Magmatic Inclusions in Rhyolites of the Spor Mountain Formation, Western Utah: Limitations on Compositional Inferences from Inclusions in Granitic Rocks

Total Page:16

File Type:pdf, Size:1020Kb

Magmatic Inclusions in Rhyolites of the Spor Mountain Formation, Western Utah: Limitations on Compositional Inferences from Inclusions in Granitic Rocks JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 95, NO. Bll, PAGES 17,717-17,728, OCTOBER 10, 1990 Magmatic Inclusions in Rhyolites of the Spor Mountain Formation, Western Utah: Limitations on Compositional Inferences From Inclusions in Granitic Rocks ERIC H. CHRISTIANSEN Department of Geology, Brigham Young University, Provo, Utah DANIEL A. VENCHIARUTTI Department of Geology, University of Iowa, Iowa City Inclusions of quenched mafic magma occur in a 21 Ma rhyolite lava and precursory non-welded tuff that form the Spor Mountain Formation in west-central Utah. The mafic inclusions are not lithic inclusions; no comparable volcanic unit was present at the surface when the Spor Mountain Formation erupted. Mineral and bulk compositions preclude liquid immiscibility. The mafic inclusions show clear morphologic and textural effects of magma mingling shortly before eruption of the rhyolite. Globular inclusions from both units are vesicular, phenocryst-poor, plagioclase-sanidine-clinopyroxene- orthopyroxene-magnetite-ilmenite latites and trachytes with quench temperatures of about 1000°C. Although overlapping in SiO2, TiO2, Zr, and Hf concentrations, inclusions from the underlying tuff lack negative Eu anomalies and are enriched in P2O5, K2O, A12O3, Sr, Pb, Cr, and Ni whereas those hosted in the overlying lava have small negative Eu anomalies and two-fold enrichments in Fe2O3, MnO, HREE, Y, Ta, Th, Rb, and Cs. The most reasonable explanation for the differences between the two sets of inclusions lies in selective chemical exchange between the rhyolite lava and the mafic inclusions after eruption. Limited mechanical mixing occurred after the inclusions solidified and became chemically modified. The textures of the inclusions in the lavas and the elements selectively mobilized in the inclusions imply that vapor-phase transport occurred in this low-pressure volcanic environment. If such substantial variations in inclusion compositions can arise during what must have been a short period of time before chemical reactions were halted by rapid cooling, it seems unlikely that the compositions of mafic inclusions formed by magma mingling in slowly cooled granites preserve their original compositions, mineralogies, or information about their ultimate sources. Using the compositions of such chemically modified inclusions as end-members for mixing calculations may lead to erroneous results regarding the significance of magma mixing in plutonic rocks. INTRODUCTION us the opportunity to study the early stages of interaction between mafic magmas and their silicic hosts. The presence of inclusions composed of mafic minerals In this report we describe the evidence for mingling of in granites is often interpreted as evidence for mingling of contrasting magmas in an early Miocene rhyolite erupted in mafic magma with granite before the granite became fully the northern portion of the Basin and Range province of the consolidated [e.g., Pabst, 1928; Vernon, 1984]. Extreme western United States. Mafic (sensu lato) magmatic versions of this hypothesis hold that the chemical variability inclusions in the rhyolites preserve compositions and seen in some plutons is the result of the mixing or textures that provide evidence for selective exchange of hybridization of well-defined mafic and silicic end-members some elements before physical mixing of the two [e.g., Kistler et al., 1986]; the mafic end-member components occurred. These observations limit the represented in some cases by the compositions of mafic usefulness of compositional data obtained from mafic inclusions [e.g., Reid et al., 1983]. The preservation of inclusions in granitic rocks to define end-members for mafic magmatic inclusions in rhyolitic volcanic rocks gives magma mixing models or to infer the ultimate sources of the inclusions. Copyright 1990 by the American Geophysical Union. GEOLOGIC SETTING Paper number 89JB02957 The rhyolite lavas and tuffs of the early Miocene Spor 0148-0227/90/89JB-02957$05.00 Mountain Formation (Figure 1) are exposed in what is now 