The Evolution of Anterior Coloration in Carnivorans

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of Anterior Coloration in Carnivorans Behav Ecol Sociobiol (2017) 71:177 https://doi.org/10.1007/s00265-017-2402-5 ORIGINAL ARTICLE The evolution of anterior coloration in carnivorans Tim Caro 1 & Hannah Walker2 & Sharlene E. Santana3 & Theodore Stankowich2 Received: 11 July 2017 /Revised: 27 October 2017 /Accepted: 2 November 2017 # Springer-Verlag GmbH Germany, part of Springer Nature 2017 Abstract in mustelids, viverrids, and herpestids. Facial complexity Some carnivorans have striking patches of fur on their faces of viverrid and herpestid species was significantly or mar- (spots, bands, eye masks) and blazes on their chests that are ginally related to a mammal-based diet. In ursids, facial primarily visible from a frontal view. We tested five hypothe- contrast appeared less variable in species living in greater ses to explain the evolution of the complexity and contrast of sympatry with other bears. Facial and chest coloration in these color patches. These were: signals of species identity to Carnivora appears to have evolved under different selec- avoid hybridization, communication between conspecifics, tion pressures in different families. signals used to warn of defensive anal secretions, signals of belligerence or pugnacity, and camouflage-related coloration Significance statement used to break up the outline and facial features of the predator The reasons that many carnivorans have colorful and memo- when approaching prey. Using phylogenetically controlled rable faces and chests are not yet understood. Here, we pit five multifactorial analyses in six different families of carnivorans, different hypotheses against each other: species recognition, examined separately, our analyses uncovered significant advertising either toxic anal defenses or pugnacity, recog- positive associations between measures of color pattern nizing group members, and trying to remain concealed complexity and sociality across herpestid faces and canid when approaching mammalian prey. We find that measures chests, suggesting use in social communication. Mustelid of facial and chest complexity and contrast have evolved facial color complexity was associated with ability to direct for different reasons depending on the carnivoran family. anal secretions accurately at predators, and facial markings Anterior coloration appears to be involved with social were significantly or marginally associated with pugnacity communication in herpestids and canids; facial coloration is associated noxious secretions in mustelids, with pugnac- ity in mustelids, viverrids and herpestids; with reliance on Communicated by M. Festa-Bianchet a mammal-based diet in viverrids and herpestids; and with avoiding hybridization in bear species. There is no over- Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00265-017-2402-5) contains supplementary riding evolutionary explanation for varied facial and chest material, which is available to authorized users. pelage coloration across carnivorans. * Tim Caro Keywords Carnivores . Chests . Color complexity . [email protected] Contrast . Faces 1 Department of Wildlife, Fish and Conservation Biology, University of California, Davis, CA 95616, USA Introduction 2 Department of Biological Sciences, California State University, Long Beach, CA 90840, USA To understand the evolutionary significance of external color- 3 Department of Biology and Burke Museum of Natural Hosry and ation in animals, we often focus on overall appearance be- Culture, University of Washington, Seattle, WA 98195, USA cause protective coloration, for example, will usually involve 177 Page 2 of 8 Behav Ecol Sociobiol (2017) 71:177 the whole animal being either cryptic, so as not to be detected, In this paper, we examine carnivoran anterior coloration or conspicuous so as to signal to a predator or conspecific using two measures: the number of different shades (pattern from a distance. Yet head coloration often differs from the rest complexity), and the contrast among those shades, in six dif- of the body in many vertebrates, including reef fish, agamid ferent families of carnivorans. Across this extensive sample lizards, marmosets, and parrots, as well as invertebrates such (31 canids, 44 mustelids, 35 felids, 8 ursids, 19 viverrids, and as paper wasps and caterpillars. In some of these species, 22 herpestids), we test several