Fanworms: Yesterday, Today and Tomorrow

Total Page:16

File Type:pdf, Size:1020Kb

Fanworms: Yesterday, Today and Tomorrow diversity Review Fanworms: Yesterday, Today and Tomorrow María Capa 1,* , Elena Kupriyanova 2, João Miguel de Matos Nogueira 3 , Andreas Bick 4 and María Ana Tovar-Hernández 5 1 Departament de Biologia, Universitat de les Illes Balears, 07122 Palma, Spain 2 Australian Museum Research Institute, Australian Museum, Sydney, NSW 2010, Australia; [email protected] 3 Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil; [email protected] 4 Institut für Biowissenschaften, Allgemeine und Spezielle Zoologie, Universität Rostock, Universitätsplatz 2, D-18055 Rostock, Germany; [email protected] 5 Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Nuevo León 66455, Mexico; [email protected] * Correspondence: [email protected] Abstract: Sabellida Levinsen, 1883 is a large morphologically uniform group of sedentary annelids commonly known as fanworms. These annelids live in tubes made either of calcareous carbonate or mucus with agglutinated sediment. They share the presence of an anterior crown consisting of radioles and the division of the body into thorax and abdomen marked by a chaetal and fecal groove inversion. This study synthesises the current state of knowledge about the diversity of fanworms in the broad sense (morphological, ecological, species richness), the species occurrences in the different biogeographic regions, highlights latest surveys, provides guidelines for identification of members of each group, and describe novel methodologies for species delimitation. As some members of this group are well-known introduced pests, we address information about these species and their Citation: Capa, M.; Kupriyanova, E.; current invasive status. In addition, an overview of the current evolutionary hypothesis and history Nogueira, J.M.d.M.; Bick, A.; of the classification of members of Sabellida is presented. The main aim of this review is to highlight Tovar-Hernández, M.A. Fanworms: the knowledge gaps to stimulate research in those directions. Yesterday, Today and Tomorrow. Diversity 2021, 13, 130. https:// Keywords: Sabellida; Sabellidae; Serpulidae; Fabriciidae; Annelida; polychaetes; biodiversity assess- doi.org/10.3390/d13030130 ment; systematics; methods; gaps of knowledge Academic Editor: Luc Legal Received: 30 December 2020 1. Introduction Accepted: 10 March 2021 Sabellida Levinsen, 1883 is a morphologically uniform clade of sedentary annelids Published: 17 March 2021 historically given a rank of Order. Sabellida currently includes members of Fabriciidae Rioja, 1923, Sabellidae Latreille, 1825, and Serpulidae Rafinesque, 1815 [1–3]. They are Publisher’s Note: MDPI stays neutral commonly known as fanworms, feather-duster worms, or flowers of the sea, because their with regard to jurisdictional claims in radioles are arranged in a crown, protruding from the tube made of calcium carbonate or published maps and institutional affil- iations. mucus with agglutinated sediment (Figure1). In addition to the presence of protective tube and the prostomial crown made of radioles with secondary ramifications (generally referred as pinnules, but see [4] for Fabriciidae), which are mainly used for feeding and respiration, all members of Sabellida share the presence of chaetal inversion [thoracic chaetigers with simple chaetae on notopodia and uncini (hooks) on neuropodia, and abdominal chaetigers Copyright: © 2021 by the authors. with opposite arrangement]. Sabellida includes about 1200 species distributed world-wide, Licensee MDPI, Basel, Switzerland. from tropical to polar waters and found in all habitats, from freshwater to fully marine This article is an open access article conditions, and intertidal to deepest ocean trenches. distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Diversity 