17,717 17,718 CHRISTIANSEN AND VENCHIARUTTI: LIMITS ON INFERENCES FROM INCLUSIONS Fig. 1. Generalized geologic map of the region around Spor Mountain, Utah [after Lindsey, 1979]. Sample localities are show by diamonds with sample numbers. The prefix M or SM is not shown. CHRISTIANSEN AND VENCHIARUTTI LIMITS ON INFERENCES FROM INCLUSIONS 17,719 the Great Basin, the northern part of the Basin and Range the tuff, carbonate lithic inclusions were altered to colorful province. The Cenozoic volcanic history of the Great Basin nodules of silica minerals, fluorite, clay, manganese oxides, was reviewed by Best et ah [1989] and of the area around and bertrandite during mineralization of the tuff. Spor Mountain by Lindsey [1982] and Shawe [1972]. The rhyolite lavas, mapped as the porphyritic rhyolite Cenozoic magmatism in the northern Great Basin began member of the Spor Mountain Formation [Lindsey, 1979], about 42 Ma with the emplacement of a calc-alkaline overlie the beryllium tuff member in most places but locally sequence of intermediate-composition lavas, ash flows, and the tuff is absent and the lava rests directly on Paleozoic small intrusions. The oldest volcanic rocks near Spor sedimentary rocks or the Drum Mountain Rhyodacite. A Mountain consist of dacitic to andesitic lavas, agglomerates, breccia zone, containing blocks of vitrophyre, is present at and ash flow tuffs. The Drum Mountain Rhyodacite, a the base of the rhyolite lava in several open-pit beryllium prominent member of this association, erupted to form a mines. This breccia is interpreted as an over-ridden apron stratovolcano with peripheral lava flows. Lindsey [1982] reports a fission track age on zircon of 42 Ma for this unit. At 38 Ma (Joy Tuff) and again at 32 Ma (Dell Tuff) TABLE 1. Representative Chemical Analyses of Inclusions rhyolitic ash flows were erupted. Most of the tuffs are and Rhyolites, Spor Mountain Formation, West Central Utah found only as relatively thin remnants of intracaldera deposits. After an 11 m. y. lull in magmatic activity in the Sample M 39 M 43 M 32 SM 8101 SM 31 SM35 region, the 21 Ma Spor Mountain Formation erupted on the western margin of the Caldera complex [Lindsey, 1982]. X Ray Fluorescence Analyses, wt % Scattered eruptions of rhyolite and basalt to basaltic andesite Rock type IL IL IT IT RV RV lavas occurred in this part of the eastern Great Basin after SiO2 61.4 61.1 60.1 58.9 75.0 75.5 about 10 Ma, including the eruption of the Topaz Mountain TiO2 0.97 0.90 0.85 1.23 0.06 0.06 Rhyolite in the adjacent Thomas Range and Keg Mountains. A12O3 16.5 16.5 17.8 17.0 13.5 13,4 Fe2O3 7.13 8.06 5.28 6.97 1.51 1.46 High-angle block faulting typical of Basin and Range MnO 0.14 0.17 0.08 0.11 0.07 0.06 extension formed between 21 and 7 Ma. MgO 1.12 0.56 2.35 1.48 0.05 0.08 The rhyolites of the Spor Mountain Formation take their CaO 3.51 4.11 3.98 5.19 0.62 1.30 Na2O 3.76 3.44 3.16 3.95 4.11 4.42 name from Spor Mountain which is a block of tilted and K2O 5.30 5.15 5.83 4.45 5.10 3.73 intricately faulted lower and middle Paleozoic sedimentary P2O5 0.18 0.07 0.43 0.65 0.00 0.00 rocks composed chiefly of carbonates (Figure 1). LOI 0.90 0.19 1.88 2.39 2.96 3.55 Numerous, relatively small plugs, dikes, and breccia pipes of Spor Mountain Formation rhyolite intruded the X Ray Fluorescence Analyses, ppm Rb 1306 1505 520 225 970 1060 sedimentary sequence. Post eruption basin-and-range Sr 440 400 640 590 5 5 faulting has complicated the structure making it difficult to Y 200 260 90 42 92 135 estimate the number of vents involved. Lindsey [1979] Zr 510 470 510 535 99 120 identified at least 11 vents, including breccia pipes. Nb 50 140 48 58 90 120 Eruptions of the Spor Mountain Formation commenced V 36 32 25 35 5 5 Cu 1 5 2 2 6 6 with emplacement of a series of ignimbrites, pyroclastic fall Zn 320 260 1200 82 60 60 deposits, and pyroclastic surge deposits, and ended with Ga 21 28 21 16 50 50 extrusion of rhyolite lavas over the tuff [Bikun, 1980]. The Ba 1512 877 1239 1210 25 25 tephra deposits and local accumulations of tuffaceous Pb 26 30 64 - 30 30 sandstone and conglomerate have been mapped as the Instrumental Neutron Activation Analyses, ppm beryllium tuff member of the Spor Mountain Formation Sc 15 10 9 11 2.6 2.7 [Lindsey, 1979]. The pyroclastic rocks overlie Paleozoic Cs 72 87 36 67 55 58 sedimentary rocks, the Drum Mountain Rhyodacite, and the La 126 74 94 92 60 59 