Potential Impacts of Bioenergy Developments on Habitats and Species Protected Under the Birds and Habitats Directives

Total Page:16

File Type:pdf, Size:1020Kb

Potential Impacts of Bioenergy Developments on Habitats and Species Protected Under the Birds and Habitats Directives Potential impacts of bioenergy developments on habitats and species protected under the Birds and Habitats Directives ANNEX REPORT – EXTENDED ANALYSIS – REVIEW AND ANALYSIS OF THE POTENTIAL DIRECT AND INDIRECT IMPACTS OF BIOENERGY DEVELOPMENTS ON HABITATS AND SPECIES PROTECTED UNDER THE BIRDS AND HABITATS DIRECTIVES September 2020 GETTING IN TOUCH WITH THE EU In person All over the European Union there are hundreds of Europe Direct information centres. You can find the address of the centre nearest you at: https://europa.eu/european-union/contact_en On the phone or by email Europe Direct is a service that answers your questions about the European Union. You can contact this service: - by Freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls), - at the following standard number: +32 22999696, or - by email via: https://europa.eu/european-union/contact_en LEGAL NOTICE This document has been prepared for the European Commission however it reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. More information on the European Union is available on the Internet (http://www.europa.eu). Luxembourg: Publications Office of the European Union, 2020 PDF 978-92-76-22084-8 10.2779/457549 KH-02-20-717-EN-N © European Union, 2020 The Commission’s reuse policy is implemented by Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. 39 – https://eur-lex.europa.eu/eli/dec/2011/833/oj) Unless otherwise noted, the reuse of this document is authorised under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence (https://creativecommons.org/licenses/by/4.0/). This means that reuse is allowed, provided appropriate credit is given and any changes are indicated. Prepared by: – Catherine Bowyer, Graham Tucker, Evelyn Underwood, Gustavo Becerra Reviewers – Ben Allen, Johan Lammerant Citation: Bowyer, C, Tucker, G, Underwood, E and Becerra, G (2020) Potential impacts of bioenergy developments on habitats and species protected under the Birds and Habitats Directives: Annex report - extended analysis - review and analysis of the potential direct and indirect impacts of bioenergy developments on habitats and species protected under the Birds and Habitats Directives. Annex to Final report under EC Contract ENV.D.3/SER/2017/0002: “Reviewing and mitigating the impacts of renewable energy developments on habitats and species protected under the Birds and Habitats Directives”, Institute for European Environmental Policy, Arcadis, BirdLife International, NIRAS, Stella Consulting, Ecosystems Ltd, Brussels. EC Contract ENV.D.3/SER/2017/0002 Project: “Reviewing and mitigating the impacts of renewable energy developments on habitats and species protected under the Birds and Habitats Directives” Potential impacts of bioenergy developments on habitats and species protected under the Birds and Habitats Directives ANNEX REPORT – EXTENDED ANALYSIS – REVIEW AND ANALYSIS OF THE POTENTIAL DIRECT AND INDIRECT IMPACTS OF BIOENERGY DEVELOPMENTS ON HABITATS AND SPECIES PROTECTED UNDER THE BIRDS AND HABITATS DIRECTIVES ANNEX REPORT – EXTENDED ANALYSIS - REVIEW AND ANALYSIS OF THE POTENTIAL DIRECT AND INDIRECT IMPACTS OF BIOENERGY DEVELOPMENTS ON HABITATS AND SPECIES PROTECTED UNDER THE BIRDS AND HABITATS DIRECTIVES 1 Introduction .............................................................................................................. 6 1.1 Scope and aims of the analysis .......................................................................................... 6 1.2 Assessment steps ............................................................................................................... 8 2 Description and quantification of current bioenergy feedstock production and projections of bioenergy feedstock production in the EU to 2030 and 2050 ..................... 10 2.1 EU Policy Context – Driving Bioenergy Demand in the EU to 2020, 2030 and 2050 ....... 10 2.2 Estimating the scale of future biomass demand and potential impacts ......................... 12 2.2.1 Land use implications associated with future bioenergy demand .......................... 13 2.2.2 Looking to 2050 ........................................................................................................ 14 2.3 Assessing existing and anticipated future demand for biomass feedstocks ................... 15 2.3.1 Bioenergy from conventional food crops ................................................................. 15 2.3.2 Agricultural residues from crops .............................................................................. 