Diptera: Chironomidae) in the High Se-78 Concentrations and High Ph of Fountain Creek Watershed, Colorado, USA

Total Page:16

File Type:pdf, Size:1020Kb

Diptera: Chironomidae) in the High Se-78 Concentrations and High Ph of Fountain Creek Watershed, Colorado, USA Western North American Naturalist Volume 78 Number 1 Article 5 4-17-2018 Occurrence of chironomid species (Diptera: Chironomidae) in the high Se-78 concentrations and high pH of Fountain Creek Watershed, Colorado, USA Del Wayne R. Nimmo Department of Biology, Colorado State University–Pueblo, Pueblo, CO, [email protected] Scott J. Herrmann Department of Biology, Colorado State University–Pueblo, Pueblo, CO, [email protected] James E. Sublette Igor V. Melnykov Nazarbayev University, Astana, Kazakhstan; Department of Mathematics, Colorado State University–Pueblo, [email protected] Lisa K. Helland Department of Biology, Colorado State University–Pueblo, Pueblo, CO, [email protected] FSeeollow next this page and for additional additional works authors at: https:/ /scholarsarchive.byu.edu/wnan Recommended Citation Nimmo, Del Wayne R.; Herrmann, Scott J.; Sublette, James E.; Melnykov, Igor V.; Helland, Lisa K.; Romine, John A.; Carsella, James S.; Herrmann-Hoesing, Lynn M.; Turner, Jason A.; and Vanden Heuvel, Brian D. (2018) "Occurrence of chironomid species (Diptera: Chironomidae) in the high Se-78 concentrations and high pH of Fountain Creek Watershed, Colorado, USA," Western North American Naturalist: Vol. 78 : No. 1 , Article 5. Available at: https://scholarsarchive.byu.edu/wnan/vol78/iss1/5 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Occurrence of chironomid species (Diptera: Chironomidae) in the high Se-78 concentrations and high pH of Fountain Creek Watershed, Colorado, USA Authors Del Wayne R. Nimmo, Scott J. Herrmann, James E. Sublette, Igor V. Melnykov, Lisa K. Helland, John A. Romine, James S. Carsella, Lynn M. Herrmann-Hoesing, Jason A. Turner, and Brian D. Vanden Heuvel This article is available in Western North American Naturalist: https://scholarsarchive.byu.edu/wnan/vol78/iss1/5 Western North American Naturalist 78(1), © 2018, pp. 39–64 Occurrence of chironomid species (Diptera: Chironomidae) in the high Se-78 concentrations and high pH of Fountain Creek Watershed, Colorado, USA DEL WAYNE R. N IMMO 1,* , S COTT J. H ERRMANN 1, J AMES E. S UBLETTE †, IGOR V. M ELNYKOV 2, L ISA K. H ELLAND 1, J OHN A. R OMINE 1, J AMES S. C ARSELLA 1, LYNN M. H ERRMANN -H OESING 3, J ASON A. T URNER †, AND BRIAN D. V ANDEN HEUVEL 1 1Department of Biology, Colorado State University–Pueblo, Pueblo, CO 81001 2Nazarbayev University, Astana, 010000, Kazakhstan; Department of Mathematics, Colorado State University–Pueblo, Pueblo, CO 81001 3Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164 ABSTRACT .— High selenium (Se) in watersheds can cause detrimental effects to many vertebrate species, but less is known regarding its effects on invertebrates comprising the basis of the food chain. This study addressed the response of a natural community of chironomid (midge) species to Se in 2 high-gradient streams that join to form a sandy-bottom front-range stream known to contain increasing downstream concentrations of Se. We identified a total of 151 species of adult male midges ( n = 714) collected in 2007 and 2008 from 14 sites in the Fountain Creek Watershed, Colorado, USA. In the initial analysis, the midge community was assessed for possible effects of Se and pH by using binary sets of 25 variables by means of canonical correspondence analysis (CCA) procedures. Further computations revealed significant relationships between the presence of midges and spring total Se ( P = 0.0006, unfiltered water), dissolved Se ( P = 0.0006, filtered water), and pore water Se ( P = 0.0034, interstitial water in coarse and fine gravels) in the spring season. In the fall, the community showed a significant response to total Se ( P = 0.0500), a strong association with dissolved Se (P = 0.0044), and a weaker yet significant association with pore water Se ( P = 0.1266). We have not found reports indicat - ing either positive or negative responses of midges to increasing Se in field studies. Although there