hypotheses that could explain coloration and patterns on parts of the head are known to the evolution of facial and chest coloration within the context function as signals to conspecifics, conveying information of interactions with both conspecifics and heterospecifics. about individual identity, physiological state or species First, we test the hypothesis that anterior coloration is in- identity (Hill 2015; Tibbetts et al. 2017), or as signals to volved in conspecific recognition and maintaining reproduc- heterospecifics conveying information about species iden- tive isolation. We predict that the complexity of facial color tity or defenses (Caro and Allen 2017). On the other hand, patterns is associated with extent of species’ sympatry at the coloration patterns might break up the outline of the face family level (e.g., number of congeneric sypatric species), as to reduce the probability of the animal being recognized previously reported in primates. Conspecific recognition asapredatororprey(Cott1940). could be a concern for carnivorans because free-living Certain orders of mammals have notably colorful facial and heterospecifics can interbreed (e.g., coyotes Canis latrans chest pelage patterns, particularly primates, carnivorans, and and wolves Canis lupus in the northeast USA; Lehman et al. some artiodactyls (Caro 2013); however explicit tests of adap- 1991). Second, we test whether anterior coloration varies in a tive hypotheses to explain these patterns are scarce (Caro way that is consistent with uses for intraspecific communica- 2009). To summarize briefly what we know at present: plat- tion, in particular individual recognition. We predict that facial yrrhine neotropical primate (Santana et al. 2012), Old World coloration is associated with species’ sociality (e.g., Santana catarrhine (Santana et al. 2013), and cercopithecine guenon et al. 2012) such that species living in larger groups exhibit (Allen et al. 2014) species all show greater facial color pattern more complex facial coloration. Third, we reexamine whether complexity when living with a greater number of species be- anterior coloration is used as a warning to potential predators longing to the same genus or family. Whereas neotropical or competitors signaling extent of toxic anal defenses or of primates show greater facial color pattern complexity in spe- pugnacious behavior (see Ortolani and Caro 1996;Ortolani cies that live in smaller groups (Santana et al. 2012), catar- 1999). We predict that facial contrast and complexity is asso- rhines show greater facial complexity in more gregarious spe- ciated with noxious anal secretions, and then with pugnacity. cies (Santana et al. 2013). These independent effects suggest Finally, we examine whether facial and chest coloration diver- facial coloration serves as a species marker that may reduce sity in carnivorans is consistent with strategies for crypsis, in risk of hybridization and possibly help in individual identifi- which facial coloration breaks up the outline of the carnivoran cation within social groups. and makes it more difficult to recognize when approaching Dark-faced artiodactyls live in intermediate or large groups visually oriented prey. We predict that facial coloration is and are also pursued by coursing predators, suggesting that more complex and contrasting in those species that principally facial coloration may function in various forms of intra- and capture mammalian prey. We run analyses within carnivoran interspecific communication. Artiodactyls with white faces families as only closely related species present a danger as are diurnal, live in bushland or grassland habitats, and in potential breeding partners. intermediate-sized groups, so it is unclear whether their facial colors may be involved in signaling to conspecifics, aid in thermoregulation, or both (Stoner et al. 2003). Methods Some carnivoran species that are pugnacious or employ noxious anal secretions (e.g., mustelids and mephitids) Dependent variables have conspicuous facial coloration (Stankowich et al. 2011;Caroetal.2017). Furthermore, carnivorans with HWextracted up to 10 photographs of 164 terrestrial Carnivora facial stripes are middle sized, are dangerous to confront, species from books and reputable internet sites in which spe- and are more likely to use burrows or dens (Newman et al. cies identification was listed along with scientific name and, 2005; Stankowich et al. 2011) where only