No. 1, 2000, pp. 31–34. Translated from Pis’ma v Zhurnal Éksperimental’noœ i Teoreticheskoœ Fiziki, Vol. 71, No. 1, 2000, pp. 47–52. Original Russian Text Copyright © 2000 by Smirnov, Ptitsina, Vakhtomin, Verevkin, Gol’tsman, Gershenzon. CONDENSED MATTER Energy Relaxation of Two-Dimensional Electrons in the Quantum Hall Effect Regime K. V. Smirnov, N. G. Ptitsina, Yu. B. Vakhtomin,1 A. A. Verevkin, G. N. Gol’tsman, and E. M. Gershenzon Moscow State Pedagogical University, Moscow, 113567 Russia Received November 19, 1999 Abstract—The mm-wave spectroscopy with high temporal resolution is used to measure the energy relaxation τ times e of 2D electrons in GaAs/AlGaAs heterostructures in magnetic fields B = 0–4 T under quasi-equilibrium τ conditions at T = 4.2 K. With increasing B, a considerable increase in e from 0.9 to 25 ns is observed. For high ν τ–1 B and low values of the filling factor , the energy relaxation rate e oscillates. The depth of these oscillations ν ν τ–1 and the positions of maxima depend on the filling factor . For > 5, the relaxation rate e is maximum when the Fermi level lies in the region of the localized states between the Landau levels. For lower values of ν, the τ–1 ν relaxation rate e is maximum at half-integer values of when the Fermi level is coincident with the Landau τ–1 level. The characteristic features of the dependence e (B) are explained by different contributions of the intra- level and interlevel electron–phonon transitions to the process of the energy relaxation of 2D electrons.
    [Show full text]