were no significant associations of midges with lower pH during the spring in any fraction of the water ( P = 0.7367, 0.7367, and 0.7469, respectively), there were significant associations to higher pH during the fall in all fractions ( P ≤ 0.0100). Mean concentra - tions of dissolved Se in lower-elevation sites ranged from 2.05 to 9.69 mg/L in the spring and from 2.67 to 18.59 mg/L in the fall; mean pH ranged from 7.5 to 7.8 in the spring and from 8.0 to 8.1 in the fall (2007). The association of silt/clay particles with the occurrence of midges was not significant in any of the waters in the spring or fall. Since some chironomid midges have a tendency to be found in areas exhibiting increasing Se in a downstream gradient in Fountain Creek, would they be found in similar water quality profiles in other watersheds? This possibility warrants serious study in other streams, particularly in the western United States where Se has been entering aquatic food chains of fish, birds, and mammals. RESUMEN .—El alto contenido de selenio en las cuencas hidrográficas puede causar efectos perjudiciales en muchas especies de vertebrados. Sin embargo, se sabe menos sobre los invertebrados que constituyen la base de la cadena alimenticia. Este estudio evaluó la respuesta de una comunidad natural de especies de quironómidos en dos corrientes de pendiente elevada, que se unen para formar una corriente frontal de fondo arenoso, conocida por tener concentra - ciones altas de selenio. Un total de 151 especies de mosquitos adultos machos ( n = 714) colectados en 14 sitios entre 2007–2008, fueron identificados a nivel de la especie, en la cuenca Fountain Creek en Colorado, Estados Unidos. En un análisis inicial, se evaluó la comunidad de insectos para detectar posibles efectos utilizando conjuntos binarios de 25 variables mediante el Análisis de Correspondencia Canónica (CCA, por sus siglas en inglés). Cálculos posteriores reve - laron una relación significativa entre la presencia de mosquitos y el selenio total, selenio disuelto y selenio en agua capi - lar, durante la primavera ( P = 0.0006, P = 0.0006 y P = 0.0034 respectivamente). La comunidad mostró una respuesta significativa a la fracción total de selenio en el otoño ( P = 0.0500), una fuerte relación con el selenio disuelto ( P = 0.0044) y una relación débil, pero significativa, con el selenio en agua capilar ( P = 0.1266). En los estudios de campo, no encontramos evidencia que indique respuestas positivas o negativas de los mosquitos al aumento de selenio. Aunque, no se encontró relación significativa con valores bajos de pH en la primavera, en ninguna fracción de agua ( P = 0.7367, 0.7367 y 0.7469, respectivamente), sí se encontraron relaciones significativas con valores altos de pH, durante el otoño en todas *Corresponding author: [email protected] †Deceased DRN orcid.org/0000-0002-3606-4247 SJH orcid.org/0000-0001-8054-7097 IVM orcid.org/0000-0003-1502-9706 BDV orcid.org/0000-0002-0481-439X 39 40 WESTERN NORTH AMERICAN NATURALIST (2018), VOL. 78 NO. 1, PAGES 39–64 las fracciones de agua (P ≤ 0.0100). Las concentraciones promedio de selenio disueltas en sitios de menor elevación oscilaron entre 2.05 y 9.69 mg/L en la primavera del 2007 y entre 2.67 a 18.59 mg/L en el otoño; el pH promedio varió de 7.5 a 7.8 en la primavera y de 8.0 a 8.1 en el otoño. La relación entre las partículas de limo/arcilla y la presencia de mosquitos no fue significativa en ninguna de las fracciones de agua durante la primavera o el otoño. Si los mosquitos quironómidos tienden a encontrarse en áreas de selenio incrementando con el gradiente de elevación en Fountain Creek, ¿podríamos encontrarlos en otras cuencas hidrográficas con perfiles de calidad de agua similares? Esta posibili- dad justifica el estudio en otras corrientes, particularmente en el oeste de los Estados Unidos, donde el selenio se ha incorporado a las cadenas alimentarias acuáticas de peces, aves y mamíferos. Selenium (Se) is an essential element for rock substrates. The Arkansas River Valley in life that occurs naturally in the earth’s crust. Colorado and Kansas has long been known However, under some circumstances Se for its agriculture and extensive