<<

More Than Just and : A Phylogenetic Analysis of Tooth Shape in Carnivorans Lilia K. Galvez1, Samantha S. B. Hopkins2, Samantha A. Price1 1. University of California, Davis, Dept. of Evolution and Ecology 2. University of Oregon, Dept. of Geological Sciences [email protected]

Hypocarnivores – Introduction Results Hypocarnivores – Methods

0.2 – Feliformia in the order are characterized by their 0.2 Hypercarnivores – Caniformia We quantified lower carnassial (M1) Figure 2 Mesocarnivores – Feliformia highly specialized carnassial teeth, adapted for efficient occlusal tooth shape of 129 species Phylomorphospace of Carnivora, showing Mesocarnivores – Caniformia processing of meat. There are two distinct parts of the of extant terrestrial carnivorans Figure 3

0.1 African Wild tight clustering of hypercarnivores in the 0.1 carnassial; the trigonid is used for shearing, while the American Black using geometric morphometrics. Lower morphospace (suggesting greater Lycaon pictus americanus talonid basin is used for crushing (Figure 3). However, not 0.2 • Semi-landmarks captured the M1 convergence) and a larger region of the all carnivorans are carnivorous; Hypocarnivores are outline of both the talonid and (Part of the

morphospace occupied by 0.0 carnivorans whose diet consists mostly of non-vertebrate 0.0 trigonid. carnassial PC PC 2 PC PC 2 hypocarnivores (suggesting no/little 0.1 food sources (Van Valkenburgh, 1988). Carnivora’s two • Estimated relative change in pair) convergence). PC1 (x axis) differentiates 0.2 suborders, Caniformia (dogs and relatives) and Feliformia (16.9% of variation) Ailurus fulgens evolutionary rates with

trigonid vs. talonid emphasis very clearly, -0.1 -0.1

0.0 multivariate Brownian motion

(cats and relatives), diverged about 65 million ago PC2

while PC2 (y axis) trends are less clear. 0.1 (Nyakatura and Bininda-Emonds, 2012). We are interested PC 2 models (Adams, 2013). in the relationship between carnassial shape evolution and • Significance of difference in rate of Trigonid 0.0 Yellow Talonid -0.1 -0.2 dietary strategies in a phylogenetic context. Essentially, we PC 1 evolution between trigonid and -0.2 Cynictis penicillata basin Small Indian are asking: -0.1 talonid estimated using method by 0.2 Viverricula indica Arctictis binturong Denton and Adams (2015).

Do the evolutionary rates of the trigonid and -0.2 -0.2 -0.3 -0.3 -0.2 -0.1 0.0 0.1 0.2 • Geomorph-package in R used to macrotis mandible talonid in the lower carnassial teeth differ? -0.3 -0.2 -0.1 0.0 0.1 PC 1 0.2 0.1 account for polytomies. Are these rates influenced by diet? -0.3 PC 1 PC1 (69.9% of variation) -0.3 Diet information was collected from the literature, hyper/ -0.4 -0.2 0.0 0.2 0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 PC 2

0.0 hypocarnivory definitions from Van Valkenburg (1988). Phylogeny of Carnivora PC 1 PC PC 1 Trigonid vs Talonid Trigonid vs Talonid javanicus Figure 4 shows a significantly faster rate of shape evolution in -0.1

Suricata suricatta Discussion mungo Figure 4 Helarctos malayanus brunneaCrocuta crocuta Nandinia binotata the trigonid across all carnivoran teeth. Ursus americanus Do the evolutionary rates of the trigonid and talonid in Ursus thibetanus Talonid • Median p-value = 0.003996, mean p-value = 0.03278 400

Ursus maritimus -0.2 Ursus arctos Trigonid the lower carnassial teeth differ? sanguinea Galerella Melursus ursinus Galerella pulverulenta Ichneumia albicauda Tremarctos ornatus Cynictis penicillata Atilax paludinosus Genetta genetta Figure 5 shows that talonid shape evolves at significantly Viverricula indica Overlap tangalunga Poecilogale albinucha Arctogalidia trivirgata • The trigonid evolves at significantly faster rates than the Ailurus fulgens Chrotogale owstoni hermaphroditus Arctictis binturong slower rates in hypocarnivorous feliforms and at significantly Uncia uncia

-0.3 talonid (see Fig 4). Unlike other mammals, the trigonid cuja tigris Galictis vittata Panthera onca 300 faster rates in hypocarnivorous caniforms cinerea Panthera pardus Panthera leo is the first to develop in Carnivora (Popowics, 1998). felina caracal Lontra longicaudis -0.4 -0.2 • 0.0 0.2 0.4 jacobitus In Feliformia: mean p-value = 0.001, median p-value = Leopardus wiedii • Enhydra lutris PC 2 The early development of the trigonid during ontogeny Leopardus pardalis Neovison vison Leopardus pajeros 0.001 200 Mustela nivalis rufus Frequency may allow for this faster rate of evolutionary change. Lynx canadensis Mustela sibirica • In Caniformia: mean p-value = 0.009, median p-value = yagouaroundi Mustela nigripes Are these rates influenced by diet?

