Microchannel Heat Pipe (MHPTM) Technology for Computer Cooling

Total Page:16

File Type:pdf, Size:1020Kb

Microchannel Heat Pipe (MHPTM) Technology for Computer Cooling IT IS OUR HONOR THAT QUANTACOOL HAS SIGNED A MARKETING AGREEMENT WITH CLOUD9 EDGE TECHNOLOGIES TO REPRESENT THE GREATEST HEAT REMOVALTECHNOLOGY IN THE DATA CENTER & EDGE SPACE QUANTACOOL MHP ™ PASSIVE 2-PHASE COOLING FOR COMPUTERS & DATA CENTERS QUANTACOOL CORPORATION STEVEN G. SCHON, P.E. CHIEF TECHNOLOGY OFFICER QUANTACOOL.COM © 2019 QUANTACOOL CORPORATION 64 WATKIN AVENUE, CHADDS FORD, PA 19317 EXECUTIVE SUMMARY QuantaCool’s patented Microchannel Heat Pipe (MHP™) and technology provides highly efficient, reliable, and environmentally friendly cooling for computers and data centers. MHP reduces cooling infrastructure costs because it operates passively, directly rejecting the waste heat to the air or un-chilled cooling water. MHP can transport heat outside the computer room, reducing or eliminating the need for energy-intensive, mechanically complex, and expensive intermediate systems, such as chillers, air conditioners, pumps or high-power blowers. MHP is modular and scalable, from single processors to the multi-kilowatt heat loads of multiple server racks. The microchannel cold plates offer design and mounting flexibility; high capacities are achieved by manifolding more units, offering the economies of mass production. Cold plates can also be integrated into the structure of the heat-generating equipment itself, as the base for electronic components. MHP can take advantage of the vapor to recover and upgrade the waste heat to further reduce energy use. In addition to providing better cooling performance than state-of-the-art water-based systems, MHP improves both safety and reliability. MHP operates passively, without pumps or water; circulation of the working fluid (an inert refrigerant) is driven by the waste heat itself and by gravity, and is self-regulating in response to the heat load. Moreover, the operation is silent. The fluid is non-toxic, non-flammable, and non-conductive, eliminating the risks associated with water cooling; in the event of a leak, the fluid evaporates away harmlessly. Over-clocking computers to run faster requires more power and produces more heat. MHP allows higher over-clocking because the thermal performance exceeds that of conventional heat pipes and the best water-cooled systems. For data centers, it enables higher computational density, e.g. using smaller servers and more processors per server, since the cold plates are more compact and do not require the chassis airflow needed with conventional coolers. Large-scale applications such as data centers and telecom facilities can be cooled more cost- effectively and operate reliably at higher intensities using MHP technology. Because it has no moving parts, MHP provides an ideal cooling solution for high-density unattended installations such as edge computing. QUANTACOOL.COM © 2019 QUANTACOOL CORPORATION PAGE 2 OF 18 64 WATKIN AVENUE, CHADDS FORD, PA 19317 CONTENTS MHP™ TECHNOLOGY ................................................................................................................. 4 Operating Principle ..................................................................................................................... 4 Superior Heat Transfer ................................................................................................................ 6 Multiplexing capability ............................................................................................................... 7 Corroboration Studies ................................................................................................................. 9 BENEFITS .................................................................................................................................... 10 Reduced Cooling Costs ............................................................................................................. 10 Safety and Environmental Benefits .......................................................................................... 11 Increased Computer Performance, Life, and Efficiency ........................................................... 12 Maintenance & Operational Benefits ........................................................................................ 