2021, 13, 130. https://doi.org/10.3390/d13030130 https://www.mdpi.com/journal/diversity Diversity 2021, 13, x 2 of 74 Diversity 2021, 13, 130 based on their general morphology and grouped into the section Amphitrites sabelliennes 2 of 73 [5], the family Serpulacei [6], family Serpulacea [7–9], Serpulidae [10], and finally Sabel- lida [11,12]. Figure 1. Comparison of the radiolar crown structure among the three families of Sabellida. (a) Anterior end of Fabricia Figure 1. Comparison of the radiolar crown structure among the three families of Sabellida. (a) Anterior end of Fabricia stellaris, dorsal view; (b) Histological section of crown of F. stellaris at base; (c) Histological section of crown of F. stellaris stellarisat, mid-length; dorsal view; (d) ( bHistological) Histological section section of one of radiole crown and of F. presumed stellaris at pinnules base; ( cof) HistologicalF. stellaris; (e) sectionAnterior of end crown of Laonome of F. stellaris at mid-length;xeprovala, dorsal (d) Histological view; (f) Histological section of section one radioleof crown and of Laonome presumed xeprovala pinnules at base; of (gF.) stellarisHistological;(e) section Anterior of crown end of of LaonomeL. xeprovalaxeprovala, dorsal at mid-length; view; (f) Histological (h) Histological section section of of crown one radiole of Laonome and pinnules xeprovala of L.at xeprovala base; (g; )(i Histological) Anterior end section of Spirobranchus of crown of L. lamarki, ventral view; (j) Histological section of crown of S. lamarcki at base; (k) Histological section of crown of S. lamarcki xeprovala at mid-length; (h) Histological section of one radiole and pinnules of L. xeprovala;(i) Anterior end of Spirobranchus at mid-length; (l) Histological section of one radiole and pinnules of S. lamarcki. Abbreviations: br: base of radioles; bv: lamarkiblood, ventral vessel; view; c: collar; (j) Histological coe: coelom; section cu: cuticle; of crown dl: dorsal of S. lips; lamarcki ep: epithelium;at base; (k fg:) Histological faecal groove; section hc: hyaline of crown cartilage; of S. lamarckimp: at mid-length;mouth (palp;l) Histological op: opercular section peduncle; of one p: radiolepinnules; and pl: parallel pinnules lamellae; of S. lamarcki r: radioles;. Abbreviations: sca: supporting br: cellular base of axis; radioles; vl: ventral bv: blood vessel;lips. c: collar; coe: coelom; cu: cuticle; dl: dorsal lips; ep: epithelium; fg: faecal groove; hc: hyaline cartilage; mp: mouth palp; op: opercular peduncle; p: pinnules; pl: parallel lamellae; r: radioles; sca: supporting cellular axis; vl: ventral lips. With the advent of cladistic analyses, close relationships of sabellids and serpulids withThe Sabellariidae Sabellida conceptJohnston, and 1865, even Siboglinidae the group Caullery, name has1914 changedand Oweniidae over time.Rioja, Since1917 their erectionhave been in the suggested, early 19th and century, consequently sabellids the co (includingmposition of fabriciids), Sabellida expanded building to soft incor- sediment porate these three taxa (e.g., [13]) (Figure 2). However, subsequent molecular analyses tubes, and serpulids, building calcareous tubes, have always been considered related, based on their general morphology and grouped into the section Amphitrites sabelliennes [5], the family Serpulacei [6], family Serpulacea [7–9], Serpulidae [10], and finally Sabellida [11,12]. With the advent of cladistic analyses, close relationships of sabellids and serpulids with Sabellariidae Johnston, 1865, Siboglinidae Caullery, 1914 and Oweniidae Rioja, 1917 have been suggested, and consequently the composition of Sabellida expanded to incorporate these three taxa (e.g., [13]) (Figure2). However, subsequent molecular analyses using increasing number of taxa and DNA markers revealed that the three late incorporated