26 2.3.3 Energy crops, focusing on novel crops and non-food crops ..................................... 28 2.3.4 Biomass from primary wood production ................................................................. 30 2.4 Summary and synthesis of evidence regarding bioenergy feedstock production in the EU 45 2.4.1 Summary of trends and key messages of relevance to protection of habitats and species under the Habitats and Birds Directives ...................................................................... 45 3 Assessment of the sensitivity of EU protected habitats and species to bioenergy feedstock production ..................................................................................................... 65 3.1 Methodology and evidence sources ................................................................................ 65 3.2 Biodiversity impacts of bioenergy from conventional food crops – maize, oilseed rape, cereals, grass ............................................................................................................................ 70 3.2.1 Introduction .............................................................................................................. 70 3.2.2 Conversion of grassland, fallow or other habitats to cropland ............................... 70 3.2.3 Intensification of grassland management ............................................................... 86 3.2.4 Crop change on existing arable land and associated arable intensification ........... 89 3.2.5 Removal of residues from croplands ........................................................................ 94 3.2.6 Summary of evidence of sensitivity of EU protected habitats and species to the production of biofuel and biogas feedstocks ........................................................................... 95 3 3.3 Bioenergy from non-food crops or other feedstocks on agricultural land or other open land 97 3.3.1 Introduction .............................................................................................................. 97 3.3.2 Conversion of arable cropland to Miscanthus or Reed Canary Grass (Phalaris arundinacea) or SRC ................................................................................................................. 97 3.3.3 Conversion of grassland or other semi-natural habitat to Miscanthus or Reed Canary Grass (Phalaris arundinacea) or SRC ...................................................................................... 100 3.3.4 Afforestation of grassland or other semi-natural habitat ..................................... 102 3.3.5 Afforestation of arable cropland............................................................................ 107 3.3.6 Removal of residues from semi-natural habitats .................................................. 109 3.3.7 Summary of evidence of sensitivity of EU protected habitats and species to the production of bioenergy crops ............................................................................................... 110 3.4 Impact of removal of forest biomass on biodiversity .................................................... 112 3.4.1 Introduction ............................................................................................................ 112 3.4.2 Selective logging of extensively managed forests ................................................. 115 3.4.3 Thinning of small and intermediate sized successional trees ................................ 118 3.4.4 Removal of dead and dying trees and dead wood ................................................ 124 3.4.5 Effects of clear cutting ........................................................................................... 129 3.4.6 Stump removal and whole-tree harvesting ........................................................... 134 3.4.7 Tree planting and use of pesticides and fertilisers ................................................. 135 3.4.8 Plantation forestry with dominance of non-native or non site typical tree species 137 3.4.9 Effects of the construction of forest roads and tracks ........................................... 140 3.4.10 Summary of evidence of sensitivity of EU protected habitats and species to the use of forest biomass .................................................................................................................... 142 4 The assessment of vulnerability of EU protected habitats and species to pressures from bioenergy production ................................................................................................... 145 4.1 Methodology .................................................................................................................. 145 4.1.1 Screening of species and habitats .........................................................................