12 Increased Infrastructure Efficiency ........................................................................................... 13 Flexibility and Scalability ......................................................................................................... 14 Reduced Insurance Costs .......................................................................................................... 15 Opportunity for Energy Savings and Recovery ........................................................................ 15 CONCLUSION ............................................................................................................................. 18 QUANTACOOL.COM © 2019 QUANTACOOL CORPORATION PAGE 3 OF 18 64 WATKIN AVENUE, CHADDS FORD, PA 19317 MHP™ TECHNOLOGY OPERATING PRINCIPLE MHP systems use compact microfluidic high-flux heat absorbers (cold plates) relying on phase- change principles (boiling, evaporation) to remove and dissipate large quantities of heat from high-intensity sources. The heat is passively and remotely rejected to ambient cooling media. It operates on the principle of a thermosyphon, like a coffee percolator (see Figure 1). The heat itself drives the flow of the coolant through boiling circulation, eliminating the need for a pump or external power sources. Because it is completely passive, using gravity and not pumps, there are no moving parts that can break and lead to downtime. The coolant working fluids are common refrigerants: non-flammable, environmentally benign, and electrically non-conductive. Figure 1: MHP – Operating Principle (Thermosyphon Boiler) The heat is transferred directly to the final external cooling medium (typically ambient air or un- chilled cooling water) via the condenser, at temperatures within a few degrees of the external QUANTACOOL.COM © 2019 QUANTACOOL CORPORATION PAGE 4 OF 18 64 WATKIN AVENUE, CHADDS FORD, PA 19317 coolant. This is thermodynamically more efficient and does not require the additional energy inputs that are required with the indirect cooling or intermediate heat transfer loops which are typically used in data centers. (Compare the conventional data center arrangement in Figure 2, vs. the direct 2-phase cooling MHP arrangement in Figure 3). Figure 2: Conventional Indirect Data Center Cooling Chain Figure 3: Direct 2-Phase Cooling Eliminates Intermediary Heat Hand-offs QUANTACOOL.COM © 2019 QUANTACOOL CORPORATION PAGE 5 OF 18 64 WATKIN AVENUE, CHADDS FORD, PA 19317 SUPERIOR HEAT TRANSFER MHP melds the outstanding heat transfer of microchannel heat exchangers with the passive evaporative heat pipe principle and is described in detail in US Patent 9,157,687. A comparison of the calculated device temperatures and relative heat transfer for MHP vs. other cooling methods is shown in Figure 4 (note that lower temperatures at high heat fluxes are better). Figure 4: MHP vs. Conventional Cooling Heat Transfer Performance A typical cold plate, suitable for cooling central processing units (CPUs) or graphic processing units (GPUs) is shown in Figure 5. Note that it is compact enough to fit inside 1U and blade servers. Figure 5: Cold plate for CPUs or GPUs QUANTACOOL.COM © 2019 QUANTACOOL CORPORATION PAGE 6 OF 18 64 WATKIN AVENUE, CHADDS FORD, PA 19317 MULTIPLEXING CAPABILITY Unlike conventional wick- or loop-type heat pipes, where the condensers are connected one-to- one with the heat absorbers, MHP allows multiple cold plates to be connected to a single common condenser, via manifolds for the coolant supply and return lines (see Figure 6). This reduces costs, through the economy of scale. Figure 6: Cold Plate / Condenser Configurations – Dedicated or Multiplexed Options In PolarRak™ systems for data servers, the manifolds are supplied by a reservoir immediately above the highest cold plate (providing the gravitational liquid head needed to drive the circulation). However, the condenser, which only handles the vapor, can be mounted arbitrarily far away; if mounted outside the electronics room, e.g. on the roof, the condenser can be cooled by ambient cooling media (e.g. air or cooling tower water), rejecting the heat without the need for power- and capital-intensive chilling or air conditioning systems. Conversely, MHP cold plates can be designed to cool multiple hot zones of differing sizes and heat fluxes, using internal manifolding to many