taxa were neither closely related to fanworms, nor to each other [14–16]. DiversityDiversity2021 2021, 13, 13 130, x 3 of3 74 of 73 using increasing number of taxa and DNA markers revealed that the three late incorpo- Morphological lines of evidence related to the ontogeny, internal anatomy, position of rated taxa were neither closely related to fanworms, nor to each other [14–16]. Morpho- the ciliated groove, as well as chaetal morphology and arrangement also supported logical lines of evidence related to the ontogeny, internal anatomy, position of the ciliated this lack of close relationship [17–26]. Consequently, Sabellida now again includes only groove, as well as chaetal morphology and arrangement also supported this lack of close fanworms (Figure2), but the former sabellid subfamily Fabriciinae has been elevated to relationship [17–26]. Consequently, Sabellida now again includes only fanworms (Figure Fabriciidae based on DNA evidence [1–3,24,27]. The sister group of Sabellida, according 2), but the former sabellid subfamily Fabriciinae has been elevated to Fabriciidae based toon the DNA latest evidence phylogenomic [1–3,24,27]. studies, The sister is grou a cladep of Sabellida, including according Spionidae to the Grube, latest 1850phylo- and Sabellariidaegenomic studies, [14, 28is ,a29 clade]. including Spionidae Grube, 1850 and Sabellariidae [14,28,29]. FigureFigure 2. History2. History of of the the evolutionary evolutionary hypotheses hypotheses withinwithin Sabellida.Sabellida. The The coloured coloured taxa taxa indicate indicate the the groups groups that that had had been been considered as members of Sabellida (or Serpulacea) according to the represented phylogenetic hypotheses. In light blue considered as members of Sabellida (or Serpulacea) according
Recommended publications
  • Arctic Science Summit Week Assw 2009
    ARCTIC SCIENCE SUMMIT WEEK ASSW 2009 Bergen, Norway, 22-28 March 2009 Welcome to ASSW 2009 In 1999, the first Arctic Science Summit Week (ASSW) was organized in Tromsø, Norway. This summit was set up to hold the meetings of all Arctic science organizations together on one location in one week. The platform was created to provide opportunities for international coordination, collaboration and cooperation in all disciplines of Arctic science. It was meant to combine science with management meetings. In this way business meetings were combined with a science and a project day, and the host country was offered the opportunity to present its most recent Arctic research. Side meetings organized by other groups with interest in Arctic science and policy took place at the same time. Now, after ten ASSWs organized in ten different countries all over the world, the organizations behind this event decided to change the concept of the week by including not only annual meetings of the Arctic science organizations, but also an Open Science Symposium. Instead of the science and project day, a three days international symposium was organized under the ambitious theme: Arctic Connections - results of 150 years of Arctic research. It is the intention of the organizers to make this the official symposium for International Arctic Science. We hope that the model we have chosen for the symposium will give you the possibility to get an impression of the wide specter of research activities that have taken place in the Arctic throughout the history. After ten years the ASSW is back in Norway.
    [Show full text]
  • Phylogenetic Relationships of Serpulidae (Annelida: Polychaeta) Based on 18S Rdna Sequence Data, and Implications for Opercular Evolution Janina Lehrkea,Ã, Harry A
    ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2007) 195–206 www.elsevier.de/ode Phylogenetic relationships of Serpulidae (Annelida: Polychaeta) based on 18S rDNA sequence data, and implications for opercular evolution Janina Lehrkea,Ã, Harry A. ten Hoveb, Tara A. Macdonaldc, Thomas Bartolomaeusa, Christoph Bleidorna,1 aInstitute for Zoology, Animal Systematics and Evolution, Freie Universitaet Berlin, Koenigin-Luise-Street 1-3, 14195 Berlin, Germany bZoological Museum, University of Amsterdam, P.O. Box 94766, 1090 GT Amsterdam, The Netherlands cBamfield Marine Sciences Centre, Bamfield, British Columbia, Canada, V0R 1B0 Received 19 December 2005; accepted 2 June 2006 Abstract Phylogenetic relationships of (19) serpulid taxa (including Spirorbinae) were reconstructed based on 18S rRNA gene sequence data. Maximum likelihood, Bayesian inference, and maximum parsimony methods were used in phylogenetic reconstruction. Regardless of the method used, monophyly of Serpulidae is confirmed and four monophyletic, well- supported major clades are recovered: the Spirorbinae and three groups hitherto referred to as the Protula-, Serpula-, and Pomatoceros-group. Contrary to the taxonomic literature and the hypothesis of opercular evolution, the Protula- clade contains non-operculate (Protula, Salmacina) and operculate taxa both with pinnulate and non-pinnulate peduncle (Filograna vs. Vermiliopsis), and most likely is the sister group to Spirorbinae. Operculate Serpulinae and poorly or non-operculate Filograninae are paraphyletic. It is likely that lack of opercula in some serpulid genera is not a plesiomorphic character state, but reflects a special adaptation. r 2007 Gesellschaft fu¨r Biologische Systematik. Published by Elsevier GmbH. All rights reserved. Keywords: Serpulidae; Phylogeny; Operculum; 18S rRNA gene; Annelida; Polychaeta Introduction distinctive calcareous tubes and bilobed tentacular crowns, each with numerous radioles that bear shorter Serpulids are common members of marine hard- secondary branches (pinnules) on the inner side.
    [Show full text]
  • New Siberian Islands Archipelago)
    Detrital zircon ages and provenance of the Upper Paleozoic successions of Kotel’ny Island (New Siberian Islands archipelago) Victoria B. Ershova1,*, Andrei V. Prokopiev2, Andrei K. Khudoley1, Nikolay N. Sobolev3, and Eugeny O. Petrov3 1INSTITUTE OF EARTH SCIENCE, ST. PETERSBURG STATE UNIVERSITY, UNIVERSITETSKAYA NAB. 7/9, ST. PETERSBURG 199034, RUSSIA 2DIAMOND AND PRECIOUS METAL GEOLOGY INSTITUTE, SIBERIAN BRANCH, RUSSIAN ACADEMY OF SCIENCES, LENIN PROSPECT 39, YAKUTSK 677980, RUSSIA 3RUSSIAN GEOLOGICAL RESEARCH INSTITUTE (VSEGEI), SREDNIY PROSPECT 74, ST. PETERSBURG 199106, RUSSIA ABSTRACT Plate-tectonic models for the Paleozoic evolution of the Arctic are numerous and diverse. Our detrital zircon provenance study of Upper Paleozoic sandstones from Kotel’ny Island (New Siberian Island archipelago) provides new data on the provenance of clastic sediments and crustal affinity of the New Siberian Islands. Upper Devonian–Lower Carboniferous deposits yield detrital zircon populations that are consistent with the age of magmatic and metamorphic rocks within the Grenvillian-Sveconorwegian, Timanian, and Caledonian orogenic belts, but not with the Siberian craton. The Kolmogorov-Smirnov test reveals a strong similarity between detrital zircon populations within Devonian–Permian clastics of the New Siberian Islands, Wrangel Island (and possibly Chukotka), and the Severnaya Zemlya Archipelago. These results suggest that the New Siberian Islands, along with Wrangel Island and the Severnaya Zemlya Archipelago, were located along the northern margin of Laurentia-Baltica in the Late Devonian–Mississippian and possibly made up a single tectonic block. Detrital zircon populations from the Permian clastics record a dramatic shift to a Uralian provenance. The data and results presented here provide vital information to aid Paleozoic tectonic reconstructions of the Arctic region prior to opening of the Mesozoic oceanic basins.