their faces may often, location (see supplementary material for full datset). be visible. Nonetheless, other carnivoran species have even Because photographs mined from the internet and books carry more intricate and chromatic anterior coloration (see Fig. 1 little information about camera sensors or illumination, we for examples), and the complexity of such patterns on the used several photographs of different individuals of each spe- chests and faces suggests that they could be used for pur- cies. Calibrated photographs of museum specimens were not poses other than aposematism, especially since families used because facial patches and patterns are distorted by the like ursids do not use anal secretions for defense. preparation process
Recommended publications
  • Reproductive PATTERNS and Human-INFLUENCED Z]`Ynagj Af Zjgof Z]Yjk& Aehda[Ylagfk ^Gj the Conservation of LARGE Carnivores
    P Natural and Department Ecology of Resource Management Fgjo]_aYfMfan]jkalqg^Da^]K[a]f[]kMfan]jkal]l]l^gjeadb¬ hilosophiae Doctor <]hYjlYe]flg\]:ag\an]jka\Y\q?]klaf9eZa]flYd& Universidad de León E-24071 León, Spain. www.unileon.es Reproductive patterns and human-influenced ( P Z]`YnagjafZjgofZ]Yjk&Aehda[Ylagfk^gj h D) the conservation of large carnivores. Thesis 2010:01 Thesis J]hjg\mckbgfke¬fkl]jg_e]ff]kc]kcYhlYl^]j\k]f\jaf_`gkZjmfZb¬jf& Cgfk]cn]fk]j^gjZ]nYjaf_]fYnklgj]jgn\qj& Andrés Ordiz %g_Zagnal]fkcYh Reproductive patterns and human-influenced behavior in brown bears Implications for the conservation of large carnivores Reproduksjonsmønster og menneskeskapt atferdsendring hos brunbjørn Konsekvenser for bevaringen av store rovdyr Philosophiae Doctor (PhD) Thesis Andrés Ordiz Dept. of Ecology and Natural Resource Management Norwegian University of Life Sciences & Dept. de Biodiversidad y Gestión Ambiental Universidad de León Ås/León 2010 UMB Thesis number 2010: 01 ISSN 1503-1667 ISBN 978-82-575-0913-2 This thesis has been conducted as a PhD research co-supervision agreement between the Norwegian University of Life Sciences and the University of León (Spain). I acknowledge the effort of J. E. Swenson, E. de Luis Calabuig and E. Panero to succeed in establishing the agreement. PhD supervisors Prof. Jon E. Swenson (main supervisor) Department of Ecology and Natural Resource Management Norwegian University of Life Sciences Pb. 5003, 1432 Ås, Norway Dr. Ole-Gunnar Støen Department of Ecology and Natural Resource Management Norwegian University of Life Sciences Pb. 5003, 1432 Ås, Norway Prof. Miguel Delibes de Castro Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas Avenida Américo Vespucio s/n Isla de la Cartuja E-41092 Sevilla, Spain Adjudication committee Prof.
    [Show full text]
  • Pan 1 Recent Advances in Elucidating the Function of Zebra Stripes
    Pan 1 Recent Advances in Elucidating the Function of Zebra Stripes: Parasite Avoidance and Thermoregulation Do Not Resolve the Mystery Introduction Why are zebras striped? This question has baffled biologists for ages since the time of Darwin (Darwin 545). Although we remain far from an answer, past research was not done in vain. Currently, as much as 18 different theories have been proposed (Horváth et al. “EETSDNCZ” 1). These proposed explanations largely fall into four categories: 1) Predator avoidance through crypsis and various types of visual confusion (Ruxton 238), 2) reinforcement of social interactions (239), 3) ectoparasite deterrence (241), and 4) thermoregulation (239). Among the four groups of hypotheses, only the latter two have gained some support. The speculations that stripes help zebras blend in with tall grass (238), appear larger when in a group (237), or dazzle vertebrate predators like lions or spotted hyenas (238) were all but rejected because of the lack of empirical support and not because of the lack of trying (Caro et al. “TFOZS” 3; Larison et al. “HTZGIS” 3; Ruxton 238). Similarly, the idea that zebra stripes provide social benefits such as individual identification and bonding remains largely speculative (Ruxton 240), if not just outright rejected (Caro et al. “TFOZS” 3). Many of the hypotheses also do not actually suggest a fitness benefit but explain how the zebras interact (Ruxton 239). Therefore, they insufficiently explain why zebra stripes evolved in the first place. In contrast, overwhelming empirical evidence support the hypothesis that ‘zebra like’ stripes deter ectoparasites like glossinids and tabanids (Blaho et al.