discrete microchannel evaporative areas. QuantaCool successfully used this approach in a PolarMax™ system for power electronics, with a QUANTACOOL.COM © 2019 QUANTACOOL CORPORATION PAGE 7 OF 18 64 WATKIN AVENUE, CHADDS FORD, PA 19317 single cold plate handling over 2.5 kW from a device with more than 30 active heat-generating components. A schematic of a data center server rack configuration, with multiple servers rejecting the heat to a common condenser outside the server room, is shown in Figure 7. Condenser Air or un-chilled cooling water Coolant vapor Server Room 2-phase coolant Liquid coolant Liquid Return Header Reservoir Server Rack (gravity flow) (Server out of service) Supply Header Header Supply Microchannel Evaporative Cold Plate Liquid coolant Liquid Hot Device (Processor) Dry-break quick-connectors Figure 7: Schematic Configuration – MHP Cooling of a Server Rack QUANTACOOL.COM © 2019 QUANTACOOL CORPORATION PAGE 8 OF 18 64 WATKIN AVENUE, CHADDS FORD, PA
Recommended publications
  • Avionics Thermal Management of Airborne Electronic Equipment, 50 Years Later
    FALL 2017 electronics-cooling.com THERMAL LIVE 2017 TECHNICAL PROGRAM Avionics Thermal Management of Advances in Vapor Compression Airborne Electronic Electronics Cooling Equipment, 50 Years Later Thermal Management Considerations in High Power Coaxial Attenuators and Terminations Thermal Management of Onboard Charger in E-Vehicles Reliability of Nano-sintered Silver Die Attach Materials ESTIMATING INTERNAL AIR ThermalRESEARCH Energy Harvesting ROUNDUP: with COOLING TEMPERATURE OCTOBERNext Generation 2017 CoolingEDITION for REDUCTION IN A CLOSED BOX Automotive Electronics UTILIZING THERMOELECTRICALLY ENHANCED HEAT REJECTION Application of Metallic TIMs for Harsh Environments and Non-flat Surfaces ONLINE EVENT October 24 - 25, 2017 The Largest Single Thermal Management Event of The Year - Anywhere. Thermal Live™ is a new concept in education and networking in thermal management - a FREE 2-day online event for electronics and mechanical engineers to learn the latest in thermal management techniques and topics. Produced by Electronics Cooling® magazine, and launched in October 2015 for the first time, Thermal Live™ features webinars, roundtables, whitepapers, and videos... and there is no cost to attend. For more information about Technical Programs, Thermal Management Resources, Sponsors & Presenters please visit: thermal.live Presented by CONTENTS www.electronics-cooling.com 2 EDITORIAL PUBLISHED BY In the End, Entropy Always Wins… But Not Yet! ITEM Media 1000 Germantown Pike, F-2 Jean-Jacques (JJ) DeLisle Plymouth Meeting, PA 19462 USA
    [Show full text]
  • An Expansion on Applied Computer Cooling
    An Expansion on Applied Computer Cooling By Spencer Ellsworth LAES 400 November 29, 2012 Abstract In the world of professional technology, many businesses utilize servers and Ap- ple products in their day-to-day work, relying upon these machines for the liveli- hood of their operations. However, the technology being used is limited by a single, ever-important factor: heat. The key to improved performance, increased computer longevity, and lower upkeep costs lies in managing machine temperatures. Previously, this topic was investigated for the world of PCs. In this paper, modifications, upgrades, and available components that improve cooling are discussed in regard to servers and Apple products. Through the use of these methodologies, the aformentioned improve- ments may be achieved. Contents 1 Introduction 1 2 Background 1 3 Servers 2 3.1 Freestanding . 3 3.2 Rack Mount . 3 4 Apple Products 5 4.1 Difficulties . 5 4.2 Mac Desktops . 5 4.2.1 iMac . 6 4.2.2 Mac Pro . 6 4.3 Mac Mini . 7 4.4 Apple TV . 7 4.5 MacBook . 8 5 Business Economics 8 5.1 Servers . 8 5.2 Apple . 9 6 Related Work 9 7 Conclusion 10 1 Introduction freestanding and rack mount servers, as their differences are significant. The topics of \Now this is not the end. It is not even this paper then make a transition to Ap- the beginning of the end. But it is, per- ple products, touching upon the difficulties haps, the end of the beginning." -Sir Win- in improving cooling for Apple machines, as ston Churchill, 1942 well as individual investigations of the iMac, Six months ago, the author completed a Mac Pro, Mac Mini, Apple TV, and Mac- research, analysis, and experimentation pa- Book.