Recommended publications
  • INTRODUCTION the Genus Podarcis Wagler, 1830 Comprises 20
    ALDROVANDIA 5 2009: 217 - 227 SIZE AND SHAPE IN MEDITERRANEAN INSULAR LIZARDS: PATTERNS OF VARIATION IN PODARCIS RAFFONEI, P. SICULA AND P. WAGLERIANA (REPTILIA: SQUAMATA: LACERTIDAE) Massimo Capula, Sara Chiantini, Luca Luiselli, Anna Loy ABSTRACT Landmark based geometric morphometrics was applied to the analysis of the cephalic scales of three phylogenetically related lacertid lizards (Podarcis raffonei, P. sicula, P. wagleriana) from some islands of the central Mediterranean area in order to assess the pattern of geographic variation and the phenetic relationships among and within the three species. Twenty nine homologous landmarks were recorded on the half configuration of the cephalic scales. To compare geometric and biometric patterns of variation and to evaluate any static allometry, seven biometric measurements were also recorded on the whole body. The three species significantly differ from each other in both shape and size of the skull. The shape of the Sopraocular and the Parietal scales appears to be highly diagnostic and species-specific. The analysis of intraspecific variation in shape of the cephalic scales indicates that P. sicula is the less variable species within the studied geographic area, whereas Podarcis raffonei is the most variable species both in size and shape. Podarcis raffonei is characterized by a divergent allometric pattern, likely related to the small population size and highly fragmented geographic range of the species. KEY WORDS Geometric morphometrics, biometry, geographic variation, Podarcis, Lacertidae, Sicily INTRODUCTION number of Tyrrhenian and Adriatic islands (Henle & The genus Podarcis Wagler, 1830 comprises 20 Klaver, 1986; Corti & Lo Cascio, 2002). Podarcis sicula currently recognized species. Most of the species occur in appears to be an efficient colonizer, as it has been southern Europe, where they are the predominant reptile successfully introduced and acclimatized to several group in terms of biomass (Harris & Arnold, 1999).
    [Show full text]
  • Full Page Photo
    Эверсманния. Энтомологические исследования Eversmannia в России и соседних регионах. Вып. 9. 20.III.2007: 11–33 No. 9. 2007. Р. В. Яковлев г. Барнаул, Алтайский государственный университет (Южно-Сибирский ботанический сад), Алтайский краевой институт повышения квалификации работников образования Древоточцы (Lepidoptera: Cossidae) России R.V. Yakovlev. Carpenter moths (Lepidoptera: Cossidae) of Russia. SUMMARY. In this article the catalogue of Cossidae of Russia is presented. An annotated list including 32 species has been compiled. Two new species and two new subspecies: Catopta albonubila argunica, ssp. n. (Locus typicus: East Trasbaicalia, Kuenga, 45 km SW. Sretensk), Catopta perunovi, sp. n. (Locus typicus: Russia, Altai Rep., near Ongudai), Cossus cossus dauricus, ssp. n. (Locus typicus: Russia Transbaikalia, Chita Province, Nizhnii Tsasutchei), Phragmataecia pacifica, sp. n. (Locus typicus: Russia, Dagestan, 5 km E. Urma) are described. Besides, a new species from S. Mongolia Catopta saldaitisi, sp. n. (Locus typicus: S. Mongolia, Omnogovi Aimak, the Gobi Altai Mts., Gurvan Sayhan) is described. For each species bibliography and distribution map are given. Проводимая в последние годы работа по исследованию древоточцев (Сossidae) Евразии при- вела к описанию ряда новых таксонов с территории Палеарктики, позволила установить грани- цы распространения многих видов. В данной работе делается попытка представить полный ка- талог древоточцев России, выполненный как на основании анализа литературных данных, так и на большом фактическом материале. Исследованный материал хранится в ряде коллекций Рос- сии, Украины, Германии, Австрии. Приведен аннотированный список видов, включающий дан- ные о первичном описании, синонимии, месте хранения типового материала и распростране- нии. Для редких и малоизвестных видов и для новых таксонов приводятся полные данные эти- кеток. Для каждого вида приведена карта распространения на территории России.