irrigation. becomes toxic, especially in aquatic ecosys- However, other land uses, such as increased tems. Chapman (2010) summarized several urbanization, are recognized as affecting water activities that are sources of Se contamination. quality within a watershed. Industrial sources included agricultural irriga- Due to the growth of Colorado Springs in tion, animal husbandry, erosion from mono- El Paso County, Colorado, water quality in culture, and mining of hard rock, phosphate, the Fountain Creek Watershed has become a and coal. Chapman (2010) mentioned that Se concern. For example, Salazar (2006) wrote is found in organic-rich shales that are source that “fixing the problems” of the Fountain rocks for the activities mentioned above. Creek Watershed includes 2 broad issues, Lemly (2002) noted that Se is a worldwide “flood control and water quality,” and that pollution problem stemming from “coal and “additional problems” include nonpoint source combustion” activities; further, the most serious pollution, high water volumes, flash floods, impacts
Recommended publications
  • Download The
    AN ECOLOGICAL STUDY OF SOME OF THE CHIRONOMIDAE INHABITING A SERIES OF SALINE LAKES IN CENTRAL BRITISH COLUMBIA WITH SPECIAL REFERENCE TO CHIRONOMUS TENTANS FABRICIUS by Robert Alexander Cannings BSc. Hons., University of British Columbia, 1970 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in the Department of Zoology We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA May, 1973 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia Vancouver 8, Canada Date ii ABSTRACT This thesis is concerned with a study of the Chironomidae occuring in a saline lake series in central British Columbia. It describes the ecological distribution of species, their abundance, phenology and interaction, with particular attention being paid to Chironomus tentans. Emphasis is placed on the species of Chironomus that coexist in these lakes and a further analysis is made of the chromo• some inversion frequencies in C. tentans. Of the thirty-four species represented by identifiable adults in the study, eleven species have not been previously reported in British Columbia, five are new records for Canada and seven species are new to science.
    [Show full text]
  • CHIRONOMUS Newsletter on Chironomidae Research
    CHIRONOMUS Newsletter on Chironomidae Research No. 25 ISSN 0172-1941 (printed) 1891-5426 (online) November 2012 CONTENTS Editorial: Inventories - What are they good for? 3 Dr. William P. Coffman: Celebrating 50 years of research on Chironomidae 4 Dear Sepp! 9 Dr. Marta Margreiter-Kownacka 14 Current Research Sharma, S. et al. Chironomidae (Diptera) in the Himalayan Lakes - A study of sub- fossil assemblages in the sediments of two high altitude lakes from Nepal 15 Krosch, M. et al. Non-destructive DNA extraction from Chironomidae, including fragile pupal exuviae, extends analysable collections and enhances vouchering 22 Martin, J. Kiefferulus barbitarsis (Kieffer, 1911) and Kiefferulus tainanus (Kieffer, 1912) are distinct species 28 Short Communications An easy to make and simple designed rearing apparatus for Chironomidae 33 Some proposed emendations to larval morphology terminology 35 Chironomids in Quaternary permafrost deposits in the Siberian Arctic 39 New books, resources and announcements 43 Finnish Chironomidae 47 Chironomini indet. (Paratendipes?) from La Selva Biological Station, Costa Rica. Photo by Carlos de la Rosa. CHIRONOMUS Newsletter on Chironomidae Research Editors Torbjørn EKREM, Museum of Natural History and Archaeology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway Peter H. LANGTON, 16, Irish Society Court, Coleraine, Co. Londonderry, Northern Ireland BT52 1GX The CHIRONOMUS Newsletter on Chironomidae Research is devoted to all aspects of chironomid research and aims to be an updated news bulletin for the Chironomidae research community. The newsletter is published yearly in October/November, is open access, and can be downloaded free from this website: http:// www.ntnu.no/ojs/index.php/chironomus. Publisher is the Museum of Natural History and Archaeology at the Norwegian University of Science and Technology in Trondheim, Norway.