    [Show full text]
  • Benefits of Zebra Stripes: Behaviour of Tabanid Flies Around Zebras and Horses
    Caro, T. , Argueta, Y., Briolat, E., Bruggink, J., Kasprowsky, M., Lake, J., Mitchell, M., Richardson, S., & How, M. (2019). Benefits of zebra stripes: behaviour of tabanid flies around zebras and horses. PLoS ONE, 14(2), [e0210831]. https://doi.org/10.1371/journal.pone.0210831 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1371/journal.pone.0210831 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via PLoS at DOI: 10.1371/journal.pone.0210831. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ RESEARCH ARTICLE Benefits of zebra stripes: Behaviour of tabanid flies around zebras and horses 1 1 2 3 Tim CaroID *, Yvette Argueta , Emmanuelle Sophie Briolat , Joren Bruggink , 2 4 2 2 Maurice Kasprowsky , Jai Lake , Matthew J. Mitchell , Sarah RichardsonID , 4 Martin HowID 1 Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, California, United States of America, 2 Centre for Ecology and Conservation Biosciences, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom, 3 Aeres University of Applied Sciences, Almere, Netherlands, 4 School of Biological Sciences, University of Bristol, Bristol, United Kingdom * [email protected] a1111111111 Abstract a1111111111 a1111111111 Averting attack by biting flies is increasingly regarded as the evolutionary driver of zebra a1111111111 stripes, although the precise mechanism by which stripes ameliorate attack by ectoparasites a1111111111 is unknown.
    [Show full text]
  • Antipredator Deception in Terrestrial Vertebrates
    Current Zoology 60 (1): 16–25, 2014 Antipredator deception in terrestrial vertebrates Tim CARO* Department of Wildlife, Fish and Conservation Biology, and Center of Population Biology, University of California, Davis, CA 95616, USA Abstract Deceptive antipredator defense mechanisms fall into three categories: depriving predators of knowledge of prey’s presence, providing cues that deceive predators about prey handling, and dishonest signaling. Deceptive defenses in terrestrial vertebrates include aspects of crypsis such as background matching and countershading, visual and acoustic Batesian mimicry, active defenses that make animals seem more difficult to handle such as increase in apparent size and threats, feigning injury and death, distractive behaviours, and aspects of flight. After reviewing these defenses, I attempt a preliminary evaluation of which aspects of antipredator deception are most widespread in amphibians, reptiles, mammals and birds [Current Zoology 60 (1): 16 25, 2014]. Keywords Amphibians, Birds, Defenses, Dishonesty, Mammals, Prey, Reptiles 1 Introduction homeotherms may increase the distance between prey and the pursuing predator or dupe the predator about the In this paper I review forms of deceptive antipredator flight path trajectory, or both (FitzGibbon, 1990). defenses in terrestrial vertebrates, a topic that has been Last, an antipredator defense may be a dishonest largely ignored for 25 years (Pough, 1988). I limit my signal. Bradbury and Vehrencamp (2011) state that “true scope to terrestrial organisms because lighting condi- deception occurs when a sender produces a signal tions in water are different from those in the air and whose reception will benefit it at the expense of the antipredator strategies often differ in the two environ- receiver regardless of the condition with which the sig- ments.