    [Show full text]
  • Diet and Helminth Parasites in the Gran Canaria Giant Lizard, Gallotia Stehlini
    Rev. Esp. Herp. (2006) 20:105-117 Diet and helminth parasites in the Gran Canaria giant lizard, Gallotia stehlini MIGUEL A. CARRETERO,1 VICENTE ROCA,2 JUAN E. MARTIN,2 GUSTAVO A. LLORENTE,3 ALBERT MONTORI,3 XAVIER SANTOS 3 & JUDIT MATEOS 3 1 CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661 Vairão, Portugal 2 Departament de Zoologia, Facultat de Ciències Biològiques, Universitat de València, c/ Dr. Moliner 50, 46100 Burjassot, València, Spain (e-mail: [email protected]) 3 Departament de Biologia Animal (Vertebrats), Facultat de Biologia, Universitat de Barcelona, Avgda. Diagonal 645, 08028 Barcelona, Spain Abstract: Diet and helminth fauna were analysed in Gallotia stehlini (Schenkel, 1901), a giant lacertid lizard endemic to Gran Canaria (Canary Islands, Spain) in order to explore eventual relationships between both traits. This species is mainly herbivorous, eating a large proportion of plant matter (occurrence 97.1%) including not only seeds but also leaves and other vegetative parts. Helminth fauna included many helminth species typical of herbivorous reptiles, and intestinal helminth diversity was high. A comparison with other lacertids suggests that both traits, diet and helminth fauna, result from an adaptation to insular conditions. Canarian Gallotia, a separate lineage evolving for a long time in insularity, constitutes the most modified lacertid group in this sense. Key words: Canary Islands, diet, lizards, parasites. Resumen: Dieta y helmintos parásitos en el lagarto gigante de Gran Canaria, Gallotia stehlini. –Se analizó la dieta y la helmintofauna de Gallotia stehlini (Schenkel, 1901), un lagarto gigante endémico de Gran Canaria (Islas Canarias, España), para explorar una eventual relación entre ambos parámetros.
    [Show full text]
  • Additions, Deletions and Corrections to the Staphylinidae in the Irish Coleoptera Annotated List, with a Revised Check-List of Irish Species
    Bulletin of the Irish Biogeographical Society Number 41 (2017) ADDITIONS, DELETIONS AND CORRECTIONS TO THE STAPHYLINIDAE IN THE IRISH COLEOPTERA ANNOTATED LIST, WITH A REVISED CHECK-LIST OF IRISH SPECIES Jervis A. Good1 and Roy Anderson2 1Glinny, Riverstick, Co. Cork, Republic of Ireland. e-mail: <[email protected]> 21 Belvoirview Park, Belfast BT8 7BL, Northern Ireland. e-mail: <[email protected]> Abstract Since the 1997 Irish Coleoptera – a revised and annotated list, 59 species of Staphylinidae have been added to the Irish list, 11 species confirmed, a number have been deleted or require to be deleted, and the status of some species and names require correction. Notes are provided on the deletion, correction or status of 63 species, and a revised check-list of 710 species is provided with a generic index. Species listed, or not listed, as Irish in the Catalogue of Palaearctic Coleoptera (2nd edition), in comparison with this list, are discussed. The Irish status of Gabrius sexualis Smetana, 1954 is questioned, although it is retained on the list awaiting further investgation. Key words: Staphylinidae, check-list, Irish Coleoptera, Gabrius sexualis. Introduction The Staphylinidae (rove-beetles) comprise the largest family of beetles in Ireland (with 621 species originally recorded by Anderson, Nash and O’Connor (1997)) and in the world (with 55,440 species cited by Grebennikov and Newton (2009)). Since the publication in 1997 of Irish Coleoptera - a revised and annotated list by Anderson, Nash and O’Connor, there have been a large number of additions (59 species), confirmation of the presence of several species based on doubtful old records, a number of deletions and corrections, and significant nomenclatural and taxonomic changes to the list of Irish Staphylinidae.