    [Show full text]
  • Chironomus Frontpage No 28
    CHIRONOMUS Journal of Chironomidae Research No. 30 ISSN 2387-5372 December 2017 CONTENTS Editorial Anderson, A.M. Keep the fuel burning 2 Current Research Epler, J. An annotated preliminary list of the Chironomidae of Zurqui 4 Martin, J. Chironomus strenzkei is a junior synonym of C. stratipennis 19 Andersen, T. et al. Two new Neo- tropical Chironominae genera 26 Kuper, J. Life cycle of natural populations of Metriocnemus (Inermipupa) carmencitabertarum in The Netherlands: indications for a southern origin 55 Lin, X., Wang, X. A redescription of Zavrelia bragremia 67 Short Communications Baranov, V., Nekhaev, I. Impact of the bird-manure caused eutrophication on the abundance and diversity of chironomid larvae in lakes of the Bolshoy Aynov Island 72 Namayandeh, A., Beresford, D.V. New range extensions for the Canadian Chironomidae fauna from two urban streams 76 News Liu, W. et al. The 2nd Chinese Symposium on Chironomidae 81 In memoriam Michailova, P., et al. Prof. Dr. Wolfgang Friedrich Wülker 82 Unidentified male, perhaps of the Chironomus decorus group? Photo taken in the Madrona Marsh Preserve, California, USA. Photo: Emile Fiesler. CHIRONOMUS Journal of Chironomidae Research Editors Alyssa M. ANDERSON, Department of Biology, Chemistry, Physics, and Mathematics, Northern State University, Aberdeen, South Dakota, USA. Torbjørn EKREM, NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway. Peter H. LANGTON, 16, Irish Society Court, Coleraine, Co. Londonderry, Northern Ireland BT52 1GX. The CHIRONOMUS Journal of Chironomidae Research is devoted to all aspects of chironomid research and serves as an up-to-date research journal and news bulletin for the Chironomidae research community.
    [Show full text]
  • Chironominae 8.1
    CHIRONOMINAE 8.1 SUBFAMILY CHIRONOMINAE 8 DIAGNOSIS: Antennae 4-8 segmented, rarely reduced. Labrum with S I simple, palmate or plumose; S II simple, apically fringed or plumose; S III simple; S IV normal or sometimes on pedicel. Labral lamellae usually well developed, but reduced or absent in some taxa. Mentum usually with 8-16 well sclerotized teeth; sometimes central teeth or entire mentum pale or poorly sclerotized; rarely teeth fewer than 8 or modified as seta-like projections. Ventromental plates well developed and usually striate, but striae reduced or vestigial in some taxa; beard absent. Prementum without dense brushes of setae. Body usually with anterior and posterior parapods and procerci well developed; setal fringe not present, but sometimes with bifurcate pectinate setae. Penultimate segment sometimes with 1-2 pairs of ventral tubules; antepenultimate segment sometimes with lateral tubules. Anal tubules usually present, reduced in brackish water and marine taxa. NOTESTES: Usually the most abundant subfamily (in terms of individuals and taxa) found on the Coastal Plain of the Southeast. Found in fresh, brackish and salt water (at least one truly marine genus). Most larvae build silken tubes in or on substrate; some mine in plants, dead wood or sediments; some are free- living; some build transportable cases. Many larvae feed by spinning silk catch-nets, allowing them to fill with detritus, etc., and then ingesting the net; some taxa are grazers; some are predacious. Larvae of several taxa (especially Chironomus) have haemoglobin that gives them a red color and the ability to live in low oxygen conditions. With only one exception (Skutzia), at the generic level the larvae of all described (as adults) southeastern Chironominae are known.