    [Show full text]
  • Motivair Cooling Solutions Report
    Cooling System Considerations for High Density Colocation and Enterprise Data Centers By Rich Whitmore Executive summary The recent advances in computer technology and the growing adoption of high performance CPUs and GPUs are allowing users to achieve new heights in computer analytics including the use of Big Data, Artificial Intelligence, High-Frequency Trading, Oil & Gas research and web scale business models. This rapid rise in use has overtaken most Colocation and Enterprise facilities’ ability to cool the se often-densified server racks on a large scale. While many facilities publish the ability to provide cooling for higher than standard server racks on a watts per square foot basis, many if not all are unable to manage newer computer systems at that density on a large scale. Co location and Enterprise data centers must consider how these new computers will interact within the data center environment, educate themselves on the various solutions available to cool these dense servers and build the infrastructure that can support the latest computer racks being used both today and in the future. Cooling System Considerations for High Density Colocation and Enterprise Data Centers Introduction As the uses for high density computers continues to expand, the requirements for operating these advanced systems has also grown. The drive for higher efficiency data centers is a subject closely tied to a building’s Power Usage Effectiveness (PUE) which is defined as: (Total Facility Energy) / (IT Equipment Energy). High Performance Computing (HPC) clusters and high-density compute racks are consuming power densities of up to 100 kW per rack, sometimes higher, with an estimated average density of 35 kW per rack.
    [Show full text]
  • “Cooling System for Electronics in Computer System- an Overview”
    International Journal of Recent Engineering Research and Development (IJRERD) Volume No. 02 – Issue No. 02, ISSN: 2455-8761 www.ijrerd.com, PP. 01-04 “Cooling system for electronics in computer system- an overview” KunalPardeshi1, P.G Patil2, R.Y.Patil3 1 Master Scholar MechanicalEnineering Department, S.G.D.C.O.E. Jalgaon 2Assistant Professor, Mechanical Enineering Department, S.G.D.C.O.E. Jalgaon 3Head, Mechanical Department, S.G.D.C.O.E. Jalgaon Abstract: During the power management, the inevitable power losses induce heat generation in the power electronics. In this, effective design for the cooling system is essential in terms of safety, reliability, and durability. A liquid cooling system for the power electronics is applied to chill the electrical components below the thermal specifications. Nonetheless, the layout of cooling components is usually designed after the completion of the chassis and power electronics in the automotive applications, thus, only a little freedom is allowed to change the layout. Thus, it is significant and urgent to investigate the cooling performance before finalizing the layout design. In this work, one dimensional and computerized fluid dynamics code is employed to simulate the performance of the cooling system at the early stage of conceptual design. Three different layouts of cooling systems are chosen to compare the ensuing systematic cooling performances. The liquid flow rates, pressure drops, and maximum temperatures are computed by the numerical simulations of the cooling system which comprises the cold plates, liquid pump and heating electronic device. Index Terms: High performance CPUs, heat transfer enhancement, liquid impingement, heat transfer 1.
    [Show full text]
  • Floor Mount & In-Rack Models
    coolant distribution unit Floor Mount & In-Rack Models TM OUR BUSINESS IS COOLING YOURS motivaircorp.com COMPREHENSIVE COOLING FOR YOUR DIGITAL WORLD From Hyperscale to Exascale KEY REASONS A Coolant Distribution Unit (CDU) is designed to control and separate colder facility water supplies TO USE A from the IT cooling infrastructure. It allows you to deploy higher density, load diverse IT equipment in ® a smaller footprint & improve efficiency. MOTIVAIR CDU This action of “decoupling” allows the CDU to accurately monitor and control the flow and temperature of clean, cool fluid to all types of IT cooling systems, including Active and Passive Rear • Isolates a clean water supply Door Heat Exchangers or Liquid-Cooled Computer Systems (Direct-to-Chip or On-Chip). for IT cooling system The CDU maintains a secondary loop water temperature above the dew point in the data center to • Maintains water temperature eliminate the possibility of condensation. above data center dew point eliminating the possibility of condensation • Automatically adjusts water flow and temperature for scale-on-demand IT loads MODELS APPLICATION MCDU-4U 105 kW ChilledDoor® • Offers inherent redundancies MCDU15 310 kW Rack Cooling System & MCDU 25 625kW Liquid-Cooled Computer Systems for maximized uptime MCDU 40 1250kW • Ideal for W1 – W5 cooling systems Custom OEM Solutions • Made in the USA Motivair offers flexible CDU designs for unique liquid cooling applications, including custom OEM solutions. TM OUR BUSINESS IS COOLING YOURS motivaircorp.com HOW IT WORKS The Motivair® Coolant Distribution Unit (CDU) creates an isolated water loop and pumps this through the cooling system DECOUPLE to operate at maximum efficiency.