Puma concolor Frequency Mustela eversmanii jubatus 0.001 Mustela putorius littoralis • Rates of shape evolution seem to be influenced by both Urocyon cinereoargenteus Figure 6 shows the same trend in Feliformia and Caniformia, Mustela erminea Otocyon megalotis 100 striatus Vulpes chama dietary strategy and suborder classification (Figs 5 & 6). Vulpes velox significantly slower rates of shape evolution in hypocarnivores. Vormela peregusna Vulpes macrotis Eira barbara • Vulpes lagopus Separation into suborders reveals differences between Vulpes vulpes • Martes pennantiGulo gulo In Feliformia, mean p-value = 0.001, median p-value = 0.001 procyonoides

0 diet in the talonid; hypocarnivorous caniforms have a venaticus Lycaon pictus Martes americana • In Caniformia, mean p-value = 0.005, median p-value = Martes foina Cuon alpinus lupus faster rate than hypercarnivorous caniforms (Fig 5). Martes zibellina Canis latrans 0.0e+00 5.0e-06 1.0e-05 1.5e-05 Canis aureus 0.001 Martes melampus Canis mesomelas Canis adustus • The slower rate in the talonids of hypocarnivorous ArctonyxMeles collaris Chrysocyon brachyurus Rate of shape evolution Cerdocyon thous Rate of shape evolution Atelocynus microtis Spilogale putorius Taxidea taxus Spilogale pygmaea Spilogale gracilis mephitis Mephitis macroura feliforms is surprising given the importance of the

Nasua narica astutus nasua lotor talonid for the consumption of plant material (Fig 5). Bassariscus sumichrasti Potos flavus

Bassaricyon alleni Procyon cancrivorus gabbii Figure 5 • Slower rates of shape evolution in hypocarnivorous

Conepatus humboldtii Conepatus leuconotus M1M1 talonid talonid semi-landmarks semi-landmarks Figure 6 M1M1 trigonid trigonid semi-landmarks semi-landmarks Conepatus semistriatus Conepatus feliforms (fig 5 & 6) suggest constraint on the shape of M1’s in Feliformia, perhaps in development or due to Hypocarnivores – Feliformia Hypocarnivores – Feliformia Hypocarnivores – Feliformia 1000 1000 Figure 1 Hypocarnivores – Caniformia 800 800 Hypocarnivores – Caniformia Hypocarnivores – Caniformia morphological specialization of this suborder. Hypercarnivores – Feliformia Hypercarnivores – Feliformia Hypercarnivores – Caniformia • Mesocarnivores were grouped with the hypercarnivores (Phylogeny from Hypercarnivores – Feliformia Hypercarnivores – Caniformia 800 800

Nyakatura and Bininda- Hypercarnivores – Caniformia 600 600 in Fig 5 and 6, and when grouped with hypocarnivores Mesocarnivores – Feliformia Emonds, 2012) 600 600 (to focus on hypercarnivores) we observe similar trends. Mesocarnivores – Caniformia

400 400 • Essentially, there must be forces in addition to diet Frequency Frequency Frequency Frequency Works Cited 400 400 influencing rates of shape evolution. Adams DC. 2013. Quantifying and comparing phylogenetic evolutionary rates for shape and other high-dimensional phenotypic data. Systematic Biology, 63 (2): 166-177.

Denton, J.S.S., and D.C. Adams. 2015. A new phylogenetic test for comparing multiple high-dimensional 200 200 evolutionary rates suggests interplay of evolutionary rates and modularity in lanternfishes (Myctophiformes; 200 200 Acknowledgements Myctophidae). Evolution. 69: doi:10.1111/evo.12743 Nyakatura, K. and Bininda-Emonds, O.R., 2012. Updating the evolutionary history of Carnivora (Mammalia): a new species-level supertree complete with divergence time estimates. BMC biology, 10(1), p.1. 0 0 0 0 Research was supported by NSF grant Popowics TE. 1998. Ontogeny of Postcanine Tooth Form in the , Mustela putorius (Carnivora: Mammalia), and DEB-1256897 to SAP and SSBH the Evolution of Dental Diversity within . Journal of Morphology: 237(1): 69-90. 0.0e+000.0e+00 5.0e-065.0e-06 1.0e-051.0e-05 1.5e-051.5e-05 0.0e+000.0e+00 5.0e-065.0e-06 1.0e-051.0e-05 1.5e-051.5e-05 2.0e-052.0e-05 Van Valkenburgh B. 1988. Trophic Diversity in Past and Present Guilds of Large Predatory Mammals. Paleobiology, Many thanks to the University of 14(2): 155-173. RateRate of ofshape shape evolution evolution RateRate of shape of shape evolution evolution California, Davis for all its support.