A Safety-First Approach to Developing and Marketing Driver Assistance Technology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Smart Transportation in China and the United States Yuming Ge, Xiaoman Liu, Libo Tang, and Darrell M
DECEMBER 2017 Smart transportation in China and the United States Yuming Ge, Xiaoman Liu, Libo Tang, and Darrell M. West INTRODUCTION It is no surprise that countries are suffering traffic problems as their rural and suburban populations move to cities and population density increases around urban areas. As cities grow in density, we have seen vehicular congestion, poor urban planning, and insufficient highway designs. The unfortunate downsides of these trends are the loss of lives due to accidents, time and money spent commuting, and lost productivity and economic growth for the system as a whole. All these developments are problematic because transportation accounts for six to 12 percent of Gross Domestic Product in many developed countries.1 The cost of traffic congestion alone is estimated to be greater than $200 billion in four Western countries: France, Germany, the United Kingdom, and the United States.2 But the good news is that recent advancements in computing, network speed, and communications sensors make it possible to improve transportation infrastructure, traffic management, and vehicular operations. Through better infrastructure, ubiquitous connectivity, 5G (fifth generation) networks, Yuming Ge, Xiaoman Liu, and dynamic traffic signals, remote sensors, vehicle-sharing services, and autonomous vehicles, it is Libo Tang are researchers at the possible to increase automotive safety, efficiency, and operations. Connected vehicles are moving China Academy beyond crash notification and lane changing guidance to offer a variety of services related to main- of Information and Communication tenance, operations, and entertainment. 5G networks will enable a shift in cellular technology from Technology (CAICT). supporting fixed services to communication and data exchange that is machine-based. -
Tesla Autopilot : Semi Autonomous Driving, an Uptick for Future Autonomy
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 Volume: 03 Issue: 09 | Sep-2016 www.irjet.net p-ISSN: 2395-0072 Tesla Autopilot : Semi Autonomous Driving, an Uptick for Future Autonomy Shantanu Ingle1, Madhuri Phute2 1Department of E&TC, Pune Institute of Computer Technology, Pune, Maharashtra, India 2 Department of E&TC, Pune Institute of Computer Technology, Pune, Maharashtra, India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - Manual driving has certainly changed the way response to traffic conditions. Once the driver arrives at the we travel and explore different parts of the globe, with total destination, Model S or Model X scans for a parking space human control and with human intuitions and previous and parallel parks on the driver's command[2]. In the new driving experiences. But manual control doesn’t ensure safety Autopilot, the instrument cluster’s new driver focused and zero fatalities in every possible driving condition. design shows the real-time information used by the car to Autonomous driving is the answer to that problem. However, intelligently determine the vehicle’s behavior in that artificial intelligence hasn't yet touched every aspect of moment relative to its surroundings[3]. Along with the technology. In this paper we present a brief overview about autopilot feature, the driving behavior of each Tesla car, how Tesla Motor’s semi autonomous driving technology called while navigating through different road conditions, is shared Tesla Autopilot is changing the way we navigate and transport to its central server. Based on machine learning and Tesla by incorporating state of the art current artificial intelligence design engineer recommendations, a new feature update is and hardware technology, and enhancing the next generation developed and launched to every other Tesla car on planet. -
Autonomous Vehicles