    [Show full text]
  • A View from the Facility Operations Side on the Water/Air Cooling System of the K Computer
    A View from the Facility Operations Side on the Water/Air Cooling System of the K Computer Jorji Nonaka∗ Keiji Yamamoto Akiyoshi Kuroda HPC Usability Dev. Unit System Operations & Dev. Unit Application Tuning Dev. Unit RIKEN R-CCS RIKEN R-CCS RIKEN R-CCS Kobe, Japan Kobe, Japan Kobe, Japan Toshiyuki Tsukamoto Kazuki Koiso Naohisa Sakamoto Facility Operations & Dev. Unit Grad. School of System Informatics Grad. School of System Informatics RIKEN R-CCS Kobe University Kobe University Kobe, Japan Kobe, Japan Kobe, Japan ABSTRACT ACM Reference Format: Eight years have been passed since the first appearance of the K Jorji Nonaka, Keiji Yamamoto, Akiyoshi Kuroda, Toshiyuki Tsukamoto, computer in the TOP500 list as the most powerful system at that Kazuki Koiso, and Naohisa Sakamoto. 2019. A View from the Facility Op- erations Side on the Water/Air Cooling System of the K Computer. In time. Currently, the count down for the final shutdown has already Proceedings of IEEE/ACM Supercomputing Conference (SC19 Poster). ACM, started, and the preparations for the substitution are also underway. New York, NY, USA, 3 pages. https://doi.org/10.1145/1122445.1122456 The Operations and Computer Technologies Division at the RIKEN R-CCS is responsible for the management and operations of the 1 INTRODUCTION entire Facility, which includes the auxiliary subsystems such as the Almost five years have been passed from the first detailed opera- power supply, and water/air cooling systems. It is worth noting that tion analysis [6], and four years from the detailed hardware failure part of these subsystems will be reused in the next supercomputer analysis [5] of the K computer system.
    [Show full text]
  • ASHRAE Standard 90.1-2010 Equipment Final Rule Technical
    CHAPTER 4. ENERGY USE CHARACTERIZATION TABLE OF CONTENTS 4.1 INTRODUCTION .............................................................................................................. 4-1 4.2 ENERGY USE ANALYSIS BY EQUIPMENT TYPE ..................................................... 4-1 4.2.1 Water-Cooled Air Conditioners .............................................................................. 4-1 4.2.1.1 Water-Cooled Compressor-Condenser Performance .................................. 4-3 4.2.1.2 Supply Water Temperature ......................................................................... 4-5 4.2.1.3 Supply Fan Power ....................................................................................... 4-5 4.2.1.4 Water-Cooled Compressor-Condenser-Only Cooling Coefficient of Performance vs. Energy Efficiency Ratio Relationship ......................................... 4-6 4.2.1.5 Baseline Annual Energy Use Per Ton – Water-Cooled .............................. 4-7 4.2.1.6 Energy Use Estimates for Baseline and Higher Efficiency Water-Cooled Air Conditioner Equipment by Equipment Class. ......................................................... 4-9 4.2.2 Evaporatively Cooled Air Conditioners................................................................ 4-11 4.2.2.1 Baseline Annual Energy Use Per Ton – Evaporatively Cooled ............... 4-12 4.2.2.2 Energy Use Estimates for Baseline and Higher Efficiency Evaporatively Cooled Air Conditioners by Equipment Class ...................................................... 4-13 4.2.3
    [Show full text]
  • Enhanced Cooling of Laptop Computer for Improvement of Processing Performance by Mohammed A
    Global Journal of Computer Science and Technology: H Information & Technology Volume 15 Issue 5 Version 1.0 Year 2015 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 0975-4172 & Print ISSN: 0975-4350 Enhanced Cooling of Laptop Computer for Improvement of Processing Performance By Mohammed A. Bou-Rabee, Shaharin A. Sulaiman & Wan M. S. W. Mazlan U niversity Teknologi Petronas, Kuwait Abstract- A major problems in the operation of laptop computers is overheating since it can affect the performance and stability, sometimes leading to system crash and hardware fatality. The objective of this work was to study the thermal behavior inside a laptop computer and to test the effectiveness of aproposed cooling method to overcome overheating problem. The proposed cooling system contained a thermoelectric device that reduced the intake air temperature into the laptop internal cooling system. An external exhaust blower, located at the exhaust air outlet of the laptop, was mounted to ensure