fluvial sediments of the Spor Mountain Formation Ce 200 144 131 167 144 137 mentioned above. The upper part of the tuff was Nd 97 78 84 78 52 51 Sm 20 19 13 14 18 hydrothermally altered and mineralized (Be-U-F-Li-Mn) by 13 Eu 3.3 2.2 3.5 3.3 0.2 0.1 fluids trapped beneath the impermeable lava cap [Lindsey, Tb 3.9 3.7 1.6 1.5 3.3 3.4 1977; Burt and Sheridan, 1981]. Alteration mineral Yb 13.9 18.3 7.2 3.3 15.6 15.7 assemblages in the tuff include smectite resulting from Lu 2.0 2.5 1.1 0.5 2.5 2.6 incomplete argillization of glass, local sericite, and Hf 11 12 10 10.6 6.2 7.1 secondary potassium feldspar [Lindsey, 1977]. The tephra Ta 5.9 11 5.9 3.7 26 25 Th 40 53 18 21 64 69 reaches a thickness of almost 100 m; a central welded zone U 20 12 21 5.6 36 38 is developed in thick sections [Williams, 1963] and basal zones at a few localities (D.
Recommended publications
  • Field Geology and Petrologic Investigation of the Strawberry Volcanics, Northeast Oregon
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Winter 2-24-2016 Field Geology and Petrologic Investigation of the Strawberry Volcanics, Northeast Oregon Arron Richard Steiner Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Geology Commons, and the Volcanology Commons Let us know how access to this document benefits ou.y Recommended Citation Steiner, Arron Richard, "Field Geology and Petrologic Investigation of the Strawberry Volcanics, Northeast Oregon" (2016). Dissertations and Theses. Paper 2712. https://doi.org/10.15760/etd.2708 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Field Geology and Petrologic Investigation of the Strawberry Volcanics, Northeast Oregon by Arron Richard Steiner A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Environmental Sciences and Resources: Geology Dissertation Committee: Martin J. Streck, Chair Michael L. Cummings Jonathan Fink John A.Wolff Dirk Iwata-Reuyl Portland State University 2016 © 2015 Arron Richard Steiner i ABSTRACT The Strawberry Volcanics of Northeast Oregon are a group of geochemically related lavas with a diverse chemical range (basalt to rhyolite) that erupted between 16.2 and 12.5 Ma and co-erupted with the large, (~200,000 km3) Middle Miocene tholeiitic lavas of the Columbia River Basalt Group (CRBG), which erupted near and geographically surround the Strawberry Volcanics. The rhyolitic lavas of the Strawberry Volcanics produced the oldest 40Ar/39Ar ages measured in this study with ages ranging from 16.2 Ma to 14.6 Ma, and have an estimated total erupted volume of 100 km3.
    [Show full text]
  • Geologic Influences on Apache Trout Habitat in the White Mountains of Arizona
    GEOLOGIC INFLUENCES ON APACHE TROUT HABITAT IN THE WHITE MOUNTAINS OF ARIZONA JONATHAN W. LONG, ALVIN L. MEDINA, Rocky Mountain Research Station, U.S. Forest Service, 2500 S. Pine Knoll Dr, Flagstaff, AZ 86001; and AREGAI TECLE, Northern Arizona University, PO Box 15108, Flagstaff, AZ 86011 ABSTRACT Geologic variation has important influences on habitat quality for species of concern, but it can be difficult to evaluate due to subtle variations, complex terminology, and inadequate maps. To better understand habitat of the Apache trout (Onchorhynchus apache or O. gilae apache Miller), a threatened endemic species of the White Mountains of east- central Arizona, we reviewed existing geologic research to prepare composite geologic maps of the region at intermediate and fine scales. We projected these maps onto digital elevation models to visualize combinations of lithology and topog- raphy, or lithotopo types, in three-dimensions. Then we examined habitat studies of the Apache trout to evaluate how intermediate-scale geologic variation could influence habitat quality for the species. Analysis of data from six stream gages in the White Mountains indicates that base flows are sustained better in streams draining Mount Baldy. Felsic parent material and extensive epiclastic deposits account for greater abundance of gravels and boulders in Mount Baldy streams relative to those on adjacent mafic plateaus. Other important factors that are likely to differ between these lithotopo types include temperature, large woody debris, and water chemistry. Habitat analyses and conservation plans that do not account for geologic variation could mislead conservation efforts for the Apache trout by failing to recognize inherent differences in habitat quality and potential.