    [Show full text]
  • Aquatic Diptera As Indicators of Pollution in a Midwestern Stream
    AQUATIC DIPTERA AS INDICATORS OF POLLUTION IN A MIDWESTERN STREAM GEORGE H. PAINE, JR. AND ARDEN R. GAUFIN Robert A. Taft Sanitary Engineering Center, Public Health Service, Cincinnati, Ohio A knowledge of the ecological requirements of aquatic organisms, especially the benthic forms, is of outstanding importance to biologists in determining the degree and extent of pollution in streams. An examination of bottom fauna serves to indicate conditions not only at the time of examination but also over considerable periods in the past. Those organisms having an annual life cycle will by their presence or absence indicate any unusual occurrence which took place during several previous months. Satisfactory use of aquatic organisms as indicators of pollution and self-purification of water is dependent upon a know- ledge of the normal habitats of these organisms and their sensitivity to varying environmental factors such as pollution. Among the aquatic invertebrates, insects such as the mayflies, stoneflies, and caddis flies are primarily restricted to clean water conditions. By comparison, forms such as the pulmonate snails, Tubificid worms, and certain species of leeches can more often be found under conditions where high organic and/or low oxygen content exist. Still other groups such as the Diptera, or true flies, are repre- sented by forms which may be found in all types of stream habitats from the cleanest situation to the most polluted water. Because aquatic Diptera are to be found in many different ecological niches in both clean and polluted water and many species are highly selective in their choice of habitat, they constitute one of the most important groups of indicator organisms.
    [Show full text]
  • Biological Monitoring of Surface Waters in New York State, 2019
    NYSDEC SOP #208-19 Title: Stream Biomonitoring Rev: 1.2 Date: 03/29/19 Page 1 of 188 New York State Department of Environmental Conservation Division of Water Standard Operating Procedure: Biological Monitoring of Surface Waters in New York State March 2019 Note: Division of Water (DOW) SOP revisions from year 2016 forward will only capture the current year parties involved with drafting/revising/approving the SOP on the cover page. The dated signatures of those parties will be captured here as well. The historical log of all SOP updates and revisions (past & present) will immediately follow the cover page. NYSDEC SOP 208-19 Stream Biomonitoring Rev. 1.2 Date: 03/29/2019 Page 3 of 188 SOP #208 Update Log 1 Prepared/ Revision Revised by Approved by Number Date Summary of Changes DOW Staff Rose Ann Garry 7/25/2007 Alexander J. Smith Rose Ann Garry 11/25/2009 Alexander J. Smith Jason Fagel 1.0 3/29/2012 Alexander J. Smith Jason Fagel 2.0 4/18/2014 • Definition of a reference site clarified (Sect. 8.2.3) • WAVE results added as a factor Alexander J. Smith Jason Fagel 3.0 4/1/2016 in site selection (Sect. 8.2.2 & 8.2.6) • HMA details added (Sect. 8.10) • Nonsubstantive changes 2 • Disinfection procedures (Sect. 8) • Headwater (Sect. 9.4.1 & 10.2.7) assessment methods added • Benthic multiplate method added (Sect, 9.4.3) Brian Duffy Rose Ann Garry 1.0 5/01/2018 • Lake (Sect. 9.4.5 & Sect. 10.) assessment methods added • Detail on biological impairment sampling (Sect.