    [Show full text]
  • Методика За Мониторинг На Нощноактивни Пеперуди – Lepidoptera (N)
    НАЦИОНАЛНА СИСТЕМА ЗА МОНИТОРИНГ НА БИОЛОГИЧНОТО РАЗНООБРАЗИЕ Методика за мониторинг на нощноактивни пеперуди – Lepidoptera (N) I. Обекти на мониторинга Тип Arthropoda Клас Insecta Разред Lepidoptera Семейство Arctiidae Euplagia quadripunctaria (Poda, 1761) Chelis maculosa Gerning, 1780 Семейство Lasiocampidae Lasiocampa grandis (Rogenhofer, 1891) Phyllodesma ilicifolia (Linnaeus, 1758) Семейство Sphingidae Proserpinus proserpina (Pallas, 1772) Rethera komarovi (Bremer & Grey, 1853) Dolbina elegans A. Bang-Haas, 1912 Семейство Saturniidae Perisomena caecigena (Kupido, 1825) Семейство Geometridae НАЦИОНАЛНА СИСТЕМА ЗА МОНИТОРИНГ НА БИОЛОГИЧНОТО РАЗНООБРАЗИЕ Charissa obscurata (Denis & Schiffermüller, 1775) Charissa certhiatus (Rebel & Zerny, 1931) Agriopis beschkovi Ganev, 1987 Erannis declinans (Staudinger, 1879) Nychiodes waltheri Wagner, 1919 Nychiodes dalmatina Wagner, 1909 Семейство Noctuidae Agrochola wolfschlaegeri (Boursin, 1953) Agrochola rupicapra (Staudinger, 1879) Oncocnemis michaelorum Beshkov, 1997 Acontia melanura (Tauscher, 1809) Anarta mendax (Staudinger, 1879) Anarta stigmosa (Christoph, 1887) Agrotis vestigialis (Hufnagel, 1766) Euxoa vitta (Esper, [1789]) Семейство Crambidae Catoptria majorellus (Drenowski, 1925) ________________ Dioszeghyana schmidtii Erannis ankeraria (Desertobia ankeraria) Eriogaster catax Hyles hippophaes Lignyoptera fumidaria Paracossulus thrips (Catopta thrips) Arytrura musculus Методика за мониторинг – Тип Arthropoda, Клас Insecta, Разред Lepidoptera Стр. 2 от 18 НАЦИОНАЛНА СИСТЕМА ЗА МОНИТОРИНГ
    [Show full text]
  • Inf11e 2012 Analysis Implementation Rec Clim Change by Parties
    Strasbourg, 3 October 2012 T-PVS/Inf (2012) 11 [Inf11e_2012.doc] CONVENTION ON THE CONSERVATION OF EUROPEAN WILDLIFE AND NATURAL HABITATS Standing Committee 32nd meeting Strasbourg, 27-30 November 2012 __________ AN ANALYSIS OF THE IMPLEMENTATION OF RECOMMENDATIONS MADE BY THE GROUP OF EXPERTS ON BIODIVERSITY AND CLIMATE CHANGE (2006-2011) - FINAL Document prepared by Professor Brian Huntley School of Biological and Biomedical Sciences, Durham University, United Kingdom The opinions expressed in this work are the responsibility of the author and do not necessarily reflect the official policy of the Council of Europe This document will not be distributed at the meeting. Please bring this copy. Ce document ne sera plus distribué en réunion. Prière de vous munir de cet exemplaire. T-PVS/Inf (2012) 11 - 2 – CONTENTS SUMMARY ...........................................................................................................................................4 INTRODUCTION ..................................................................................................................................5 I. REVIEW OF RECOMMENDATIONS MADE BY THE GROUP ........................................................6 Recommendation No. 122 (2006)...................................................................................................6 Recommendation No. 135 (2008)...................................................................................................6 Recommendation No. 142 (2009)...................................................................................................7
    [Show full text]