    [Show full text]
  • Arbeitsvorhaben 2015/2016
    ^o_bfqpsloe^_bk=abo=cbiiltp = = = cbiiltp Û =molgb`qp= OMNRLOMNS= Herausgeber: Wissenschaftskolleg zu Berlin Wallotstraße 19 14193 Berlin Tel.: +49 30 89 00 1-0 Fax: +49 30 89 00 1-300 [email protected] wiko-berlin.de Redaktion: Angelika Leuchter Redaktionsschluss: 17. Juli 2015 Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung - Nicht-kommerziell - Keine Bearbeitung 3.0 Deutschland Lizenz INHALT VORWORT ________________________________ 4 L A I T H A L - SHAWAF _________________________ 6 D O R I T B A R - ON ____________________________ 8 TATIANA BORISOVA ________________________ 10 V I C T O R I A A . BRAITHWAITE __________________ 12 JANE BURBANK ____________________________ 14 ANNA MARIA BUSSE BERGER __________________ 16 T I M C A R O ________________________________ 18 M I R C E A C Ă RTĂ RESCU _______________________ 20 B A R B A R A A . CASPERS _______________________ 22 DANIEL CEFAÏ _____________________________ 24 INNES CAMERON CUTHIL L ___________________ 26 LORRAINE DASTON _________________________ 28 CLÉMENTINE DELISS ________________________ 30 HOLGER DIESSEL ___________________________ 32 ELHADJI IBRAHIMA DIO P ____________________ 34 PAULA DROEGE ____________________________ 36 DIETER EBERT _____________________________ 38 FINBARR BARRY FLOOD ______________________ 40 RAGHAVENDRA GADAGKAR __________________ 42 PETER GÄRDENFORS ________________________ 44 LUCA GIULIANI ____________________________ 46 SUSAN GOLDIN - MEADOW ____________________ 48 M I C H A E L D . GORDIN ________________________ 50
    [Show full text]
  • Body Size and Evolution of Motion Dazzle Coloration in Lizards
    Behavioral The official journal of the ISBE Ecology International Society for Behavioral Ecology Behavioral Ecology (2017), 00(00), 1–8. doi:10.1093/beheco/arx128 Original Article Body size and evolution of motion dazzle coloration in lizards Gopal Murali and Ullasa Kodandaramaiah IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695 551, India Received 4 April 2017; revised 2 July 2017; editorial decision 22 August 2017; accepted 13 September 2017. “Motion dazzle” patterns are a form of defensive coloration suggested to prevent successful capture during motion by causing preda- tors to misjudge the direction or speed of prey movement. Several studies have found results supporting this idea but little is known about the factors that favor the evolution of these antipredator colorations. A recent experimental study has suggested that the lon- gitudinal striped patterns on the body of lizards can redirect attacks to the tail via the motion dazzle effect. Using a virtual predation experiment with humans and a phylogenetic comparative analysis, we show that evolution of longitudinal striped coloration is associ- ated with prey size. Experiments showed that longitudinal stripes located at the anterior reduced lethal attacks (i.e., attacks directed to the anterior and centre) but this benefit was greater for shorter prey. Our comparative analysis revealed a negative association between stripe occurrence and body length but no association between stripes and body width. Overall, our results suggest that the dazzle effect produced by stripes is more advantageous in shorter lizards than in longer ones and that the error induced by stripes might be distributed along the axis parallel to the prey trajectory.
    [Show full text]
  • Merilaita, S., Scott-Samuel, N., & Cuthill, I. (2017). How Camouflage
    Merilaita, S. , Scott-Samuel, N., & Cuthill, I. (2017). How camouflage works. Philosophical Transactions B: Biological Sciences, 372, 20160341. [20160341]. https://doi.org/10.1098/rstb.2016.0341 Peer reviewed version Link to published version (if available): 10.1098/rstb.2016.0341 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via The Royal Society Philpspphical Transactions at http://rstb.royalsocietypublishing.org/content/372/1724/20160341#sec-14 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Phil. Trans. R. Soc. B. article template Phil. Trans. R. Soc. B. doi:10.1098/not yet assigned How camouflage works Sami Merilaita1, Nicholas E. Scott-Samuel2, Innes C. Cuthill3 1 Department of Biosciences, Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland 2 Department of Experimental Psychology, University of Bristol, 12A Priory Road, Bristol BS8 1TN, UK 3 School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK Keywords: defensive coloration, signal-to-noise ratio, crypsis, visual search, animal coloration *Author for correspondence ([email protected]). †Present address: Department of Biosciences, Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland Summary For camouflage to succeed, an individual has to pass undetected, unrecognized or untargeted, and so it is the processing of visual information that needs to be deceived.