    [Show full text]
  • Macrofouler Community Succession in South Harbor, Manila Bay, Luzon Island, Philippines During the Northeast Monsoon Season of 2017–2018
    Philippine Journal of Science 148 (3): 441-456, September 2019 ISSN 0031 - 7683 Date Received: 26 Mar 2019 Macrofouler Community Succession in South Harbor, Manila Bay, Luzon Island, Philippines during the Northeast Monsoon Season of 2017–2018 Claire B. Trinidad1, Rafael Lorenzo G. Valenzuela1, Melody Anne B. Ocampo1, and Benjamin M. Vallejo, Jr.2,3* 1Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Padre Faura Street, Ermita, Manila 1000 Philippines 2Institute of Environmental Science and Meteorology, College of Science, University of the Philippines Diliman, Diliman, Quezon City 1101 Philippines 3Science and Society Program, College of Science, University of the Philippines Diliman, Diliman, Quezon City 1101 Philippines Manila Bay is one of the most important bodies of water in the Philippines. Within it is the Port of Manila South Harbor, which receives international vessels that could carry non-indigenous macrofouling species. This study describes the species composition of the macrofouling community in South Harbor, Manila Bay during the northeast monsoon season. Nine fouler collectors designed by the North Pacific Marine Sciences Organization (PICES) were submerged in each of five sampling points in Manila Bay on 06 Oct 2017. Three collection plates from each of the five sites were retrieved every four weeks until 06 Feb 2018. Identification was done via morphological and CO1 gene analysis. A total of 18,830 organisms were classified into 17 families. For the first two months, Amphibalanus amphitrite was the most abundant taxon; in succeeding months, polychaetes became the most abundant. This shift in abundance was attributed to intraspecific competition within barnacles and the recruitment of polychaetes.
    [Show full text]
  • Biomineralization of Polychaete Annelids in the Fossil Record
    minerals Review Biomineralization of Polychaete Annelids in the Fossil Record Olev Vinn Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu, Estonia; [email protected]; Tel.: +372-5067728 Received: 31 August 2020; Accepted: 25 September 2020; Published: 29 September 2020 Abstract: Ten distinct microstructures occur in fossil serpulids and serpulid tubes can contain several layers with different microstructures. Diversity and complexity of serpulid skeletal structures has greatly increased throughout their evolution. In general, Cenozoic serpulid skeletal structures are better preserved than Mesozoic ones. The first complex serpulid microstructures comparable to those of complex structures of molluscs appeared in the Eocene. The evolution of serpulid tube microstructures can be explained by the importance of calcareous tubes for serpulids as protection against predators and environmental disturbances. Both fossil cirratulids and sabellids are single layered and have only spherulitic prismatic tube microstructures. Microstructures of sabellids and cirratulids have not evolved since the appearance of calcareous species in the Jurassic and Oligocene, respectively. The lack of evolution in sabellids and cirratulids may result from the unimportance of biomineralization for these groups as only few species of sabellids and cirratulids have ever built calcareous tubes. Keywords: biominerals; calcite; aragonite; skeletal structures; serpulids; sabellids; cirratulids; evolution 1. Introduction Among polychaete annelids, calcareous tubes are known in serpulids, cirratulids and sabellids [1–3]. The earliest serpulids and sabellids are known from the Permian [4], and cirratulids from the Oligocene [5]. Only serpulids dwell exclusively within calcareous tubes. Polychaete annelids build their tubes from calcite, aragonite or a mixture of both polymorphs. Calcareous polychaete tubes possess a variety of ultrastructural fabrics, from simple to complex, some being unique to annelids [1].