    [Show full text]
  • 345D344e875a63b5be2a8cfa75
    Knowledge and Management of Aquatic Ecosystems (2014) 414, 09 http://www.kmae-journal.org c ONEMA, 2014 DOI: 10.1051/kmae/2014021 Community structure and decadal changes in macrozoobenthic assemblages in Lake Poyang, the largest freshwater lake in China Y. J . C a i (1),(2),Y.J.Lu(2),Z.S.Wu(1),Y.W.Chen(1),L.Zhang(1),Y.Lu(2) Received February 19, 2014 Revised May 19, 2014 Accepted June 10, 2014 ABSTRACT Key-words: Lake Poyang is the largest freshwater lake in China and contains unique Yangtze River, and diverse biota within the Yangtze floodplain ecosystem. However, floodplain lake, knowledge of its macrozoobenthic assemblages remains inadequate. To macrozoobenthos, characterize the current community structure of these assemblages and community to portray their decadal changes, quarterly investigations were conducted structure, at 15 sites from February to November 2012. A total of 42 taxa were sand mining recorded, and Corbicula fluminea, Limnoperna fortunei, Gammaridae sp., Nephtys polybranchia, Polypedilum scalaenum and Branchiura sowerbyi were found to dominate the community in terms of abundance. The bivalves Corbicula fluminea, Lamprotula rochechouarti, Arconaia lance- olata and Lamprotula caveata dominated the community in biomass due to their large body size. The mean abundance of the total macro- zoobenthos varied from 48 to 920 ind·m−2, the mean biomass ranged from 28 to 428 g·m−2. The substrate type affected strongly the abun- dance, biomass, and diversity of the macrozoobenthos, with muddy sand substrates showing the highest values. Compared with historical data, remarkable changes were observed in the abundance of macrozooben- thos and the identity of the dominant species.
    [Show full text]
  • Spatial and Temporal Distribution of Aquatic Insects in the Dicle (Tigris) River Basin, Turkey, with New Records
    Turkish Journal of Zoology Turk J Zool (2017) 41: 102-112 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1512-56 Spatial and temporal distribution of aquatic insects in the Dicle (Tigris) River Basin, Turkey, with new records Fatma ÇETİNKAYA, Aysel BEKLEYEN* Department of Biology, Faculty of Science, Dicle University, Diyarbakır, Turkey Received: 21.12.2015 Accepted/Published Online: 01.06.2016 Final Version: 25.01.2017 Abstract: We investigated insects of the Dicle (Tigris) River Basin in terms of their composition and spatiotemporal distribution. Larvae, pupae, pupal exuviae, and nymphs of insects were obtained from samples collected by a plankton net monthly during a 1-year period in 2008 and 2009 at seven different sites of the Dicle (Tigris) River Basin. A total of 35 taxa from the orders Trichoptera (1 taxon), Ephemeroptera (3 taxa), and Diptera (31 taxa) were identified. Chironomidae (Diptera) was the most diverse group and was represented by three major subfamilies, namely Tanypodinae (2 taxa), Orthocladiinae (19 taxa), and Chironominae (7 taxa). Among these species, Nanocladius (Nanocladius) spiniplenus Saether, 1977 is a new record for Turkey as well as for western Asia. In addition, the Psychomyia larvae found for the first time in the Dicle (Tigris) River Basin (Turkey) were described. Both taxa have been illustrated to warrant validation. Taxa number varied spatially from 6 to 14 and temporally from 2 to 12 during the sampling period. Along the river, Cricotopus bicinctus and Orthocladius (S.) holsatus were the most common taxa. Key words: Diptera, Ephemeroptera, Trichoptera, Insecta, Dicle (Tigris) River 1.