sufficient air flow rate delivered by the cooling system. To assess the effectiveness of the system, temperatures of critical components in the computer were measured. It was found from the study that, under extreme utilization situation, the temperature of the graphic processing unit could increase to 99°C. The proposed cooling system could bring down the temperature by up to 6°C. Keywords: computer; power electronics; laptop; overheating; cooking; heat dissipation; thermoelectric. GJCST-H Classification: B.5.2 B.7.1 EnhancedCoolingofLaptopCompterforImprovementofProcessingPerformance Strictly as per the compliance and regulations of: © 2015. Mohammed A. Bou-Rabee, Shaharin A. Sulaiman & Wan M.
    [Show full text]
  • Miniature Loop Heat Pipe with Flat Evaporator for Cooling Computer CPU Randeep Singh, Aliakbar Akbarzadeh, Chris Dixon, Mastaka Mochizuki, and Roger R
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RMIT Research Repository 42 IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 30, NO. 1, MARCH 2007 Miniature Loop Heat Pipe With Flat Evaporator for Cooling Computer CPU Randeep Singh, Aliakbar Akbarzadeh, Chris Dixon, Mastaka Mochizuki, and Roger R. Riehl Abstract—This paper presents an experimental investigation Subscripts on a copper miniature loop heat pipe (mLHP) with a flat disk Ambient. shaped evaporator, 30 mm in diameter and 10-mm thick, designed for thermal control of computer microprocessors. Tests were Compensation chamber. conducted with water as the heat transfer fluid. The device was Condenser. capable of transferring a heat load of 70 W through a distance up to 150 mm using 2-mm diameter transport lines. For a range of Evaporator. power applied to the evaporator, the system demonstrated very Junction. reliable startup and was able to achieve steady state without any symptoms of wick dry-out. Unlike cylindrical evaporators, flat Heat pipe. evaporators are easy to attach to the heat source without need of Total. any cylinder-to-plane reducer material at the interface and thus offer very low thermal resistance to the heat acquisition process. Vapor. In the horizontal configuration, under air cooling, the minimum Liquid. value for the mLHP thermal resistance is 0.17 C/W with the corresponding evaporator thermal resistance of 0.06 C/W. It is concluded from the outcomes of the current study that a mLHP I. INTRODUCTION with flat evaporator geometry can be effectively used for the thermal control of electronic equipment including notebooks with limited space and high heat flux chipsets.
    [Show full text]
  • Silent & Fan-Less Mini-PC Using Case for Passive Cooling
    International Conference On Emanations in Modern Technology and Engineering (ICEMTE-2017) ISSN: 2321-8169 Volume: 5 Issue: 3 369 - 374 ____________________________________________________________________________________________________________________ Silent & Fan-Less Mini-PC using Case for Passive Cooling Jasmohan Singh Narula, Siddhivinayak Zaveri, Rohan Chaubey and Dhruv Nagpal Shree L. R. Tiwari College of Engineering, Computer Department Kanakia Road, Kanakia Park, Mira Road East, Mira Bhayandar, Maharashtra 401107, India [email protected], [email protected], [email protected] Abstract- Small form factors personal computers are on the rise as there is a demand for them from users. This document explores the different form factors of personal computers and ways in which Mini-PCs can be improved to provide a better alternative for their bigger counterpart Desktop PCs. The main aim of this document is to explore ideas and try to innovate with the existing as well as new methods, using newer designs and manufacturing techniques for creating better Mini-PCs which can achieve a balance between performance, size, and noise. Originally the concept of Passive Cooling was only used for heat producing components other than CPU, but through our findings it can be a better option for such small factor computers like Mini-PC and their case can be given a secondary purpose other than for aesthetics. Keywords–PC, Desktop, Mini-PC, Heatsink, Benchmarks, Thermal Management & Throttling, Thermal Design Power, Dynamic Frequency Scaling __________________________________________________*****_________________________________________________ I. INTRODUCTION Mini-PCs have come into the picture today by the combination of flexibility of Desktops and portability of With rapid advancement in computer design and Laptop. Based on small, low-power components, they take engineering, PC’s are becoming smaller.