    [Show full text]
  • Epibiota of the Spider Crab Schizophrys Dahlak (Brachyura: Majidae) from the Suez Canal with Special Reference to Epizoic Diatoms Fedekar F
    Marine Biodiversity Records, page 1 of 7. # Marine Biological Association of the United Kingdom, 2012 doi:10.1017/S1755267212000437; Vol. 5; e64; 2012 Published online Epibiota of the spider crab Schizophrys dahlak (Brachyura: Majidae) from the Suez Canal with special reference to epizoic diatoms fedekar f. madkour1, wafaa s. sallam2 and mary k. wicksten3 1Department of Marine Science, Faculty of Science, Port Said University, Port Said, Egypt, 2Department of Marine Science, Faculty of Science, Suez Canal University, 41522, Ismailia, Egypt, 3Department of Biology, Texas A&M University, College Station, TX 77843-3257, USA This study aims to describe the epibiota of the spider crab, Schizophrys dahlak with special reference to epizoic diatoms. Specimens were collected from the Suez Canal between autumn 2008 and summer 2009. Macro-epibionts consisted of the tube worm Hydroides elegans, the barnacles Balanus amphitrite and B. eburneus, the bivalve Brachidontes variabilis and the urochordate Styela plicata. Total coverage of macro-epibionts was greater on females’ carapaces than those of males with apparent seasonal variations. The highest coverage was noticed in spring and winter for both males and females. Sixty-five diatoms taxa were recorded as epibionts belonging to 25 genera. The maximal total averages of cell count were observed during summer and spring with the highest average of 10.9 and 4.4 × 103 cells dm22 for males and females, respect- ively. A single diatom taxon, Fragilaria intermedia, comprising 73.5% of all epizoic diatoms, was the most dominant species during spring, whereas Amphora coffeaeformis and Cocconeis placentula were the dominants during summer. The masking behaviour of S.
    [Show full text]
  • Download Full Article 2.4MB .Pdf File
    Memoirs of Museum Victoria 71: 217–236 (2014) Published December 2014 ISSN 1447-2546 (Print) 1447-2554 (On-line) http://museumvictoria.com.au/about/books-and-journals/journals/memoirs-of-museum-victoria/ Original specimens and type localities of early described polychaete species (Annelida) from Norway, with particular attention to species described by O.F. Müller and M. Sars EIVIND OUG1,* (http://zoobank.org/urn:lsid:zoobank.org:author:EF42540F-7A9E-486F-96B7-FCE9F94DC54A), TORKILD BAKKEN2 (http://zoobank.org/urn:lsid:zoobank.org:author:FA79392C-048E-4421-BFF8-71A7D58A54C7) AND JON ANDERS KONGSRUD3 (http://zoobank.org/urn:lsid:zoobank.org:author:4AF3F49E-9406-4387-B282-73FA5982029E) 1 Norwegian Institute for Water Research, Region South, Jon Lilletuns vei 3, NO-4879 Grimstad, Norway ([email protected]) 2 Norwegian University of Science and Technology, University Museum, NO-7491 Trondheim, Norway ([email protected]) 3 University Museum of Bergen, University of Bergen, PO Box 7800, NO-5020 Bergen, Norway ([email protected]) * To whom correspondence and reprint requests should be addressed. E-mail: [email protected] Abstract Oug, E., Bakken, T. and Kongsrud, J.A. 2014. Original specimens and type localities of early described polychaete species (Annelida) from Norway, with particular attention to species described by O.F. Müller and M. Sars. Memoirs of Museum Victoria 71: 217–236. Early descriptions of species from Norwegian waters are reviewed, with a focus on the basic requirements for re- assessing their characteristics, in particular, by clarifying the status of the original material and locating sampling sites. A large number of polychaete species from the North Atlantic were described in the early period of zoological studies in the 18th and 19th centuries.