10/27/2017 Looming on the Horizon: Autonomous Vehicles Jim Hedlund Highway Safety North MN Toward Zero Deaths Conference October 26, 2017 St. Paul, MN In the next 25 minutes • AV 101 . What’s an autonomous vehicle (AV)? . What’s on the road now? . What’s coming and when? . What does the public think about AVs? . What are current state laws on AVs? • Traffic safety issues for states . AV testing . AV operations . What should states do . What should national organizations do 2 1 10/27/2017 Report released Feb. 2, 2017 3 Autonomous = self-driving, right? So what’s the challenge? • When all vehicles are autonomous: . The passenger economy: transportation as a service . No crashes (at least none due to driver error – about 94% currently) • And it’s coming soon . 26 states and DC with AV legislation or executive orders (and AVs probably can operate in most states without law changes) 4 2 10/27/2017 NCSL October 2017 www.ghsa.org @GHSAHQ 5 But … • It’s far more complicated than that 6 3 10/27/2017 What’s an AV? • Level 0: no automation, driver in complete control • Level 1: driver assistance . Cruise control or lane position, driver monitors at all times • Level 2: occasional self-driving . Control both speed and lane position in limited situations, like Interstates; driver monitors at all times ************** • Level 3: limited self-driving in some situations, like Interstates . Vehicle in full control, informs when driver must take control • Level 4: full self-driving under certain conditions . Vehicle in full control for entire trip, such as urban ride-sharing • Level 5: full self-driving at all times 7 What’s on the road now? • Level 1 available for many years . -
3.17.2020 Request for Feedback on AV Legislation Staff Draft Sections
TO: Majority and Minority Staff of Senate Commerce, Science, and Transportation Committee and House Energy and Commerce Committee FROM: Advocates for Highway and Auto Safety, Consumer Federation of America, KidsAndCars.org, and Trauma Foundation DATE: March 17, 2020 RE: Request for Input on Draft Autonomous Vehicle Legislative Language Introduction Thank you for the opportunity to provide feedback to the final seven sections of potential autonomous vehicle (AV) legislation. Please note that in the attached redlined draft legislative language, there may be additional recommendations not necessarily included in this memo. Similarly, in this memo we detail concerns which may not be directly attached to the redlined legislative language as well as provide justifications for changes we did redline. As you have announced that you have completed the distribution of draft legislative sections, we would like to reiterate that stakeholder feedback should be shared publicly to provide transparency and the opportunity for collaboration as well as the identification of shared policy priorities in order to forge a path forward on the Nation’s first AV law. Because this law will have long-lasting and wide-reaching impacts on safety for all road users, infrastructure, mobility, accessibility, the environment and land use, public transit, first responders and law enforcement, it must be done with robust discussion, debate and deliberation. We would like to begin by reiterating our safety priorities and policy positions that are also included in more detail in our previous memos. They remain relevant and vital in developing any legislation on AVs. In sum, they are: • Our Nation’s first law on AVs must ensure the safe development and deployment of all AVs, including partially automated vehicles whether for sale or use as a pay-for mobility option. -
In the Court of Chancery of the State of Delaware
EFiled: Sep 06 2016 07:12PM EDT Transaction ID 59520160 Case No. 12723- IN THE COURT OF CHANCERY OF THE STATE OF DELAWARE ELLEN PRASINOS, derivatively on behalf ) TESLA MOTORS, INC., ) ) Plaintiff, ) ) vs. ) ) C.A. No. ELON MUSK, BRAD W. BUSS, ROBYN ) M. DENHOLM, IRA EHRENPREIS, ) ANTONIO J. GRACIAS, STEPHEN T. ) JURVETSON, KIMBAL MUSK, ) LYNDON RIVE, PETER RIVE, JOHN H. ) N. FISHER, JEFFREY B. STRAUBEL, D ) SUBSIDIARY, INC., AND SOLARCITY ) CORPORATION, ) ) Defendants, ) ) -and- ) ) TESLA MOTORS, INC., a Delaware ) Corporation, ) ) Nominal Defendant ) VERIFIED STOCKHOLDER DERIVATIVE COMPLAINT Plaintiff Ellen Prasinos (“Plaintiff”), by and through her undersigned counsel, assert this action derivatively on behalf of Tesla Motors, Inc. (“Telsa” or the “Company”) against defendants Elon Musk, Brad W. Buss, Robyn M. Denholm, Ira Ehrenpreis, Antonio J. Gracias, Stephen T. Jurvetson and Kimbal Musk (collectively, the “Board” or the “Director Defendants”), along with Lyndon Rive, Peter Rive, John H. N. Fisher, J.B. Straubel, D Subsidiary, Inc., and 1 ME1 23271632v.1 SolarCity Corporation (“SolarCity”). Plaintiff alleges, upon information and belief based upon, inter alia , the investigation made by her attorneys, except as to those allegations that pertain to the Plaintiff herself, which are alleged upon knowledge, as follows: SUMMARY OF THE ACTION 1. Elon Musk (“Musk”), a smart and charismatic businessman, wants to save the world by “making life multi-planetary”, and “expedit[ing] the move from a mine-and-burn hydrocarbon economy towards a solar electric economy.” While Musk’s goal to save the world may be admirable, he uses unethical and illegal tactics to achieve that goal, especially when his personal financial interests and legacy are at stake. -