    [Show full text]
  • CEC Annual Report 2017
    Field Course Fortnight photo competition winner – “Students and biodiversity” – Bahamas, Yin Tan PENRYN CAMPUS PENRYN Centre for Ecology and Conservation Annual Report 2017 animal silhouettes border out of green? double page spread? montage? StillWelcome growing in size and reputation The CEC continues to be an exemplar in sharing One of the books, The Tale of the Turtle and the science with our community (see Science in Plastic Jellyfish has already been translated into the Community). Our school’s programme French and Greek, with other languages pending. continued apace reaching 4,000 students across As the year ends, it sees 20 schools. We were again represented at the This year was yet again one of great success for the Centre for me passing the baton of Cornwall Show and Penryn Day. In Falmouth Ecology and Conservation. In the Student Guild Awards we were leadership of the Centre for Week our flagship event, Science in the Square crowned Department of the Year for the Cornwall Campuses. Ecology and Conservation saw 3,000 visitors treated to a veritable This not only evidences the excellence of our staff but the and CLES Cornwall to cornucopia of accessible science and then to end strength of the relationship with our students, particularly our Professor Dave Hodgson the year, the fourth annual Science of Christmas student representatives, who engage so strongly in our agenda of (pictured right). It has been my honour to serve event was hosted by Falmouth Polytechnic. 2017 codevelopment and improvement of educational content and process. as Director and work for such an amazing group saw the fruition of the Professor Penny Stories of students and staff.
    [Show full text]
  • The Functional Significance of Colouration in Cetaceans
    Evol Ecol (2011) 25:1231–1245 DOI 10.1007/s10682-011-9479-5 ORIGINAL PAPER The functional significance of colouration in cetaceans Tim Caro • Karrie Beeman • Theodore Stankowich • Hal Whitehead Received: 2 December 2010 / Accepted: 23 March 2011 / Published online: 3 April 2011 Ó Springer Science+Business Media B.V. 2011 Abstract Cetaceans show many of the classic mammalian colouration patterns, such as uniform colouration, countershading, and prominent patches of colour, all within one relatively small taxon. We collated all the functional hypotheses for cetacean colouration that have been put forward in the literature and systematically tested them using com- parative phylogenetic analyses. We found that countershading is a mechanism by which smaller cetacean species may avoid being seen by their prey. We discovered that promi- nent markings are associated with group living, fast swimming, and ostentatious behaviour at the surface, suggesting that they function in intraspecific communication. White markings on several parts of the body seem to be involved in the capture of fish, squid, and krill. Therefore, several different selection pressures have shaped the great diversity of skin colouration seen in extant cetaceans, although background matching, disruptive colour- ation and interspecific communication do not appear to be involved. Keywords Colour Á Countershading Á Distinctive marks Á Whales Electronic supplementary material The online version of this article (doi:10.1007/s10682-011-9479-5) contains supplementary material, which is available to authorized users. T. Caro (&) Department of Wildlife, Fish and Conservation Biology and Center for Population Biology, University of California, Davis, CA 95616, USA e-mail: [email protected] K.
    [Show full text]
  • Foraging : Behavior and Ecology / [Edited By] David W
    Foraging Foraging Behavior and Ecology Edited by David W. Stephens, Joel S. Brown, and Ronald C. Ydenberg The University of Chicago Press Chicago & London David W. Stephens is Professor of Ecology, Evolution, and Behavior at the University of Minnesota and author, with J. R. Krebs, of Foraging Theory. Joel S. Brown is Professor of Biology at the University of Illinois at Chicago and author, with T. L. Vincent, of Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics. Ronald C. Ydenberg is Professor in the Behavioral Ecology Research Group and Director of the Centre for Wildlife Ecology at Simon Fraser University. The University of Chicago Press, Chicago 60637 The University of Chicago Press, Ltd., London C 2007 by The University of Chicago All rights reserved. Published 2007 Printed in the United States of America 16151413121110090807 12345 ISBN-13: 978-0-226-77263-9 (cloth) ISBN-13: 978-0-226-77264-6 (paper) ISBN-10: 0-226-77263-2 (cloth) ISBN-10: 0-226-77264-0 (paper) Library of Congress Cataloging-in-Publication Data Foraging : behavior and ecology / [edited by] David W. Stephens, Joel S. Brown & Ronald C. Ydenberg. p. cm. ISBN-13: 978-0-226-77263-9 (cloth : alk. paper) ISBN-13: 978-0-226-77264-6 (pbk. : alk. paper) ISBN-10: 0-226-77263-2 (cloth : alk. paper) ISBN-10: 0-226-77264-0 (pbk. : alk. paper) 1. Animals—Food. I. Stephens, David W., 1955– II. Brown, Joel S. (Joel Steven), 1959– III. Ydenberg, Ronald C. QL756.5.F665 2007 591.53—dc22 2006038724 ∞ The paper used in this publication meets the minimum requirements of the American National Standard for Information Sciences—Permanence of Paper for Printed Library Materials, ANSI Z39.48-1992.