    [Show full text]
  • Sistema Arrecifal
    PROGRAMA DE MANEJO México l Parque Nacional Sistema Arrecifal Veracruzano es uno de los parques nacionales con características marinas más reconocidas en México por su ubicación, estructura, resiliencia y biodiversidad, está integrado por las islas de Enmedio, Santiaguillo, Verde, Sacricios y Salmedina; al menos 45 arrecifes coralinos, de los que algunos presentan lagunas arrecifales con pastos marinos, así como playas y bajos. Se ubican en la porción interna de la plataforma continental en el Golfo de México y se elevan desde profundidades cercanas a los 40 metros. El Programa de Manejo es el instrumento rector de planeación y regulación que establece las actividades, acciones y lineamientos básicos para el manejo y administración del área en el corto, mediano y largo plazo. En este sentido, establece las acciones que permiten asegurar el equilibrio y la continuidad de los procesos ecológicos, salvaguardar la diversidad genética de las especies, el aprovechamiento racional de los recursos y proporcionar un campo propicio para la investigación cientíca y el estudio del ecosistema, permitiendo integrar la conservación de la riqueza natural con el bienestar social y el Parque Nacional desarrollo económico. Parque Nacional Sistema Arrecifal Veracruzano El Programa de Manejo del Parque Nacional Sistema Arrecifal Veracruzano tiene la importante misión de proteger la diversidad del Área Natural Protegida, mantener el acervo Sistema Arrecifal genético natural y fomentar el desarrollo sustentable de los recursos renovables presentes, permitiendo el disfrute de los servicios ambientales y de esparcimiento que presta a los usuarios. Es por ello que en su proceso de elaboración se realizaron reuniones de discusión y consenso con los involucrados en el manejo y uso del área considerando las Veracruzano necesidades de todos los sectores implicados, con base en los lineamientos legales establecidos y la argumentación técnica de soporte.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Appendix 1. Bodega Marine Lab Student Reports on Polychaete Biology
    Appendix 1. Bodega Marine Lab student reports on polychaete biology. Species names in reports were assigned to currently accepted names. Thus, Ackerman (1976) reported Eupolymnia crescentis, which was recorded as Eupolymnia heterobranchia in spreadsheets of current species (spreadsheets 2-5). Ackerman, Peter. 1976. The influence of substrate upon the importance of tentacular regeneration in the terebellid polychaete EUPOLYMNIA CRESCENTIS with reference to another terebellid polychaete NEOAMPHITRITE ROBUSTA in regard to its respiratory response. Student Report, Bodega Marine Lab, Library. IDS 100 ∗ Eupolymnia heterobranchia (Johnson, 1901) reported as Eupolymnia crescentis Chamberlin, 1919 changed per Lights 2007. Alex, Dan. 1972. A settling survey of Mason's Marina. Student Report, Bodega Marine Lab, Library. Zoology 157 Alexander, David. 1976. Effects of temperature and other factors on the distribution of LUMBRINERIS ZONATA in the substratum (Annelida: polychaeta). Student Report, Bodega Marine Lab, Library. IDS 100 Amrein, Yost. 1949. The holdfast fauna of MACROSYSTIS INTEGRIFOLIA. Student Report, Bodega Marine Lab, Library. Zoology 112 ∗ Platynereis bicanaliculata (Baird, 1863) reported as Platynereis agassizi Okuda & Yamada, 1954. Changed per Lights 1954 (2nd edition). ∗ Naineris dendritica (Kinberg, 1867) reported as Nanereis laevigata (Grube, 1855) (should be: Naineris laevigata). N. laevigata not in Hartman 1969 or Lights 2007. N. dendritica taken as synonymous with N. laevigata. ∗ Hydroides uncinatus Fauvel, 1927 correct per I.T.I.S. although Hartman 1969 reports Hydroides changing to Eupomatus. Lights 2007 has changed Eupomatus to Hydroides. ∗ Dorvillea moniloceras (Moore, 1909) reported as Stauronereis moniloceras (Moore, 1909). (Stauronereis to Dorvillea per Hartman 1968). ∗ Amrein reported Stylarioides flabellata, which was not recognized by Hartman 1969, Lights 2007 or the Integrated Taxonomic Information System (I.T.I.S.).