Assessing the Sustainability Implications of Autonomous Vehicles: Recommendations for Research Community Practice
sustainability Review Assessing the Sustainability Implications of Autonomous Vehicles: Recommendations for Research Community Practice Eric Williams 1,*, Vivekananda Das 1 and Andrew Fisher 2 1 Golisano Institute for Sustainability, Rochester Institute of Technology, Rochester, NY 14623, USA; [email protected] 2 Environmental Resources Management, Fairport, NY 14450, USA; [email protected] * Correspondence: [email protected] Received: 3 February 2020; Accepted: 25 February 2020; Published: 3 March 2020 Abstract: Autonomous vehicles (AV) are poised to induce disruptive changes, with significant implications for the economy, the environment, and society. This article reviews prior research on AVs and society, and articulates future needs. Research to assess future societal change induced by AVs has grown dramatically in recent years. The critical challenge in assessing the societal implications of AVs is forecasting how consumers and businesses will use them. Researchers are predicting the future use of AVs by consumers through stated preference surveys, finding analogs in current behaviors, utility optimization models, and/or staging empirical “AV-equivalent” experiments. While progress is being made, it is important to recognize that potential behavioral change induced by AVs is massive in scope and that forecasts are difficult to validate. For example, AVs could result in many consumers abandoning private vehicles for ride-share services, vastly increased travel by minors, the elderly and other groups unable to drive, and/or increased recreation and commute miles driven due to increased utility of in-vehicle time. We argue that significantly increased efforts are needed from the AVs and society research community to ensure 1) the important behavioral changes are analyzed and 2) models are explicitly evaluated to characterize and reduce uncertainty. -
A Survey on Theories and Applications for Self-Driving Cars Based on Deep Learning Methods
applied sciences Review A Survey on Theories and Applications for Self-Driving Cars Based on Deep Learning Methods Jianjun Ni 1,2,* , Yinan Chen 1, Yan Chen 1, Jinxiu Zhu 1,2 , Deena Ali 1 and Weidong Cao 1,2 1 College of IOT Engineering, Hohai University, Changzhou 213022, China; [email protected] (Y.C.); [email protected] (Y.C.); [email protected] (J.Z.); [email protected] (D.A.); [email protected] (W.C.) 2 Jiangsu Universities and Colleges Key Laboratory of Special Robot Technology, Hohai University, Changzhou 213022, China * Correspondence: [email protected]; Tel.: +86-519-8519-1711 Received: 23 March 2020; Accepted: 11 April 2020; Published: 16 April 2020 Abstract: Self-driving cars are a hot research topic in science and technology, which has a great influence on social and economic development. Deep learning is one of the current key areas in the field of artificial intelligence research. It has been widely applied in image processing, natural language understanding, and so on. In recent years, more and more deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. This paper presents a review of recent research on theories and applications of deep learning for self-driving cars. This survey provides a detailed explanation of the developments of self-driving cars and summarizes the applications of deep learning methods in the field of self-driving cars. Then the main problems in self-driving cars and their solutions based on deep learning methods are analyzed, such as obstacle detection, scene recognition, lane detection, navigation and path planning. -
Connected and Autonomous Vehicles: Implications for Policy and Practice in City and Transportation Planning