    [Show full text]
  • Ohio EPA Macroinvertebrate Taxonomic Level December 2019 1 Table 1. Current Taxonomic Keys and the Level of Taxonomy Routinely U
    Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Table 1. Current taxonomic keys and the level of taxonomy routinely used by the Ohio EPA in streams and rivers for various macroinvertebrate taxonomic classifications. Genera that are reasonably considered to be monotypic in Ohio are also listed. Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Species Pennak 1989, Thorp & Rogers 2016 Porifera If no gemmules are present identify to family (Spongillidae). Genus Thorp & Rogers 2016 Cnidaria monotypic genera: Cordylophora caspia and Craspedacusta sowerbii Platyhelminthes Class (Turbellaria) Thorp & Rogers 2016 Nemertea Phylum (Nemertea) Thorp & Rogers 2016 Phylum (Nematomorpha) Thorp & Rogers 2016 Nematomorpha Paragordius varius monotypic genus Thorp & Rogers 2016 Genus Thorp & Rogers 2016 Ectoprocta monotypic genera: Cristatella mucedo, Hyalinella punctata, Lophopodella carteri, Paludicella articulata, Pectinatella magnifica, Pottsiella erecta Entoprocta Urnatella gracilis monotypic genus Thorp & Rogers 2016 Polychaeta Class (Polychaeta) Thorp & Rogers 2016 Annelida Oligochaeta Subclass (Oligochaeta) Thorp & Rogers 2016 Hirudinida Species Klemm 1982, Klemm et al. 2015 Anostraca Species Thorp & Rogers 2016 Species (Lynceus Laevicaudata Thorp & Rogers 2016 brachyurus) Spinicaudata Genus Thorp & Rogers 2016 Williams 1972, Thorp & Rogers Isopoda Genus 2016 Holsinger 1972, Thorp & Rogers Amphipoda Genus 2016 Gammaridae: Gammarus Species Holsinger 1972 Crustacea monotypic genera: Apocorophium lacustre, Echinogammarus ischnus, Synurella dentata Species (Taphromysis Mysida Thorp & Rogers 2016 louisianae) Crocker & Barr 1968; Jezerinac 1993, 1995; Jezerinac & Thoma 1984; Taylor 2000; Thoma et al. Cambaridae Species 2005; Thoma & Stocker 2009; Crandall & De Grave 2017; Glon et al. 2018 Species (Palaemon Pennak 1989, Palaemonidae kadiakensis) Thorp & Rogers 2016 1 Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Informal grouping of the Arachnida Hydrachnidia Smith 2001 water mites Genus Morse et al.
    [Show full text]
  • Table of Contents 2
    Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) List of Freshwater Macroinvertebrate Taxa from California and Adjacent States including Standard Taxonomic Effort Levels 1 March 2011 Austin Brady Richards and D. Christopher Rogers Table of Contents 2 1.0 Introduction 4 1.1 Acknowledgments 5 2.0 Standard Taxonomic Effort 5 2.1 Rules for Developing a Standard Taxonomic Effort Document 5 2.2 Changes from the Previous Version 6 2.3 The SAFIT Standard Taxonomic List 6 3.0 Methods and Materials 7 3.1 Habitat information 7 3.2 Geographic Scope 7 3.3 Abbreviations used in the STE List 8 3.4 Life Stage Terminology 8 4.0 Rare, Threatened and Endangered Species 8 5.0 Literature Cited 9 Appendix I. The SAFIT Standard Taxonomic Effort List 10 Phylum Silicea 11 Phylum Cnidaria 12 Phylum Platyhelminthes 14 Phylum Nemertea 15 Phylum Nemata 16 Phylum Nematomorpha 17 Phylum Entoprocta 18 Phylum Ectoprocta 19 Phylum Mollusca 20 Phylum Annelida 32 Class Hirudinea Class Branchiobdella Class Polychaeta Class Oligochaeta Phylum Arthropoda Subphylum Chelicerata, Subclass Acari 35 Subphylum Crustacea 47 Subphylum Hexapoda Class Collembola 69 Class Insecta Order Ephemeroptera 71 Order Odonata 95 Order Plecoptera 112 Order Hemiptera 126 Order Megaloptera 139 Order Neuroptera 141 Order Trichoptera 143 Order Lepidoptera 165 2 Order Coleoptera 167 Order Diptera 219 3 1.0 Introduction The Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) is charged through its charter to develop standardized levels for the taxonomic identification of aquatic macroinvertebrates in support of bioassessment. This document defines the standard levels of taxonomic effort (STE) for bioassessment data compatible with the Surface Water Ambient Monitoring Program (SWAMP) bioassessment protocols (Ode, 2007) or similar procedures.