    [Show full text]
  • Annelida, Serpulidae
    Graellsia, 72(2): e053 julio-diciembre 2016 ISSN-L: 0367-5041 http://dx.doi.org/10.3989/graellsia.2016.v72.120 SERPÚLIDOS (ANNELIDA, SERPULIDAE) COLECTADOS EN LA CAMPAÑA OCEANOGRÁFICA “FAUNA II” Y CATÁLOGO ACTUALIZADO DE ESPECIES ÍBERO-BALEARES DE LA FAMILIA SERPULIDAE Jesús Alcázar* & Guillermo San Martín Departamento de Biología (Zoología), Facultad de Ciencias, Universidad Autónoma de Madrid, calle Darwin, 2, Canto Blanco, 28049 Madrid, España. *Dirección para la correspondencia: [email protected] RESUMEN Se presentan los resultados de la identificación del material de la familia Serpulidae (Polychaeta) recolectado en la campaña oceanográfica Fauna II, así como la revisión de citas de presencia íbero-balear desde el catálogo de poliquetos más reciente (Ariño, 1987). Se identificaron 16 especies pertenecientes a 10 géneros, además de la primera cita íbero-balear de una quimera bioperculada (Ten Hove & Ben-Eliahu, 2005) de la especie Hydroides norvegicus Gunnerus, 1768. En cuanto a la revisión del catálogo se mencionan 65 especies, actuali- zando el nombre de 20 de ellas y añadiendo cinco especies ausentes en el catálogo de Ariño (1987): Hydroides stoichadon Zibrowius, 1971, Laeospira corallinae (de Silva & Knight-Jones, 1962), Serpula cavernicola Fassari & Mòllica, 1991, Spirobranchus lima (Grube, 1862) y Spirorbis inornatus L’Hardy & Quièvreux, 1962. Se cita por primera vez Vermiliopsis monodiscus Zibrowius, 1968 en el Atlántico ibérico y a partir de la bibliografía consultada, se muestra la expansión en la distribución íbero-balear
    [Show full text]
  • Bispira Volutacornis (Montagu, 1804)
    Bispira volutacornis (Montagu, 1804) AphiaID: 130875 . Animalia (Reino) > Annelida (Filo) > Polychaeta (Classe) > Sedentaria (Subclasse) > Canalipalpata (Infraclasse) > Sabellida (Ordem) > Sabellidae (Familia) © Vasco Ferreira © Vasco Ferreira © Vasco Ferreira © Vasco Ferreira 1 © Vasco Ferreira © Vasco Ferreira / Jul. 10 2013 © Vasco Ferreira / Jul. 21 2013 © Vasco Ferreira / Jul. 21 2013 © Vasco Ferreira © Vasco Ferreira 2 © Vasco Ferreira Facilmente confundível com: Protula tubularia Protula tubularia . Sinónimos Amphitrite josephina Risso, 1826 Amphitrite volutacornis Montagu, 1804 Distylia punctata Quatrefages, 1866 Distylia volutacornis (Montagu, 1804) Sabella bispiralis Cuvier, 1829 Sabella volutacornis (Montagu, 1804) Referências additional source Hayward, P.J.; Ryland, J.S. (Ed.). (1990). The marine fauna of the British Isles and North-West Europe: 1. Introduction and protozoans to arthropods. Clarendon Press: Oxford, UK. ISBN 0-19-857356-1. 627 pp. [details] basis of record Bellan, Gerard. (2001). Polychaeta, in: Costello, M.J. et al. (Ed.) (2001). European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels. 50: pp. 214-231. [details] 3 additional source Muller, Y. (2004). Faune et flore du littoral du Nord, du Pas-de-Calais et de la Belgique: inventaire. [Coastal fauna and flora of the Nord, Pas-de-Calais and Belgium: inventory]. Commission Régionale de Biologie Région Nord Pas-de-Calais: France. 307 pp., available online at http://www.vliz.be/imisdocs/publications/145561.pdf [details] additional source Fauvel, P. (1927). Polychètes sédentaires. Addenda aux errantes, Arachiannélides, Myzostomaires. Faune de France Volume 16. Paul Lechevalier. Paris. 1-494., available online at http://www.faunedefrance.org/bibliotheque/docs/P.FAUVEL(FdeFr16)Polychetes-sendentaires.pdf [details] redescription Jirkov, I.A.
    [Show full text]