    [Show full text]
  • Optimizing Countershading Camouflage
    Optimizing countershading camouflage Innes C. Cuthilla,1, N. Simon Sangheraa, Olivier Penacchiob, Paul George Lovellc, Graeme D. Ruxtond, and Julie M. Harrisb aSchool of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom; bSchool of Psychology and Neuroscience, University of St. Andrews, St. Andrews, Fife KY16 9JP, United Kingdom; cDivision of Psychology, Social and Health Sciences, Abertay University, Dundee DD1 1HG, United Kingdom; and dSchool of Biology, University of St Andrews, St Andrews, Fife KY16 9TH, United Kingdom Edited by Raghavendra Gadagkar, Indian Institute of Science, Bangalore, India, and approved September 30, 2016 (received for review July 14, 2016) Countershading, the widespread tendency of animals to be darker rates on animals with or without the observed coloration, we on the side that receives strongest illumination, has classically cannot tell whether there is a causal effect on detectability. been explained as an adaptation for camouflage: obliterating cues Although some tests with artificial prey show reduced avian to 3D shape and enhancing background matching. However, there predation rates on two-tone, dorsally darker treatments (21–24), have only been two quantitative tests of whether the patterns the relationship between the color contrasts in these experiments observed in different species match the optimal shading to obliter- and the predicted optima are unknown. We have recently filled ate 3D cues, and no tests of whether optimal countershading this important gap by using a general theory of optimal coun- actually improves concealment or survival. We use a mathematical tershading to derive the predicted optimal patterns for different model of the light field to predict the optimal countershading for weather conditions at a specific location, time of year and day concealment that is specific to the light environment and then test (25).
    [Show full text]
  • 98Th Annual Meeting of the American Society of Mammalogists 25-29 June 2018 Kansas State University -Manhattan, Kansas
    98TH ANNUAL MEETING OF THE AMERICAN SOCIETY OF MAMMALOGISTS 25-29 JUNE 2018 KANSAS STATE UNIVERSITY -MANHATTAN, KANSAS- ABSTRACT BOOK The 2018 American Society of Mammalogists Annual Meeting logo was designed by Hayley Ahlers. It features the American bison (Bison bison), the national mammal of the United States of America, overlaid on the state of Kansas. 98TH ANNUAL MEETING OF THE AMERICAN SOCIETY OF MAMMALOGISTS 25-29 JUNE 2018 KANSAS STATE UNIVERSITY -MANHATTAN, KANSAS- AMERICAN SOCIETY OF MAMMALOGISTS (ASM) The American Society of Mammalogists (ASM) was established in 1919 for the purpose of promoting interest in the study of mammals. AN OVERVIEW In addition to being among the most charismatic of animals, mammals are important in many disciplines from paleontology to ecology and evolution. We, of course, are mammals and thus are in the interesting position of studying ourselves in quest of a greater understanding of the role of mammals in the natural world. The ASM is currently composed of thousands of members, many of who are professional scientists. Members of the Society have always had a strong interest in the public good, and this is reflected in their involvement in providing information for public policy, resources management, conservation, and education. The Society hosts annual meetings and maintains several publications. The flagship publication is the Journal of Mammalogy, a journal produced 6 times per year that accepts submissions on all aspects of mammalogy. The ASM also publishes Mammalian Species (accounts of individual species) and Special Publications (books that pertain to specific taxa or topics), and we maintain a mammal images library that contains many exceptional photographs of mammals.
    [Show full text]