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • The Boring Volcanic Field of the Portland-Vancouver Area, Oregon and Washington: Tectonically Anomalous Forearc Volcanism in an Urban Setting
    Downloaded from fieldguides.gsapubs.org on April 29, 2010 The Geological Society of America Field Guide 15 2009 The Boring Volcanic Field of the Portland-Vancouver area, Oregon and Washington: Tectonically anomalous forearc volcanism in an urban setting Russell C. Evarts U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025, USA Richard M. Conrey GeoAnalytical Laboratory, School of Earth and Environmental Sciences, Washington State University, Pullman, Washington 99164, USA Robert J. Fleck Jonathan T. Hagstrum U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025, USA ABSTRACT More than 80 small volcanoes are scattered throughout the Portland-Vancouver metropolitan area of northwestern Oregon and southwestern Washington. These vol- canoes constitute the Boring Volcanic Field, which is centered in the Neogene Port- land Basin and merges to the east with coeval volcanic centers of the High Cascade volcanic arc. Although the character of volcanic activity is typical of many mono- genetic volcanic fi elds, its tectonic setting is not, being located in the forearc of the Cascadia subduction system well trenchward of the volcanic-arc axis. The history and petrology of this anomalous volcanic fi eld have been elucidated by a comprehensive program of geologic mapping, geochemistry, 40Ar/39Ar geochronology, and paleomag- netic studies. Volcanism began at 2.6 Ma with eruption of low-K tholeiite and related lavas in the southern part of the Portland Basin. At 1.6 Ma, following a hiatus of ~0.8 m.y., similar lavas erupted a few kilometers to the north, after which volcanism became widely dispersed, compositionally variable, and more or less continuous, with an average recurrence interval of 15,000 yr.
    [Show full text]
  • Montane Cliff (Mafic Subtype)
    MONTANE CLIFF (MAFIC SUBTYPE) Concept: Montane Cliffs are steep to vertical, sparsely vegetated rock outcrops on river bluffs, lower slopes, and other topographically sheltered locations. This range of sites is narrower than the features that are commonly called cliffs; vertical outcrops on ridge tops and upper slopes are classified as Rocky Summit communities. Some of the communities called cliffs in the 3rd Approximation have been removed to the new glade types. The Mafic Subtype covers examples occurring on mafic rock substrates or mixed substrates containing plant species characteristic of higher base status conditions. Distinguishing Features: Montane Cliffs are distinguished from forest and shrubland communities by having contiguous rock outcroppings large enough to form a canopy break. They are distinguished from Low Elevation Acidic Glades and Low Elevation Basic Glades by having vertical rock more prominent and by having only limited area of soil mats with herbaceous vegetation. The herbaceous and woody vegetation that is present on Montane Cliffs is primarily rooted on bare rock or in crevices or deep pockets rather than in thin soil mats. See the Montane Cliff (Acidic Herb Subtype) for more details on distinguishing Montane Cliffs from other rock outcrop communities. The Mafic Subtype is distinguished by the presence of plants that indicate basic soil conditions but without those indicative of stronger calcareous conditions. Cystopteris protrusa, Micranthes (Saxifraga) careyana, Micranthes (Saxifraga) caroliniana, Asplenium trichomanes, Asplenium rhizophyllum, Aquilegia canadensis, Hydrangea arborescens, Philadelphus inodorus, Ulmus rubra, or species of Rich Cove Forests indicate high base status. Indicator plants are often low in abundance, with more widespread species of rock outcrops or of surrounding forests more common.