Connected and Autonomous Vehicles: Implications for Policy and Practice in City and Transportation Planning by Charles Ng supervised by Laura Taylor A Major Paper submitted to the Faculty of Environmental Studies in partial fulfillment of the requirements for the degree of Master in Environmental Studies York University, Toronto, Ontario, Canada December 8, 2017 Acknowledgments This paper could not have been completed without the help and support of the caring individuals that I am thankful to have in my life. I would like to thank and acknowledge my mother, Maria, and my sister, Ka Lang for providing me with love and support; my advisor, Peter Timmerman, and my supervisor, Laura Taylor, for providing me with academic and non-academic support; and my invaluable friends that I have made in the MES program for their encouragement, support and relief. i Foreword My Area of Concentration for my Plan of Study is sustainable transportation planning for growth management. Connected and Autonomous Vehicles will change the urban landscape, the roles of governments and present new challenges to planners. This paper has allowed me to view transportation planning through the lens of emerging technologies and how this affects cities in the short and long term. There are many sustainability and growth management implications with Connected and Autonomous Vehicles. For example, automated vehicles can foster decentralization because it easily enables travel however, if utilized correctly, automated vehicles can also compliment local transit systems to support intensification. This is especially important in Ontario (Canada’s first province to allow testing of autonomous vehicles on public roads) as it directly relates to the goals and policies related to sprawl and sustainability as outlined in Ontario’s four provincial land use plans: The Growth Plan for the Greater Golden Horseshoe (GGH), The Greenbelt Plan, The Oak Ridges Moraine Conservation Plan and the Niagara Escarpment Plan. -
Navigating Automotive LIDAR Technology
Navigating Automotive LIDAR Technology Mial Warren VP of Technology October 22, 2019 Outline • Introduction to ADAS and LIDAR for automotive use • Brief history of LIDAR for autonomous driving • Why LIDAR? • LIDAR requirements for (personal) automotive use • LIDAR technologies • VCSEL arrays for LIDAR applications • Conclusions What is the big deal? • “The automotive industry is the largest industry in the world” (~$1 Trillion) • “The automotive industry is > 100 years old, the supply chains are very mature” • “The advent of autonomy has opened the automotive supply chain to new players” (electronics, optoelectronics, high performance computing, artificial intelligence) (Quotations from 2015 by LIDAR program manager at a major European Tier 1 supplier.) LIDAR System Revenue The Automotive Supply Chain OEMs (car companies) Tier 1 Suppliers (Subsystems) Tier 2 Suppliers (components) 3 ADAS (Advanced Driver Assistance Systems) Levels SAE and NHTSA • Level 0 No automation – manual control by the driver • Level 1 One automatic control (for example: acceleration & braking) • Level 2 Automated steering and acceleration capabilities (driver is still in control) • Level 3 Environment detection – capable of automatic operation (driver expected to intervene) • Level 4 No human interaction required – still capable of manual override by driver • Level 5 Completely autonomous – no driver required Level 3 and up need the full range of sensors. The adoption of advanced sensors (incl LIDAR) will not wait for Level 5 or full autonomy! The Automotive LIDAR Market Image courtesy of Autonomous Stuff Emerging US $6 Billion LIDAR Market by 2024 (Source: Yole) ~70% automotive Note: Current market is >$300M for software test vehicles only! Sensor Fusion Approach to ADAS and Autonomous Vehicles Much of the ADAS development is driven by NHTSA regulation LIDAR Vision & Radar Radar Radar Vision Vision Vision & Radar Each technology has weaknesses and the combination of sensors provides high confidence. -
A Strategic Audit of Tesla, Inc. Cody Mccain University of Nebraska - Lincoln