  • Solenodon Genome Reveals Convergent Evolution of Venom in Eulipotyphlan Mammals
    Solenodon genome reveals convergent evolution of venom in eulipotyphlan mammals Nicholas R. Casewella,1, Daniel Petrasb,c, Daren C. Cardd,e,f, Vivek Suranseg, Alexis M. Mychajliwh,i,j, David Richardsk,l, Ivan Koludarovm, Laura-Oana Albulescua, Julien Slagboomn, Benjamin-Florian Hempelb, Neville M. Ngumk, Rosalind J. Kennerleyo, Jorge L. Broccap, Gareth Whiteleya, Robert A. Harrisona, Fiona M. S. Boltona, Jordan Debonoq, Freek J. Vonkr, Jessica Alföldis, Jeremy Johnsons, Elinor K. Karlssons,t, Kerstin Lindblad-Tohs,u, Ian R. Mellork, Roderich D. Süssmuthb, Bryan G. Fryq, Sanjaya Kuruppuv,w, Wayne C. Hodgsonv, Jeroen Kooln, Todd A. Castoed, Ian Barnesx, Kartik Sunagarg, Eivind A. B. Undheimy,z,aa, and Samuel T. Turveybb aCentre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA Liverpool, United Kingdom; bInstitut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany; cCollaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, CA 92093; dDepartment of Biology, University of Texas at Arlington, Arlington, TX 76010; eDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; fMuseum of Comparative Zoology, Harvard University, Cambridge, MA 02138; gEvolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, 560012 Bangalore, India; hDepartment of Biology, Stanford University, Stanford, CA 94305; iDepartment of Rancho La Brea, Natural History Museum of Los Angeles County, Los Angeles,
    [Show full text]
  • Gallotia Atlantica (Peters Y Doria, 1882)
    Salvador, A. (2009). Lagarto atlántico – Gallotia atlantica. En: Enciclopedia Virtual de los Vertebrados Españoles. Salvador, A., Marco, A. (Eds.). Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/ Lagarto atlántico – Gallotia atlantica (Peters y Doria, 1882) Alfredo Salvador Museo Nacional de Ciencias Naturales (CSIC) Versión 4-09-2009 Versiones anteriores: 21-05-2007; 7-02-2008 © P. Geniez/Adesa. ENCICLOPEDIA VIRTUAL DE LOS VERTEBRADOS ESPAÑOLES Sociedad de Amigos del MNCN – MNCN - CSIC Salvador, A. (2009). Lagarto atlántico – Gallotia atlantica. En: Enciclopedia Virtual de los Vertebrados Españoles. Salvador, A., Marco, A. (Eds.). Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/ Nomenclatura Descrita como Lacerta atlantica Peters & Doria, 1882. La localidad tipo ha sido restringida a Arrecife (Lanzarote) (Bischoff, 1985a). Origen y evolución Los lagartos del género Gallotia Boulenger, 1916, endémicos de las islas Canarias, forman junto con el género Psammodromus un grupo primitivo de lacértidos que se asignan a la subfamilia Gallotiinae (Arnold et al., 2007). El ancestro de los lagartos del género Gallotia colonizó en primer lugar las islas orientales, de origen más antiguo, y desde allí fue colonizando las islas occidentales, de origen más reciente (Thorpe et al., 1993; González et al., 1996; Rando et al., 1997; Maca-Meyer et al., 2003). Gallotia atlantica habría sido la primera especie en diferenciarse, hace unos 8,8 – 12 millones de años. La diferenciación entre las poblaciones de Fuerteventura y Lanzarote habría tenido lugar hace unos 1,8 a 2,5 millones de años (Maca-Meyer et al., 2003). La estructura filogeográfica de G. atlantica en la isla de Lanzarote coincide con la formación a mediados del Pleistoceno de zonas bajas que unieron islas que hasta entonces estaban separadas.