    [Show full text]
  • Lecture 12: Volcanoes Read: Chapter 6 Homework #10 Due Thursday 12Pm
    Learning Objectives (LO) Lecture 12: Volcanoes Read: Chapter 6 Homework #10 due Thursday 12pm What we’ll learn today:! 1. Define the term volcano and explain why geologists study volcanoes! 2. Compare and contrast 3 common types of magma! 3. Describe volcanic gases and the role they play in explosive vs effusive eruptions! 4. Identify what gives a shield volcano its distinctive shape! What is causing this eruption? What factors influence its character? “A volcano is any landform from which lava, gas, or ashes, escape from underground or have done so in the past.” From Chapter 5: magma (and lava) can be felsic, intermediate, or mafic. How does magma chemistry influence the nature of volcanic eruptions? Hawaiian Volcanism http://www.youtube.com/watch?v=6J6X9PsAR5w Indonesian Volcanism http://www.youtube.com/watch?v=5LzHpeVJQuE Viscosity Viscous: thick and sticky Low viscosity High viscosity Viscosity Magma Composition (Igneous Rocks) How does magma chemistry determine lava and eruption characteristics? Felsic Intermediate Mafic less Mg/Fe content more more Si/O content less The Major 7 Types of Igneous Rocks Seven major types of igneous rocks Rhyolite Andesite Basalt Extrusive Granite Diorite Gabbro Peridotite Texture Texture Intrusive Felsic Intermediate Mafic Ultramafic Composition The Rocks of Volcanoes Seven major types of igneous rocks Rhyolite Andesite Basalt Extrusive melt at melt at low temperature high temperature Felsic Intermediate Mafic Ultramafic Composition Three Common Types of Magma: BASALTIC ANDESITIC RHYOLITIC Three Common Types of Magma: BASALTIC Basaltic lava flows easily because of its low viscosity and low gas content. Aa - rough, fragmented lava blocks called “clinker” The low viscosity is due to low silica content.
    [Show full text]
  • Convergent Margin Magmatism in the Central Andes and Its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations
    AN ABSTRACT OF THE DISSERTATION OF Morgan J. Salisbury for the degree of Doctor of Philosophy in Geology presented on June 3, 2011. Title: Convergent Margin Magmatism in the Central Andes and its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations Abstract approved: ________________________________________________________________________ Adam J.R. Kent This dissertation combines volcanological research of three convergent continental margins. Chapters 1 and 5 are general introductions and conclusions, respectively. Chapter 2 examines the spatiotemporal development of the Altiplano-Puna volcanic complex in the Lípez region of southwest Bolivia, a locus of a major Neogene ignimbrite flare- up, yet the least studied portion of the Altiplano-Puna volcanic complex of the Central Andes. New mapping and laser-fusion 40Ar/39Ar dating of sanidine and biotite from 56 locations, coupled with paleomagnetic data, refine the timing and volumes of ignimbrite emplacement in Bolivia and northern Chile to reveal that monotonous intermediate volcanism was prodigious and episodic throughout the complex. 40Ar/39Ar age determinations of 13 ignimbrites from northern Chile previously dated by the K-Ar method improve the overall temporal resolution of Altiplano-Puna volcanic complex development. Together with new and updated volume estimates, the new age determinations demonstrate a distinct onset of Altiplano-Puna volcanic complex ignimbrite volcanism with modest output rates beginning ~11 Ma, an episodic middle phase with the highest eruption rates between 8 and 3 Ma, followed by a general decline in volcanic output. The cyclic nature of individual caldera complexes and the spatiotemporal pattern of the volcanic field as a whole are consistent with both incremental construction of plutons as well as a composite Cordilleran batholith.