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Honors Theses, University of Nebraska-Lincoln Honors Program Spring 4-30-2019 A Strategic Audit of Tesla, Inc. Cody McCain University of Nebraska - Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/honorstheses Part of the Accounting Commons, and the Agribusiness Commons McCain, Cody, "A Strategic Audit of Tesla, Inc." (2019). Honors Theses, University of Nebraska-Lincoln. 132. https://digitalcommons.unl.edu/honorstheses/132 This Thesis is brought to you for free and open access by the Honors Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Honors Theses, University of Nebraska-Lincoln by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. A Strategic Audit of Tesla, Inc. An Undergraduate Honors Thesis Submitted in Partial Fulfillment of University Honors Program Requirements University of Nebraska – Lincoln by Cody McCain, BS Accounting and Agribusiness College of Business April 29, 2019 Faculty Mentors: Samuel Nelson, PhD, Center of Entrepreneurship 1 Abstract After Tesla completed its first every back to back profitable quarters at the end of 2018, sales started to decline in the first quarter of 2019 and many question if the company would every be profitable. Through a strategic audit of Tesla and the electric vehicle industry several key factors have been identified to help improve Tesla’s profitability. Analysis tools used to analyze the company and the industry include Porter’s Five Forces, SWOT Analysis, and PEST Analysis. At the conclusion of the audit there are three recommendations given to help improve Tesla’s strategy. -
LIDAR – a New (Self-Driving) Vehicle for Introducing Optics to Broader Engineering and Non-Engineering Audiences Corneliu Rablau a Akettering University, Dept
LIDAR – A new (self-driving) vehicle for introducing optics to broader engineering and non-engineering audiences Corneliu Rablau a aKettering University, Dept. of Physics, 1700 University Ave., Flint, MI USA 48504 ABSTRACT Since Stanley, the self-driven Stanford car equipped with five SICK LIDAR sensors won the 2005 DARPA Challenge, the race to developing and deploying fully autonomous, self-driving vehicles has come to a full swing. By now, it has engulfed all major automotive companies and suppliers, major trucking and taxi companies, not to mention companies like Google (Waymo), Apple and Tesla. With the notable exception of the Tesla self-driving cars, a LIDAR (Light, Detection and Ranging) unit is a key component of the suit of sensors that allow autonomous vehicles to see and navigate the world. The market space for lidar units is by now downright crowded, with a number of companies and their respective technologies jockeying for long-run leading positions in the field. Major lidar technologies for autonomous driving include mechanical scanning (spinning) lidar, MEMS micro-mirror lidar, optical-phased array lidar, flash lidar, frequency- modulated continuous-wave (FMCW) lidar and others. A major technical specification of any lidar is the operating wavelength. Many existing systems use 905 nm diode lasers, a wavelength compatible with CMOS-technology detectors. But other wavelengths (like 850 nm, 940 nm and 1550 nm) are also investigated and, in the long run, the telecom near- infrared range (1550 nm) is expected to experience significant growth because it offers a larger detecting distance range (200-300 meters) within eye safety laser power limits while also offering potential better performance in bad weather conditions. -
Autonomous Vehicle Technology: a Guide for Policymakers
Autonomous Vehicle Technology A Guide for Policymakers James M. Anderson, Nidhi Kalra, Karlyn D. Stanley, Paul Sorensen, Constantine Samaras, Oluwatobi A. Oluwatola C O R P O R A T I O N For more information on this publication, visit www.rand.org/t/rr443-2 This revised edition incorporates minor editorial changes. Library of Congress Cataloging-in-Publication Data is available for this publication. ISBN: 978-0-8330-8398-2 Published by the RAND Corporation, Santa Monica, Calif. © Copyright 2016 RAND Corporation R® is a registered trademark. Cover image: Advertisement from 1957 for “America’s Independent Electric Light and Power Companies” (art by H. Miller). Text with original: “ELECTRICITY MAY BE THE DRIVER. One day your car may speed along an electric super-highway, its speed and steering automatically controlled by electronic devices embedded in the road. Highways will be made safe—by electricity! No traffic jams…no collisions…no driver fatigue.” Limited Print and Electronic Distribution Rights This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal use only, as long as it is unaltered and complete. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial use. For information on reprint and linking permissions, please visit www.rand.org/pubs/permissions.html. The RAND Corporation is a research organization that develops solutions to public policy challenges to help make communities throughout the world safer and more secure, healthier and more prosperous.