    [Show full text]
  • Evolutionary History of Podarcis Tiliguerta on Corsica and Sardinia V
    Rodríguez et al. BMC Evolutionary Biology (2017) 17:27 DOI 10.1186/s12862-016-0860-4 RESEARCH ARTICLE Open Access Evolutionary history of Podarcis tiliguerta on Corsica and Sardinia V. Rodríguez1†, J. M. Buades1†, R. P. Brown2, B. Terrasa1, V. Pérez-Mellado3, C. Corti4, M. Delaugerre5, J. A. Castro1, A. Picornell1 and M. M. Ramon1* Abstract Background: Podarcis tiliguerta is a wall lizard endemic to the Mediterranean islands of Corsica and Sardinia. Previous findings of high mtDNA and morphological diversity have led to the suggestion that it may represent a species complex. Here, we analysed mitochondrial and nuclear markers (mtDNA, 3110 bp; 6 nDNA loci, 3961 bp) in P. tiliguerta sampled from thirty-two localities across Corsica and Sardinia. Results: We find much greater intraspecific genetic divergence than between sister species of other Mediterranean island Podarcis, i.e., between P. lilfordi and P. pityusensis. We detected three mtDNA clusters in Corsica (North, South-East and South-West) and either two or three in Sardinia (North vs. South) depending on the clustering method. Only one or two nDNA groups were identified within each main island (again, depending on the method). A Bayesian time- calibrated multispecies coalescent tree was obtained from mtDNA and provided statistical support for a Miocene origin of the species (13.87 Ma, 95% HPD: 18.30–10.77 Ma). The posterior mean divergence time for the Corsican and Sardinian lineages was 12.75 Ma ago (95% HPD: 16.94–9.04 Ma). Conclusion: The results support the evolutionary distinctiveness of Corsican and Sardinian populations and also indicate a lack of post-divergence migration despite periods of contact being possible.
    [Show full text]
  • Catalogue of Lepidoptera of Omsk Oblast (Russia).Macrolepidoptera
    Acta Biologica Sibirica 6: 139–226 (2020) doi: 10.3897/abs.6.e53005 https://abs.pensoft.net RESEARCH ARTICLE Catalogue of Lepidoptera of Omsk Oblast (Russia). Macrolepidoptera. Families: Hepialidae, Brachodidae, Cossidae, Sesiidae, Limacodidae, Zygaenidae, Thyrididae, Drepanidae, Uraniidae, Geometridae, Lasiocampidae, Lemoniidae, Endromididae, Saturniidae, Sphingidae, Notodontidae, Lymantriidae, Arctiidae, Syntomidae, Erebidae, Nolidae, Noctuidae, Hesperiidae, Papilionidae, Pieridae, Lycaenidae, Nymphalidae, Satyridae Svyatoslav A. Knyazev1, 2 1 Russian Entomological Society, 14-16 Irtyshskaya Naberezhnaya St, Omsk 644042 Russia 2 Altai State University, 61 Lenina St, Barnaul, 656049 Russia Corresponding author: Svyatoslav A. Knyazev ([email protected]) Academic editor: A. Matsyura | Received 07.04.2020 | Accepted 16.05.2020 | Published 11 September 2020 http://zoobank.org/8F5E34F6-0998-44F4-9CDA-06C53FAAEC12 Citation: Knyazev SA (2020) Catalogue of Lepidoptera of Omsk Oblast (Russia). Macrolepidoptera. Families: Hepialidae, Brachodidae, Cossidae, Sesiidae, Limacodidae, Zygaenidae, Thyrididae, Drepanidae, Uraniidae, Geometridae, Lasiocampidae, Lemoniidae, Endromididae, Saturniidae, Sphingidae, Notodontidae, Lymantriidae, Arctiidae, Syntomidae, Erebidae, Nolidae, Noctuidae, Hesperiidae, Papilionidae, Pieridae, Lycaenidae, Nymphalidae, Satyridae. Acta Biologica Sibirica 6: 139–226. https://doi.org/10.3897/abs.6.e53005 Abstract A total of 972 species of Macrolepidoptera belonging to 28 families are reported for the territory of Omsk Oblast.