    [Show full text]
  • Present Knowledge of the Magmatic Evolution of the Eastern Cordillera of Peru
    Earth-Science Reviews, 18 (1982) 253-283 253 Elsevier Scientific Publishing Company, Amsterdam-Printed in The Netherlands Present Knowledge of the Magmatic Evolution of the Eastern Cordillera of Peru G. Carlier', G. Grandin', G. Laubacher', R. and F. M6gard2 ' ORSTOM, Mission Peru, Apartado 270, Lima 18 (Peru) and 2'4 rue Bayard75008 Paris (France) ' Institut Francais #Etudes Andines, Apartado 278, Lima I8 (Peru) Pontificia Universidad Catdica del Perú, Avda S. Boliuar, Lima 27 (Peru) ABSTRACT Carlier, G., Grandin, G., Laubacher, G., Marócco, R. and Mégard, F., 1982. Present knowledge of the magmatic evolution of the Eastern Cordillera of Peru. Earth-Sci. Rev., 18: 253-283. The studies which have been carried out in the Eastern Cordillera of Peru over the past 20 years prove the existence of at least three orogenic cycles: the Late Precambrian, the Hercynian and the Andean, each one accompanied by a more or less abundant magmatism. (1) The Precambrian. Leaving aside the prasinites, possibly derived from synsedimentary , volcanites, Precambrian magmatism (in the Huanuco region) consists of: a meta-igneous ultramafic to mafic association (serpentinites, meta-gabbros, meta-diorites); syntectonic meta-tonalites; and post-tectonic dioritic and granitic intrusive bodies. (2) The Hercynian (550 to 220 my.). From the Cambrian to the Upper Devonian the existence of a synsedimentary magmatism is known. Syntectonic granites were emplaced during the Eohercynian phase, but the major part of magmatism is of a Late Permian to Early Trias age, and is characterized by the intrusion of granitoids and by volcanism of calc-al- kaline tendency. It appears that the nepheline syenite of Macusani may belong to a terminal episode of this magmatic period.
    [Show full text]
  • Petrologic and Geochemical Tracers of Magmatic Movement in Volcanic Arc Systems: Case Studies from the Aleutian Islands and Kamchatka, Russia
    Petrologic And Geochemical Tracers Of Magmatic Movement In Volcanic Arc Systems: Case Studies From The Aleutian Islands And Kamchatka, Russia Item Type Thesis Authors Neill, Owen Kelly Download date 04/10/2021 04:22:53 Link to Item http://hdl.handle.net/11122/9176 PETROLOGIC AND GEOCHEMICAL TRACERS OF MAGMATIC MOVEMENT IN VOLCANIC ARC SYSTEMS: CASE STUDIES FROM THE ALEUTIAN ISLANDS AND KAMCHATKA, RUSSIA By Owen Kelly Neill RECOMMENDED: APPROVED: PETROLOGIC AND GEOCHEMICAL TRACERS OF MAGMATIC MOVEMENT IN VOLCANIC ARC SYSTEMS: CASE STUDIES FROM THE ALEUTIAN ISLANDS AND KAMCHATKA, RUSSIA A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY By Owen Kelly Neill Fairbanks, Alaska May 2013 UMI Number: 3573010 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Di!ss8?t&iori Publishing UMI 3573010 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 iii Abstract Mixing, crystallization and degassing commonly affect magmas during storage, ascent and eruption from volcanoes. As these interactions cannot be observed directly, they must be characterized using chemical signatures of volcanic eruptive products.
    [Show full text]
  • Igneous Rocks and Relative Time Homework 2: Due Wednesday
    Homework 2: EESC 2200 Due Wednesday The Solid Earth System Igneous Rocks And Relative Time 24 Sep 08 Continental Tectonics Relative Frequency of Rock Types A. Crust B. Surface Magma chemistry Two main classes mafic magmas + rocks ma - fic magnesium + iron (Ferrous) rich ES101--Lect 8 OR: felsic magmas + rocks fel - sic Feldspar and silica rich ES101--Lect 8 felsic ->intermediate-> mafic light dark large ions small ions (K, Na) (Mg, Fe) more Si (>60%) less Si (£ 50%) ES101--Lect 8 felsic ->intermediate-> mafic light dark large cations small cations (K, Na) (Mg, Fe) more Si (>60%) less Si (£ 50%) cooler magmas hotter magmas light minerals dense minerals which more explosive? minerals? ES101--Lect 8 Ultra- Felsic Intermediate Mafic mafic Quartz KSpar PlagSpar Micas Amph. Pyroxene Olivine ES101--Lect 8 Ultra- Felsic Intermediate Mafic mafic Diorite Perid- Granite Gabbro otite Quartz KSpar PlagSpar Micas Amph. Pyroxene Olivine ES101--Lect 8 Granite Diorite Gabbro felsic mafic ES101--Lect 8 Felsic Intermediate Mafic Granite Diorite Gabbro coarse Rhyolite Andesite Basalt fine rock slides ES101--Lect 8 Gabbro (coarse) Basalt (fine) Mafic Igneous Rocks Diorite (coarse) Andesite (fine) Intermediate Igneous Rocks Granite (coarse) Rhyolite (fine) Felsic Igneous Rocks Classifying igneous rocks by composition and texture Ridges: Mantle undergoes decompression melting --->>> Basalts (dry) 1300°C basalt = mantle melt ("blood of the Earth") ES101-Lect9 Mantle Melting Temperature 1100 °C 1300°C All Partial Liq Melting Depth All Solid Lower Pressure!! ES101-Lect9 water --> mantle wedge, --> basalt arc volcanism... ES101-Lect9 H2O -- Lowers Melting Point 800˚C 1100˚C T Depth Wet melting you are here ES101-Lect9 basaltic melts -> andesite melts basaltic andesitic magma magma Olivine Olivine+ Pyroxene cooling + Ca-f'spar ES101-Lect9 Mt.