    [Show full text]
  • Development of an Experimental Apparatus for the Testing of Novel Cooling Systems for Processors
    DEVELOPMENT OF AN EXPERIMENTAL APPARATUS FOR THE TESTING OF NOVEL COOLING SYSTEMS FOR PROCESSORS Michael Hinton Master of Engineering Department of Mechanical Engineering McGill University Montr´eal, Qu´ebec August 13, 2017 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Engineering ©Michael Hinton, 2017 ii ACKNOWLEDGEMENTS I would like to begin by thanking, most importantly, my supervisor, Professor Laurent Mydlarski. Through his continued support and guidance, I have grown as a scientific re- searcher and achieved my academic goals. I especially owe him a debt of gratitude for his role in bringing the present work to fruition. This research project was conducted in collaboration with Hypertec, a computer hard- ware and services company in the Montr´eal area. Hypertec provided resource support in the form of funding, equipment and personnel. Thank you to Eliot Ahdoot for his role in initiating the project and seeing it through, and a special thank you to Fabrice, Jihad, Gilles, Florian, Noman, and Joseph for all of their technical and procurement advice and support. Furthermore, I would like to voice my appreciation to the providers of financial support for this project. A McGill Engineering Undergradatuate Student Masters Award (MEUSMA) was granted by the McGill Faculty of Engineering. Moreover, I was awarded an Alexander Graham Bell Canada Graduate Scholarship-Master’s (CGS M) by the Natural Sciences and Engineering Research Council of Canada (NSERC), who also supplied an NSERC Engage grant. Lastly, Mitacs funded the project by means of a Mitacs Accelerate award. I would be remiss if I did not also thank my friends and family for their endless support.
    [Show full text]
  • Use of Nanofluids in Computer Cooling Systems: an Application
    ISSN (e): 2250 – 3005 || Volume, 08 || Issue, 07|| July – 2018 || International Journal of Computational Engineering Research (IJCER) Use of Nanofluids in Computer Cooling Systems: An Application Ayusman Nayak1,Atul2,Jagadish Nayak3 1,3Assistant Professor, Department of Mechanical Engineering, Gandhi Institute For Technology (GIFT), Bhubaneswar 2 Assistant Professor, Department of Mechanical Engineering, Gandhi Engineering College, Bhubaneswar Abstract: This paper works on the applications of nano fluid for the cooling of computers and other such devices. Various parameters has been considered. Thermal properties and the effect of using nanofluids on cooling performance of liquid cooling systems were investigated in this research. Keywords: cooling, Nanofluid I. INTRODUCTION In electronic industry, improvement of the thermal performance of coolingsystems together with the reduction of their required surface area has always been a great technical challenge. Research carried out on this subject can be classifiedinto three general approaches: finding the best geometry for cooling devices, decreasing the characteristic length and recently increasing the thermalperformance of the coolant. The latest approach is based on the discovery ofnanofluids. Nanofluids are expected to have a better thermal performance than conventional heat transfer fluids due to the high thermal conductivity of suspendednanoparticles. In recent years there have been several investigations showing enhancement of thermal conductivity of nanofluids.The cooling performance of a water cooling kit with the addition of nanofluids is investigated. A real computer setup with a quad-core processor has been used to determine the effect of use of nanofluid on the cooling system in real practical condition. 1.1 LITERATURE SURVEY The basic ideas regarding the topic was taken from the journal paper Application of nanofluids in computer cooling systems (heat transfer performance ofnanofluids) by M.
    [Show full text]