    [Show full text]
  • Using Various Lines of Evidence to Identify Chironomus Species (Diptera: Chironomidae) in Eastern Canadian Lakes
    Zootaxa 3741 (4): 401–458 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3741.4.1 http://zoobank.org/urn:lsid:zoobank.org:pub:0D2276A9-5295-4622-BCE8-A7D996A30367 Using various lines of evidence to identify Chironomus species (Diptera: Chironomidae) in eastern Canadian lakes ISABELLE PROULX1, JON MARTIN2, MELISSA CAREW3 & LANDIS HARE1,4 1Institut national de la recherche scientifique – Centre Eau Terre Environnement, 490 rue de la Couronne, Quebec City, Quebec, G1K 9A9, Canada. E-mails: [email protected] & [email protected] 2Department of Genetics, University of Melbourne, Melbourne, Victoria 3010, Australia. E-mail: [email protected] 3Centre for Aquatic Pollution Identification and Management, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia. E-mail: [email protected] 4Corresponding author Table of contents Abstract . 401 Introduction . 402 Methods . 403 Results and discussion . 411 Species delimitation and identification . 411 Species descriptions and taxonomic status . 421 Chironomus (Chironomus) ‘tigris’ . 421 Chironomus (Chironomus) staegeri Lundbeck (1898) . 421 Chironomus (Chironomus) frommeri Sublette and Sublette (1971) . 422 Chironomus (Chironomus) cucini Webb (1969) . 423 Chironomus sp. NAII . 423 Chironomus sp. NAIII (possibly C. decumbens (Malloch 1934)). 424 Chironomus sp. NAI (C. anthracinus-group) . 424 Chironomus (Chironomus) anthracinus Zetterstedt (1860) . 425 Chironomus (Chironomus) entis Shobanov (1989) . 425 Chironomus (Chironomus) plumosus Linnaeus (1758) . 426 Chironomus (Chironomus) maturus Johannsen (1908) . 427 Chironomus (Chironomus) decorus-group sp. 2 Butler et al. (1995) . 427 Chironomus (Chironomus) harpi Sublette (in Wülker et al. 1991) . 428 Chironomus (Chironomus) bifurcatus Wuelker, Martin, Kiknadze, Sublette and Michiels (2009) .
    [Show full text]
  • Analýza Společného Výskytu Vybraných Druhů Pakomárů Ve Vztahu K Parametrům Prostředí
    Masarykova universita Přírodovědecká fakulta Ústav botaniky a zoologie Analýza společného výskytu vybraných druhů pakomárů ve vztahu k parametrům prostředí Diplomová práce 2010 Bc. Iva Martincová školitel: Mgr. Karel Brabec PhD. 1 Obsah Abstrakt……………………………………………………………………………………. .1. 1. Úvod……………………………………………………………………………………. 2. 1.1. Ekologický koncept koexistence taxonů………………………………………….. 2. 1.2. Vazba taxonů na podmínky prostředí………………………………………….... .3. 1.3. Klasifikace společenstev......................................................................................... ..4. 1.4. Nika……………………………………………………………………………….. ..4. 1.5. Zonace toků………………………………………………………………………....5. 1.6. Chironomidae…………………………………………………………………….…6. 2. Materiál……………………………………………………………………………....…..7. 3. Metody……………………………………………………………………………….….11. 4. Výsledky…………………………………………………………………………….….12. 4.1. Klasifikace taxocenóz Chironomidae………………………………………….…12. 4.2. Určení hlavních faktorů distribuce pakomárovitých…………………………....19. 4.3. Autekologické charakteristiky vybraných taxonů…………………………….....21. 4.4. Koexistence v taxocenózách pakomárů..................................................................28. 4.4.1. Použití klasifikačních stromů………………………………………….……28. 4.4.2. Vybrané koexistence ve vztahu k environmentálním faktorům………….....30. 4.5. Index biocenotického regionu………………………………………………….….36. 4.5.1. Index biocenotického regionu ve vztahu k parametrům prostředí…….…….36. 4.5.2. Vztah pakomárovitých k indexu biocenotického regionu…………………...39. 4.5.3. Vztah vybraných taxonů k zonálním
    [Show full text]