    [Show full text]
  • Review Komatiites: from Earth's Geological Settings to Planetary
    Running Head: Komatiites: geological settings to astrobiological contexts Review Komatiites: From Earth’s Geological Settings to Planetary and Astrobiological Contexts Delphine Nna-Mvondo1 and Jesus Martinez-Frias1 1 Planetary Geology Laboratory, Centro de Astrobiologia (CSIC/INTA), associated to NASA Astrobiology Institute, Ctra. De Ajalvir, km 4. 28850 Torrejon de Ardoz, Madrid, Spain. Correspondence: Laboratorio de Geología Planetaria, Centro de Astrobiología (CSIC/INTA), associated to NASA Astrobiology Institute, Instituto Nacional de Técnica Aeroespacial, Ctra. De Ajalvir, km 4. 28850 Torrejón de Ardoz, Madrid, Spain. Phone: +34 915206434 Fax: +34 915201074 E-mail: [email protected] 1 ABSTRACT Komatiites are fascinating volcanic rocks. They are among the most ancient lavas of the Earth following the 3.8 Ga pillow basalts at Isua and they represent some of the oldest ultramafic magmatic rocks preserved in the Earth’s crust at 3.5 Ga. This fact, linked to their particular features (high magnesium content, high melting temperatures, low dynamic viscosities, etc.), has attracted the community of geoscientists since their discovery in the early sixties, who have tried to determine their origin and understand their meaning in the context of terrestrial mantle evolution. In addition, it has been proposed that komatiites are not restricted to our planet, but they could be found in other extraterrestrial settings in our Solar System (particularly on Mars and Io). It is important to note that komatiites may be extremely significant in the study of the origins and evolution of Life on Earth. They not only preserve essential geochemical clues of the interaction between the pristine Earth rocks and atmosphere, but also may have been potential suitable sites for biological processes to develop.
    [Show full text]
  • Voluminous and Compositionally Diverse, Middle Miocene Strawberry Volcanics of NE Oregon: Magmatism Cogenetic with fl Ood Basalts of the Columbia River Basalt Group
    OLD G The Geological Society of America Special Paper 538 OPEN ACCESS Voluminous and compositionally diverse, middle Miocene Strawberry Volcanics of NE Oregon: Magmatism cogenetic with fl ood basalts of the Columbia River Basalt Group Arron Steiner Department of Geology, Portland State University, P.O. Box 751, Portland, Oregon 97207-0751, USA, and Department of Geology, Washington State University, P.O. Box 642812, Pullman, Washington 99164-2812, USA Martin J. Streck Department of Geology, Portland State University, P.O. Box 751, Portland, Oregon 97207-0751, USA ABSTRACT The mid-Miocene Strawberry volcanic fi eld of northeastern Oregon is an exam- ple of intracontinental fl ood volcanism that produced lavas of both tholeiitic and calc- alkaline compositions derived by open-system processes. Until now, these dominantly calc-alkaline lavas have not been considered to have a petrogenetic origin similar to that of the fl ood basalts of the Pacifi c Northwest because of their calc-alkaline composition. These lavas are situated in between and co-erupted with the domi- nant volcanic fi eld of the Columbia River Basalt Group (CRBG). Due to the timing, location, and diversity of these erupted units, the Strawberry Volcanics may hold valuable information about the role of crustal modifi cation during large magmatic events such as hotspot volcanism. The earliest eruptions of the Strawberry Volca- nics began at 16.2 Ma and appear continuous to 15.3 Ma, characterized by low-sil- ica rhyolite. High-silica, A-type rhyolite eruptions followed at 15.3 Ma. The silicic eruptions continued until 14.6 Ma, with an estimated total volume up to ~100 km3.
    [Show full text]