    [Show full text]
  • New Reptile Hosts for Helminth Parasites in a Mediterranean Region
    Journal of Herpetology, Vol. 54, No. 2, 268–271, 2020 Copyright 2020 Society for the Study of Amphibians and Reptiles New Reptile Hosts for Helminth Parasites in a Mediterranean Region 1 2 3 4,5 VICENTE ROCA, JOSABEL BELLIURE, XAVIER SANTOS, AND JULI G. PAUSAS 1Departament de Zoologia, Facultat de Cie`ncies Biolo`giques, Universitat de Vale`ncia, Dr. Moliner 50, 46100 Burjassot, Valencia, Espan˜a 2Departamento de Ciencias de la Vida, Facultad de Biologı´a, Ciencias Ambientales y Quı´mica, Universidad de Alcala´, 28871 Alcala´ de Henares, Madrid, Espan˜a 3CIBIO/In BIO, Centro de Investigac¸ a˜o em Biodiversidade e Recursos Gene´ticos da Universidade do Porto, Instituto de Cieˆncias Agra´rias de Vaira˜o, R. Padre Armando Quintas, 4485-661 Vaira˜o, Portugal 4Centre d’Investigacio´ sobre la Desertificacio´ (CIDE), Carretera Moncada-Na´quera km 4.5, 46113 Moncada, Valencia, Espan˜a ABSTRACT.—Parasitic helminths are an almost universal feature of vertebrate animals, but reptiles are among the hosts with the most depauperate parasite communities. Biological traits of reptiles are considered to be among the key reasons that explain low helminth diversity; therefore, insights from a wide range of reptile hosts are helpful to understanding the ecology of parasitic helminths. We analyzed helminth fauna in two lacertids, Psammodromus algirus and Psammodromus edwarsianus (Squamata: Lacertidae), and one skink, Chalcides bedriagai (Squamata: Scincidae), three common species of Mediterranean woodlands that differ in their ecological conditions and in lifestyles that are linked to habitat use. We examined a total of 102 P. algirus,27P. edwarsianus, and 23 C. bedriagai from mountain landscapes in eastern Iberia.
    [Show full text]
  • The Wall Lizards of the Balkan Peninsula: Tackling Questions at the Interface of Phylogenomics and Population Genomics
    Molecular Phylogenetics and Evolution 159 (2021) 107121 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev The wall lizards of the Balkan peninsula: Tackling questions at the interface of phylogenomics and population genomics Nikolaos Psonis a,b,*, Aglaia Antoniou c, Emmanouela Karameta a,b, Diego Darriba d, Alexandros Stamatakis e,f, Petros Lymberakis a, Nikos Poulakakis a,b a Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Knosos Avenue, Irakleio 71409, Greece b Department of Biology, School of Sciences and Engineering, University of Crete, Vassilika Vouton, Irakleio 70013, Greece c Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Gournes Pediados, Irakleio, P.O. Box 2214, 71003 Crete, Greece d Universidade da Coruna,~ CITIC, Computer Architecture Group, Campus de Elvina,~ 15071 A Coruna,~ Spain e The Exelixis Lab, Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany f Karlsruhe Institute of Technology, Institute for Theoretical Informatics, Postfach 6980, 76128 Karlsruhe, Germany ARTICLE INFO ABSTRACT Keywords: Wall lizards of the genus Podarcis (Sauria, Lacertidae) are the predominant reptile group in southern Europe, Admixture including 24 recognized species. Mitochondrial DNA data have shown that, with the exception of P. muralis, the Biodiversity Podarcis species distributed in the Balkan peninsula form a species group that is further sub-divided into two Cryptic species subgroups: the one of “P. tauricus” consisting of P. tauricus, P. milensis, P. gaigeae, and P. melisellensis, and the ddRADseq other of “P. erhardii” comprising P. erhardii, P. levendis, P.
    [Show full text]